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Abstract

Biological measurements often contain systematic errors, also known as “batch effects”, which may in-
validate downstream analysis when not handled correctly. The problem of removing batch effects is of major
importance in the biological community. Despite recent advances in this direction via deep learning techniques,
most current methods may not fully preserve the true biological patterns the data contains. In this work we
propose a deep learning approach for batch effect removal. The crux of our approach is learning a batch-free
encoding of the data, representing its intrinsic biological properties, but not batch effects. In addition, we also
encode the systematic factors through a decoding mechanism and require accurate reconstruction of the data.
Altogether, this allows us to fully preserve the true biological patterns represented in the data. Experimental
results are reported on data obtained from two high throughput technologies, mass cytometry and single-cell
RNA-seq. Beyond good performance on training data, we also observe that our system performs well on test
data obtained from new patients, which was not available at training time. Our method is easy to handle, a pub-
licly available code can be found at https://github.com/ushaham/BatchEffectRemoval2018.

1 Introduction
Biological measurements are typically affected by systematic errors, i.e., factors which depend on experimental
conditions but not on the phenomena being measured. Such factors are known in the biological community as
batch effects. As the magnitude of batch effects can potentially be significant comparing to the magnitude of
the biological signal of interest, ignoring the existence of batch effects may lead to false results invalidating
a downstream analysis. For this reason, the problem of batch effect removal has drawn major interest in the
biological community [11].

Obviously, the specific effect of the experimental conditions on the measurements is never known. However,
it is usually easy to obtain two or more control samples, where each sample is being collected at one set of
experimental conditions (i.e., a batch), and both samples correspond to the same underlying biological state. This
setting naturally promotes machine learning techniques, that learn patterns from examples, to use for batch effect
removal. Two important challenges for any such machine learning approach for batch effect removal are (i) its
ability to generalize, i.e., to remove batch effects from samples which differ in distribution than the ones used
for training and (ii) not distorting true biological signal represented in the data. Obtaining good performance on
arbitrary test data that differ in distribution from the training data is a fundamental difficulty for any machine
learning algorithm, and good generalization ability can thus never be guaranteed in principle, for any batch
effect removal procedure. Yet, experimental results can be used to evaluate the generalization ability of proposed
procedures. Preservation of biological signal while removing batch effects is crucial, as otherwise, calibrated data
does not fully reflect the true biological state of a subject, which might invalidate any subsequent downstream
analysis as well.
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In last decade deep learning have achieved tremendous performance on various machine learning tasks across
numerous domains, and several recent works have utilized it for batch effect removal. Despite making important
progress in this direction, most recently proposed deep learning methods for batch effect removal have funda-
mental weaknesses preventing them from successfully fulfilling the second challenge above.

In this work, given biological measurement data, we seek to obtain a representation (or a code) of the data
which encodes solely biological signal but not batch effects. In addition, we also require that our code, along
with a decoding mechanism will allow reconstruction of the data, so that the entire true biological signal will
not be lost or distorted. The approach presented in this manuscript contains an encoder-decoder deep learning
system in which (i) batch effects are stripped off raw measurement data via an encoding mechanism, (ii) the
data is represented in a code space, in which the code corresponds to its underlying biological state and (iii)
the measurement data is reconstructed by a decoding mechanism in which the batch effects are hard-coded. In
order to obtain such desirable code we utilize adversarial loss, a powerful deep learning technique. Requiring
invariance of the encoding to batch effects, along with good reconstruction performance encourages our system
to fully preserve biological properties represented in the data. We demonstrate the performance of our system
on two novel biological techniques, mass cytometry and single-cell RNA sequencing (scRNA-seq). Along with
obtaining good performance in removal of batch effect from the training samples, we observe that the proposed
system performs well also at test time, on samples arising from new distributions, which were unknown during
training. This manuscript is accompanied with an easy to use and publicly available Python code.

The remainder of this manuscript is organized as follows. In Section 2 we review several recent deep learning-
based approaches for batch effect removal, as well as related works from other domains. In Section 3 we de-
scribe our proposed approach. Experimental results are reported in Section 4. Section 5 briefly concludes the
manuscript.

2 Related work
Several research groups recently proposed deep learning-based approaches for batch effect removal. The Kluger
research group proposed an approach based on networks trained to minimize maximum mean discrepancy (MMD,
[6]) distance between a source and a target distribution [17, 12]. As calibration by minimizing the distribution
distance alone can distort important biological properties of the data, they used residual nets [8], where the
learned calibration map is encouraged to be of small magnitude, implicitly preserving biological characteristics
of the data. In this manuscript we take a different path to ensure that biological properties are preserved, by
explicitly requiring the encoding to be batch-free. In addition, while they demonstrated impressive experimental
results on training data, the ability of such approach to perform well on test data from arbitrary distributions is
questionable.

Using MMD for batch correction was later used also by the Krishnaswamy research group in [3]. A second
work by this group [1] used generative adversarial nets [5] rather than MMD loss to match the distributions. In
addition, this approach requires labeled subsets of the data and applies a mechanism that encourages labeled sub-
populations of the data to maintain pairwise correspondence, in order not to distort biological structures. Beyond
the fact that this approach is no longer unsupervised and requires domain knowledge, the amount of labeled
data that might be needed to achieve reasonable performance can unfortunately be large, for example in case of
scRNA-seq data, which typically consists of many clusters. In contrast, the approach presented here is purely
unsupervised and does not rely on any domain knowledge or label information.

A recent work by the Krishnaswamy group [2] proposed to address the generalization issue by learning new
representation for the data, identifying dimensions which correspond to batch differences (while those which do
not may correspond to biological properties), and aligning the distributions of the batches for each such “batch
dimension”. This approach is based on two powerful assumptions. First, they assume that there exist dimensions
in this representation that encode only batch differences but not biological properties, so that the batch differences
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can be corrected by aligning the two batches in these dimensions. Second, the alignment is being done for each
dimension separately, which implicitly assumes that these dimensions are uncorrelated. Both assumptions are
unrealistic in the general case, as no elements of their algorithm encourage the learned representation to satisfy
them. Moreover, even if such “batch dimensions” and “biology dimensions” do exist in the encoding of the
control samples, there is no particular reason to assume that they will be consistent with the representations of
arbitrary samples arriving at test time.

Our approach is related to that of [13] and the more recent work of [16], who propose domain adaptation
techniques based on learning domain-invariant features, where the first one utilizes MMD while the second one
utilizes adversarial training. It is also closely related to [15], where domain-invariant representation is learned
for music style transfer. Finally, domain invariant representation is learned also in [19], utilizing Wasserstein
distance, which we use as well. They train a model to “forget” specifically chosen domain information. However,
for batch effect removal, their method may “forget” also true biological signal. In contrast, we do not forget
any information in the data, as we require reconstruction of the data. Rather, we split the information to bio-
logical information, which is present in the code, and batch information, which is hard coded into the decoding
mechanism.

3 Methods

3.1 Problem setup
Let X be an arbitrary space, corresponding to the collection of possible intrinsic biological states of a subject. Let
fA : X → Rd and fB : X → Rd be two measuring environments (i.e., two instruments, or two sets of laboratory
conditions), creating two batches of measurements. Let p be a distribution on X , which corresponds to a specific
biological state of a subject and let X1, X2 be two unobserved sets of iid samples from p, of arbitrary sizes n1
and n2, respectively.

We observe two batches of measurement data XA = fA(X1) and XB = fB(X2). Our goal is to use XA and
XB to learn a system that “calibrates” batch differences, i.e., we would like a calibration system that when trained
on XA and XB , will output two samples X ′A, X

′
B having the same distribution and same underlying biological

properties.
In addition, a desirable property of such system is its ability to perform the calibration well also on new test

samples. More formally, consider two future observations X̃A = fA(X̃1), X̃B = fB(X̃2), where X̃1 and X̃2

are sampled from unknown distributions q1 and q2, respectively (thus corresponding to samples with possibly
different biological conditions, which may also differ from the training distribution p). We would like our system
to enable us to compare the underlying intrinsic biological states represented in X̃1, X̃2 in a way that would not
be affected by the differences between fA and fB . As explained above, such property, while desired, can not be
guaranteed in principle for any batch effect removal technique.

3.2 System design
3.2.1 Rational

Our system consists of a shared encoder E and two decoders DA, DB which reconstruct the data for each batch.
Reconstruction of the data requires that no information, and specifically information on the internal biological
state of the subject, is lost. In addition, we train a discriminator network Disc and use adversarial loss to obtain an
encoding in which the distributions of two control samples, corresponding to the same intrinsic biological state,
cannot be distinguished, despite the fact that the two samples were collected in different batches. Together, this
implies that while the code is batch-free, all batch information is hard coded into the decoders. Hence, intuitively,
one may think of our proposed system as an encoder which removes the batch information from the measurements
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and encodes the data in a batch-free space, and decoders that given such code, put the batch information back on
to reconstruct the data. The two conditions we require, i.e., (i) batch-free encoding and (ii) reconstruction, imply
together that the code has to contain complete information on the underlying biological state represented in the
data, as otherwise, a good reconstruction will not be possible. Below we give a short technical background of
each component and describe the specific setup of our proposed system.

3.2.2 Variational autoencoder

We implement each of (E,DA) and (E,DB) as a variational autoencoder (VAE, [10]). A variational autoencoder
is a pair (E,D) of networks, where the encoder E maps each data point x ∈ Rd to a distribution E(x) over the
code space. We follow a typical setting where E(x) is a r-dimensional Gaussian with a diagonal covariance
matrix, parametrized by its mean vector and the covariance diagonal. The decoder D maps a code z back to a
distribution D(·|z) over the input space. A VAE is trained to maximize a lower bound on the likelihood of its
training data. Specifically, for data coming from a training distribution p, a VAE is trained to minimize the loss

LVAE(E,D) = Ex∼p [Lrec(x) + LKL(x)] , (1)

where
Lrec(x) = Ez∼E(x) logD(x|z)) (2)

is a reconstruction term and
LKL(x) = KL(E(x), ρ)

is a term penalizing the distance of the code distribution from a generic standard distribution ρ (usually a standard
r-dimensional Gaussian). Typically, we consider the decoder output D(·|z) to be the mean of a d-dimensional
Gaussian with identity covariance, in which case the reconstruction loss (2) is proportional to the squared error

Ez∼E(x)‖x−D(·|z)‖2.

In our experiments, we used a more flexible variant of VAE [9], in which the KL term in (1) is multiplied by a
tunable parameter β, so that the VAE loss becomes

Lβ−VAE(E,D) = Ex∼p [Lrec(x) + βLKL(x)] , (3)

3.2.3 Adversarial training

We would like the encoding of the data to be batch-free, i.e., to correspond solely to the intrinsic biological state
the data represents but not to the measuring environment. Observe that the training data XA and XB correspond
to the same intrinsic biological state represented by p. Denote by pA the distribution ofE(fA(X)), whereX ∼ p,
and similarly pB . In a code space which encodes solely the underlying biological state, the distributions pA and
pB should be similar. To achieve this, we use adversarial framework, a powerful technique in deep learning [5],
with which we minimize the Wasserstein distance between pA and pB , defined (via the Kantorovich-Rubinstein
duality) as

W (pA, pB) = sup
f

[Ex∼pAf(x)− Ex∼pBf(x)] ,

where the supremum is taken over all 1-Lipschitz functions. Specifically, we train a discriminator network Disc :
Rr → R, implemented as a Wasserstein GAN [4] discriminator. The discriminator approximates the Wasserstein
distance between pA and pB . We then require the encoder E to maximize the discriminator loss, by producing
code distributions with small Wasserstein distance. We train the discriminator to minimize the loss

LDisc(Disc) = Ez∼pA Disc(z)− Ez∼pA Disc(z) + δEzA∼pA,zB∼pBgp(zA, zB), (4)
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where δ is a user-specified small positive constant and gp is the gradient penalty loss introduced in [7], which
controls the Lipschitz constant of the discriminator via penalizing its gradient wrt its input, i.e.,

gp(z1, z2) = λ(∇xDisc(εz1 + (1− ε)z2)− 1)2.

where ε is a random U(0, 1) sample.
The Encoder E is trained to minimize

Ladv(E) = EzA∼pA,zB∼pB‖Disc(zA)−Disc(ZB)‖2 (5)

3.2.4 Putting it together

Altogether, we train (E,DA, DB) and Disc in parallel, where the Disc is trained to minimize (4), while (E,DA, DB)
are trained to minimize

L(E,DA, DB) = Lβ−VAE(E,DA) + Lβ−VAE(E,DB) + γLadv(E), (6)

where γ is another user-specified small positive constant. The batch-free encoding allows for calibration of the
data and representing it in the input space: once the system is trained, one encodes data from two batches and
reconstruct the data from both batches using the same decoder.

4 Experiments

4.1 CyTOF data
CyTOF [18] is a mass cytometry technology that allows simultaneous measurements of multiple protein markers
in each cell of a specimen (e.g. a blood sample), typically consisting of 103-106 cells.

We perform our experiments on a subset of the publicly available data used in [17]. The data contains four
samples, belonging to two patients, where each patient has two samples collected on different days on the same
CyTOF machine. We arbitrarily choose patient 2 for training and patient 1 for testing, where for each patient,
we consider samples from different days as different batches. All samples had dimension d = 25 and contained
1800-5000 cells each. For a full description of the data and a specification of the markers we refer the reader
to Section 4.2.1 and the Supplementary Section S1 in [17]. The data was pre-processed using a log transform
x← log(1 + x). Unlike [17] we did not use any denoising autoencoders to remove zero entries from the data.

Figure 1 shows the reconstructions of the train and test data, projected onto the subspace of first two principal
components of the train data. For each batch, the reconstruction was obtained by encoding its data and decoding
it via the corresponding decoder. Figure 2 shows the calibration of train and test data. The calibration was done
by encoding the data and using the target batch decoder to decode both batches. As can be seen in both figures,
the quality of the reconstruction and calibration of the test data (i.e., data from patient 1) is similar to that of the
train data (i.e., data from patient 2).

Figure 3 shows the calibration of test data for each of three individual markers. The results are similar to those
on all other 22 markers as well. As can be seen, the cumulative distributions of each marker are significantly closer
after calibration than before calibration.

Figure 3 demonstrates the quality of the calibration for individual markers. To analyze whether higher or-
der structures are also preserved during the calibration process we computed the pairwise correlation matrices
CA, CB for each batch of the test data, before and after calibration. We then computed the difference matrix
CA−CB . While the Frobenius norm of the difference matrix was 2.82 before calibration, it is 1.11 after calibra-
tion, which implies that the calibration process makes the pairwise marker structure between batches significantly
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Figure 1: Reconstructions of cytof data. Data from patient 2 was used for training (left) and from patient 1 for
testing (right). The terms “source” and “target” refer to the two batches (top and bottom, respectively). In all
plots the inputs to the encoder are marked in blue, and the outputs from the corresponding decoder are marked in
red.

more similar. To complete this view, Figure 4 presents the coefficients of the difference matrices before and after
calibration, where we can observe that the differences are much smaller after the calibration.

Next, we perform quantitative evaluation, by computing the MMD between the source and target batches
before and after calibration. The results are shown on Table 1. Each value was computed based on a random
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Figure 2: Calibration of cytof data. Data from patient 2 was used for training (left) and from patient 1 for testing
(right). Top: data before calibration. Bottom: Data after calibration. In all plots “source” and “target” refer to the
two batches.

subset of size 1000 from each sample; the presented values are mean± std based on three runs. As we can see,
calibration decreases the MMD between the distributions of the two batches, on both the train and test data. As
one may expect, the MMD on the test data is slightly higher than the train data. In [17] it was shown that MMD-
ResNet performs significantly better, in terms of MMD, than popular linear methods for batch effect removal.
Although comparison of the current approach to MMD-ResNet is beyond the scope of this manuscript, we remark
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Figure 3: Calibration cytof test data. The plots present the cumulative distributions for each of the first three
markers. Top: before calibration. Bottom: after calibration.

Figure 4: Differences between pairwise correlation coefficients of CyTOF test data before and after calibration.
The differences are much smaller after calibration, implying that the correlation structure of the two batches is
significantly more similar than before calibration.

that it is reported in [17] that the MMD between the source and target batches, when training a MMD-ResNet on
patient 1 was 0.27. Here the corresponding value is 0.26, despite the fact that our system was not trained on this
patient, but rather on patient 2, while the data of patient 1 was used merely for testing.

Finally, to investigate further the preservation of biological structures on the test data, we take a similar
approach to [17] and visually inspect the quality of the calibration on the sub-population of Killer T-cells in the
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data before calibration after calibration
Train .19±.001 .17±.001
Test .26±.01 .19±.01

Table 1: MMD between the two batches before and after calibration.

Figure 5: Calibration of CyTOF test data: Killer T-cells in the 2D subspace of the markers CD28 and GzB.

2D subspace of the markers CD28 and GzB, which is shown in Figure 5. As can be seen, the distributions of the
Killer T-cells sub-population in the two batches are much closer after calibration.

To conclude the CyTOF experiments, we investigated the reconstruction errors and calibration differences
through various points of view. In addition to performing high quality calibration on the train data, we also
observed similar performance on test data, i.e., on a second patient, having unique biological conditions, whose
data was not used during training.

4.2 scRNA-seq
Drop-seq [14] is a novel technique for simultaneous measurement of single-cell mRNA expression levels of
all genes of numerous individual cells. As a single run of drop-seq typically does not contain enough cells to
perform an analysis, multiple runs need to be conducted, a process that might introduce batch effects into the
measurements.

In this section we experiment with the publicly available scRNA-seq data described in [17], where a dataset
with 13,166 genes is normalized and projected onto the subspace of leading 37 principal components. Altogether,
the data contains 27,499 cells in two batches. For a more detailed description of the data we refer the reader to
section 4.3 in [17].

Figure 6 shows a T-SNE embedding of data before and after removing the batch effects. As can be seen, our
system seems to correctly calibrate the data and align is different sub-populations.
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Figure 6: Calibration of scRNA-seq data.

4.3 Technical details
All reported results were obtained where E,DA, DB ,Disc all had a basic Multi Layer Perceptron (MLP) archi-
tecture, having two hidden layers, each of 20 leaky ReLU units. The code space dimension was 15 in the CyTOF
experiments and 20 for the scRNA-seq experiments. We used Adam optimizer with learning rate of 10−3 and
batch size of 64. Z-transform was applied to all data prior to training. Our publicly available code and data
reproduce all reported results.

5 Conclusion
We proposed a deep learning-based approach for batch effect removal. Our approach is based on utilizing ad-
versarial loss in order to obtain a encoding of the data which correspond solely to the intrinsic biological state
of a subject, along with requiring good reconstruction of the data, which implies that no significant biological
information is lost during the calibration process. We demonstrated the performance of our proposed approach
on two novel high throughput technologies, CyTOF and scRNA-seq. Moreover, we also demonstrated that our
approach can achieve good performance on test data obtained from subjects who are different from the subjects
whose data used for training.
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