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Purpose: Radiation therapy (RT) is a common treatment for head and neck (HaN) cancer where
therapists are often required to manually delineate boundaries of the organs-at-risks (OARs). The
radiation therapy planning is time-consuming as each computed tomography (CT) volumetric data
set typically consists of hundreds to thousands of slices and needs to be individually inspected.
Automated head and neck anatomical segmentation provides a way to speed up and improve the
reproducibility of radiation therapy planning. Previous work on anatomical segmentation is primar-
ily based on atlas registrations, which takes up to hours for one patient and requires sophisticated
atlas creation. In this work, we propose the AnatomyNet, an end-to-end and atlas-free three di-
mensional squeeze-and-excitation U-Net (3D SE U-Net), for fast and fully automated whole-volume
HaN anatomical segmentation.

Methods: There are two main challenges for fully automated HaN OARs segmentation: 1)
challenge in segmenting small anatomies (i.e., optic chiasm and optic nerves) occupying only a few
slices, and 2) training model with inconsistent data annotations with missing ground truth for some
anatomical structures because of different RT planning. We propose the AnatomyNet that has one
down-sampling layer with the trade-off between GPU memory and feature representation capacity,
and 3D SE residual blocks for effective feature learning to alleviate these challenges. Moreover,
we design a hybrid loss function with the Dice loss and the focal loss. The Dice loss is a class
level distribution loss that depends less on the number of voxels in the anatomy, and the focal
loss is designed to deal with highly unbalanced segmentation. For missing annotations, we propose
masked loss and weighted loss for accurate and balanced weights updating in the learning of the
AnatomyNet.

Results: We collect 261 HaN CT images to train the AnatomyNet, and use MICCAI Head and
Neck Auto Segmentation Challenge 2015 as the benchmark dataset to evaluate the performance
of the AnatomyNet. The objective is to segment nine anatomies: brain stem, chiasm, mandible,
optic nerve left, optic nerve right, parotid gland left, parotid gland right, submandibular gland left,
and submandibular gland right. Compared to previous state-of-the-art methods for each anatomy
from the MICCAI 2015 competition, the AnatomyNet increases Dice similarity coefficient (DSC)
by 3.3% on average. The proposed AnatomyNet takes only 0.12 seconds on average to segment a
whole-volume HaN CT image of an average dimension of 178 × 302 × 225. All the data and code
will be availablea.

Conclusion: We propose an end-to-end, fast and fully automated deep convolutional network,
AnatomyNet, for accurate and whole-volume HaN anatomical segmentation. The proposed Anato-
myNet outperforms previous state-of-the-art methods on the benchmark dataset. Extensive ex-
periments demonstrate the effectiveness and good generalization ability of the components in the
AnatomyNet.

Key words: Fast and fully automated anatomical segmentation, 3D squeeze-and-excitation U-Net
(3D SE U-Net), radiation therapy, head and neck organ segmentation

a https://github.com/wentaozhu/AnatomyNet-for-anatomical-
segmentation.git

I. INTRODUCTION

Head and neck cancer is one of the most commonly di-
agnosed cancers around the world [1]. Radiation therapy
is the primary method for treating patients with head and
neck cancers. The radiation therapy planning relies on
accurate organs-at-risks (OARs) segmentations [2], usu-
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ally undertaken by radiation therapists with laborious
manual delineation. Computational tools automatically
segmenting anatomical regions can greatly alleviate doc-
tors’ manual efforts if these tools can delineate anatom-
ical regions accurately and with a reasonable amount of
time [3].

There is a vast body of literature for the tasks of auto-
matically segmenting anatomical structures from CT or
MRI images. Here we focus on reviewing literature re-
lated to head and neck (HaN) anatomical segmentation.
Broadly speaking, traditional anatomical segmentation
methods mainly include registration-based methods, sta-
tistical appearance models, active contours, and etc. [4].
In fact, in the MICCAI 2015 HaN segmentation chal-
lenge [5], most participants used either registration or
appearance model based methods, including the winning
solutions. Typically registration-based anatomical seg-
mentation undergoes a number of steps, including pre-
processing, atlas creation, image registration, and label
fusion. As a consequence, their performances are im-
pacted by specific factors involved in each of these steps,
such as methods used in preprocessing, the quality of
created atlas [2], registration methods, and the choice
of loss functions. Early HaN registration-based segmen-
tation methods typically use a single atlas because 3D
image registration is time-consuming [6, 7]. Atlas can be
chosen from training CT images [2, 7], created from ar-
tificial CT images with expert annotations on anatomies
[8], or probabilistic atlas calculated from training CT im-
ages [4, 6, 9]. Multi-atlas based registration methods in
general lead to better performance because of increased
capacity to represent variations of anatomies in test im-
ages [10–12]. In the inference phrase, different fusion
methods can be used, such as simultaneous truth and
performance level estimation (STAPLE) [13], similarity
and truth estimation (STEPS) [13], and joint weighted
voting [14]. In the registration step, different types of loss
functions have been proposed, including image intensity
[15], mutual information [16], Gaussian local correlation
coefficient [2], locally affine block matching [13], B-splines
[4, 10, 12], and demons [17]. Most of these methods op-
erate directly on raw image pixels or voxels. Methods
utilizing landmarks of anatomies can sometimes lead to
improved performance [18]. Although registration-based
methods are still very popular and by far the most widely
used methods in anatomical segmentations, their main
limitation is the computational speed, requiring up to
hours of computational time to complete one registration
task.

In addition to registration-based methods, segmenta-
tion methods based on supervised learning have also been
proposed before. Multi-output support vector regression
with histogram of oriented gradients (HOG) was pro-
posed for automated delineation of OARs [19]. Fuzzy and
hierarchical multi-step models were described in some re-
cent works [20, 21]. Pednekar et al. conducted a compar-
ison on the impact of image quality on organ segmenta-
tion [22]. Wang et al. proposed a new active appearance

model by incorporating shape priors into a hierarchical
learning-based model [23]. However, these learning based
methods typically require laborious preprocessing steps,
and/or hand-crafted image features. As a result, they
have not been widely adopted, and their performances
tend to be less robust than registration-based methods.

Recently, deep learning based methods for HaN OARs
segmentation have started to emerge [24]. Atlas align-
ment based convolutional neural networks were proposed
for fully automated head and neck anatomical segmenta-
tion [25]. Ibragimov and Xing proposed a simple convo-
lutional neural network for atlas-free deep learning based
OARs segmentation [26]. Interleaved multiple 3D-CNN
was proposed for small-volumed structure segmentation
in the region of interest (ROI) obtained by atlas reg-
istration [27]. Hänsch et al. conducted a comparison
for different deep learning approaches for single anatomy,
parotid gland, segmentation [28]. However, the existing
deep learning based methods either use sliding windows
working on patches that cannot capture global features,
or rely on atlas registration to obtain highly accurate
small regions of interest in the preprocessing. What is
more appealing are models that receive the whole-volume
image as input without heavy-duty preprocessing, and
then directly output the segmentations of all interested
anatomies.

In this work, we study the feasibility of constructing
and training a deep neural net model that jointly seg-
ment all OARs in a fully end-to-end fashion, receiving
a raw whole-volume CT image as input and returning
the masks of all OARs with the images. The success of
such as system can greatly impact the current practice of
automated anatomy segmentation, simplifying the entire
computational pipeline, cutting computational cost and
improving segmentation accuracy.

There are, however, a number of obstacles that need
to overcome in order to make such a system successful.
First, in designing network architectures, we ought to
keep the maximum capacity of GPU memories in mind.
Since whole-volume images are used as input, each image
feature map will be 3D, limiting the size and number of
feature maps at each layer of the neural net due to mem-
ory constraints. Second, OARs contain organs/regions of
variable size, including some OARs with very small sizes.
Accurately segmenting these small-volumed structures is
always a challenge. Third, exiting datasets of HaN CT
images contain data collected from various sources with
non-standardized annotations. In particular, many im-
ages in the training data contain annotations of only a
subset of OARs. How to effectively handle missing an-
notations need to be addressed in designing training al-
gorithms.

Here we propose a deep learning based framework,
called AnatomyNet, to segment OARs using a single net-
work, trained end-to-end. The network receives whole-
volume CT images at input, and outputs the segmented
masks of all OARs. Our method requires no preprocess-
ing and minimal post-processing, and utilizes features
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from all slices to segment anatomical regions with the
advantage of 3D ConvNets [29, 30]. We overcome three
major obstacles outlined above through designing a novel
network architecture and utilizing loss functions for train-
ing the network.

More specifically, our major contributions include the
following. First, we extend the standard U-Net model
for 3D HaN image segmentation by incorporating a new
feature extraction component, based on squeeze-and-
excitation (SE) residual blocks [31]. We also modify the
U-Net architecture to change the schedule of downsam-
pling steps, for the purpose of fitting the entire network
within a single GPU, while at the same time boosting
capacity for segmenting small regions. Second, we pro-
pose a new loss function for better segmenting small-
volumed structures. Small volume segmentation suffers
from the imbalanced data problem, where the number
of voxels inside the small region is much smaller than
those outside, leading to the difficulty of training. New
classes of loss functions have been proposed to address
this issue, including Tversky loss [32], generalized Dice
coefficients [33, 34], focal loss [35], adversarial loss [36],
sparsity label assignment constrains [37], and exponen-
tial logarithm loss [38]. However, we found none of these
solutions alone was adequate to solve the extremely data
imbalanced problem (1/100,000) we face in segmenting
small OARs, such as optic nerves and chiasm, from HaN
images. We propose a new loss based on the combina-
tion of Dice scores and focal losses, and empirically show
that it leads to better results than other losses. Finally,
to tackle the missing annotation problem, we train the
AnatomyNet with masked and weighted loss function to
account for missing data and to balance the contributions
of the losses originating from different OARs.

To train and evaluate the performance of AnatomyNet,
we curated a dataset of 261 head and neck CT images
from a number of publicly available sources. We carried
out systematic experimental analyses on various compo-
nents of the network, and demonstrated their effective-
ness by comparing with other published methods. When
benchmarked on the test dataset from the MICCAI 2015
competition on HaN segmentation, the AnatomyNet out-
performed the state-of-the-art method by 3.3% in terms
of Dice coefficient (DSC), averaged over nine anatomical
structures.

The rest of the paper is organized as follows. Section
II A describes the network structure and (SE) residual
block of AnatomyNet. The designing of the loss function
for AnatomyNet is present in Section II B. How to handle
missing annotations is addressed in Section II C. Section
III describes the details of the dataset and validates the
effectiveness of the proposed networks and components.
Discussions and conclusions are in Section IV and Section
V, respectively.

II. METHODS

Image feature representation learning has been thor-
oughly explored since the large scale dataset, ImageNet,
became publicly available [39]. A number of novel net-
work architectures have been proposed to better explore
and learn image features. ResNet employs residual con-
nections to effectively learn very deep features [40]. Re-
cently proposed squeeze-and-excitation (SE) networks
adaptively recalibrate channel-wise feature responses by
explicitly modelling interdependencies among channels,
achieving state-of-the-art performance on the ImageNet
classification task [31]. For image semantic segmenta-
tion, the U-Net has emerged as a benchmark method
[24]. However, traditional U-Net or U-Net variants typi-
cally use four successive pooling layers or down-sampling
layers, which significantly reduce image resolution and
make it hard to segment small organs or regions of inter-
ests [24, 41]. In this work, we take advantage of the
robust feature learning mechanisms obtained from SE
residual blocks, and incorporate them into a modified
U-Net architecture for medical image segmentation. We
propose a novel three dimensional U-Net with squeeze-
and-excitation (SE) residual blocks and hybrid focal and
dice loss for anatomical segmentation as illustrated in
Fig. 1.

A. Network architecture

The AnatomyNet is a variant of U-Net, one of the
most commonly used neural net architectures in anatomy
segmentation. The standard U-Net contains multiple
down-sampling layers via max-pooling or convolutions
with strides over two. Although they are beneficial to
learn high-level features for segmenting complex, large
anatomies, these down-sampling layers can hurt the seg-
mentation of small anatomies such as optic chiasm, which
occupy only a few slices in HaN CT images. We design
the AnatomyNet with only one down-sampling layer to
account for the trade-off between GPU memory usage
and network learning capacity. The down-sampling layer
is used in the first encoding block so that the feature
maps and gradients in the following layers occupy less
GPU memory than other network structures. Inspired
by the effectiveness of squeeze-and-excitation residual
features on image object classification, we design 3D
squeeze-and-excitation (SE) residual blocks in the Anato-
myNet for OARs segmentation. The SE residual block
adaptively calibrates residual feature maps within each
feature channel. In essence, the residual block can be
written as

Y = G(F (X) +X), (1)

where X is the input, F denotes the convolution, G is
the activation function, and Y returns the residual fea-
ture map. Residual connection has been shown to be very
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effective in learning deep features by overcoming the gra-
dient vanishing problem [40].

To further boost the representational power of deep
networks, SE network adaptively models the interde-
pendencies between channel-wise features and calibrates
them [31]. Segmentation quality relies on effective fea-
ture learning. Inspired by the success of SE network on
image object classification task, we employ SE residual
learning as the building block in the AnatomyNet. The
3D SE Residual learning can be formulated as

Xr = F (X) ,

zk = Fsq(X
r
k) =

1

S ×H ×W

S∑
s=1

H∑
h=1

W∑
w=1

xrk(s, h, w) ,

z = [z1, z2, · · · , zk, · · · , zK ] ,

s = Fex(z,W ) = σ(W2G(W1z)) ,

X̃k = Fscale(X
r
k, sk) = skX

r
k ,

X̃ = [X̃1, X̃2, · · · , X̃k, · · · , X̃K ] ,

Y = G(X̃ +X) ,
(2)

where Xr
k ∈ R3 denotes the feature map of one channel

from the residual featureXr. Fsq is the squeeze function,
which is global average pooling here. S,H,W are the
number of slices, height, and width of Xr respectively.
Fex is the excitation function, which is parameterized
by two layer fully connected neural networks here with
activation functions G and σ, and weights W1 and W2.
The σ is the sigmoid function. TheG is typically a ReLU
function, but we use LeakyReLU in the AnatomyNet [42].
We use the learned scale value sk to calibrate the residual
feature channel Xr

k, and obtain the calibrated residual
feature X̃ . The SE block is illustrated in the upper right
corner in Fig. 1.

The AnatomyNet replaces the standard convolutional
layers in the U-Net with SE residual blocks to learn ef-
fective features. The input of AnatomyNet is a whole-
volume CT image. We remove the down-sampling layers
in the second, third, and fourth encoder blocks to im-
prove the performance of segmenting small anatomies.
In the output block, we concatenate the input with the
transposed convolution feature maps obtained from the
second last block. After that, a convolutional layer with
16 3×3×3 kernels and LeakyReLU activation function is
employed. In the last layer, we use a convolutional layer
with 10 3×3×3 kernels and soft-max activation function
to generate the segmentation probability maps for nine
OARs plus background.

B. Loss function

Small object segmentation is always a challenge in se-
mantic segmentation. From the learning perspective, the
challenge is caused by imbalanced data distribution, be-
cause image semantic segmentation requires pixel-wise

labeling and small-volumed organs contribute less to the
loss. In our case, the small-volumed organs, such as optic
chiasm, only take about 1/100,000 of the whole-volume
CT images from Fig. 2. The dice loss, the minus of dice
coefficient (DSC), can be employed to partly address the
problem by turning pixel-wise labeling problem into min-
imizing class-level distribution distance [32].

Several methods have been proposed to alleviate the
small-volumed organ segmentation problem. The gener-
alized dice loss uses squared volume weights. However, it
makes the optimization unstable in the extremely unbal-
anced segmentation [34]. The exponential logarithmic
loss is inspired by the focal loss for class-level loss as
E[(− ln(D))

γ
] [38], where D is the dice coefficient (DSC)

for the interested class, γ can be set as 0.3, and E is the
expectation over classes and whole-volume CT images.
The gradient of exponential logarithmic loss w.r.t. DSC
D is − 0.3

Dln(D)0.7
. The absolute value of gradient is getting

bigger for well-segmented class (D close to 1). Therefore,
the exponential logarithmic loss still places more weights
on well-segmented class, and is not effective in learning
to improve on not-well-segmented class.

In the AnatomyNet, we employ a hybrid loss consisting
of contributions from both dice loss and focal loss [35].
The dice loss learns the class distribution alleviating the
imbalanced voxel problem, where as the focal loss forces
the model to learn poorly classified voxels better. The
total loss can be formulated as

TP p(c) =

N∑
n=1

pn(c)gn(c)

FNp(c) =
N∑
n=1

(1− pn(c))gn(c)

FP p(c) =

N∑
n=1

pn(c)(1− gn(c))

L =LDice + λLFocal

=C −
C−1∑
c=0

TP p(c)

TP p(c) + αFNp(c) + βFP p(c)

− λ 1

N

C−1∑
c=0

N∑
n=1

gn(c)(1− pn(c))
2

log(pn(c)) ,

(3)
where TP p(c), FNp(c) and FP p(c) are the true posi-
tives, false negatives and false positives for class c cal-
culated by prediction probabilities respectively, pn(c) is
the predicted probability for voxel n being class c, gn(c)
is the ground truth for voxel n being class c, C is the to-
tal number of anatomies plus one (background), λ is the
trade-off between dice loss LDice and focal loss LFocal,
α and β are the trade-offs of penalties for false negatives
and false positives which are set as 0.5 here, N is the
total number of voxels in the CT images. Because of size
differences for different whole-volume CT images, we set
the batch size to be 1.
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FIG. 1. The AnatomyNet is a variant of U-Net with only one down-sampling and squeeze-and-excitation (SE) residual building
blocks. In the decoder, we use concatenated features. Hybrid loss with dice loss and focal loss is employed to force the model
to learn not-well-classified voxels. Masked and weighted loss function is used for ground truth with missing annotations and
balanced gradient descent respectively. The height of rectangle box is related with the feature map size and width is related
with the number of channels (the numbers on the left). The decoder layers are symmetric with the encoder layers. The SE
residual block is illustrated in the upper right corner.

FIG. 2. The frequency of voxels for each class on MICCAI
2015 challenge dataset. Background takes up 98.18% of all
the voxels. Chiasm takes only 0.35% of the foreground which
means it only takes about 1/100,000 of the whole-volume CT
image. The huge imbalance of voxels in small-volumed organs
causes difficulty for small-volumed organ segmentation.

C. Handling missing annotations

Another challenge in anatomical segmentation is due
to missing annotations common in the training datasets,
because annotators often include different anatomies in
their annotations. For example, we collect 261 head and

neck CT images with anatomical segmentation ground
truths from 5 hospitals, and the numbers of nine an-
notated anatomies are very different: brain stem (196),
chiasm (129), mandible (227), optic nerve left (133), op-
tic nerve right (133), parotid left (257), parotid right
(256), submandibular left (135), submandibular right
(130). To handle this challenge, we mask out the back-
ground (denoted as class 0) and the missed anatomy. Let
c ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9} denote the index of anatomies.
We employ a mask vector mi for the ith CT image, and
denote background as label 0. That is

mi(c) =
{ 1 if anatomy c is annoted,

0 otherwise.
(4)

For the background, the mask is

mi(0) =
{ 1 if all anatomies are annoted,

0 otherwise.
(5)

The missing annotations for some anatomical struc-
tures cause imbalanced class-level annotations. To ad-
dress this problem, we employ weighted loss function for
balanced weights updating of different anatomies. The
weights w are set as the inverse of the number of an-
notations for class c, w(c) = 1/

∑
imi(c), so that the

weights in deep networks are updated equally with differ-
ent anatomies. The dice loss for ith CT image in equation
3 can be written as

L̃Dice = C−
C−1∑
c=0

mi(c)w(c)
TP p(c)

TP p(c) + αFNp(c) + βFP p(c)
.

(6)
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The focal loss for missing annotations in the ith CT im-
age can be written as

L̃Focal = − 1

N

C−1∑
c=0

mi(c)w(c)
N∑
n=1

gn(c)(1− pn(c))
2

log(pn(c)) .

(7)

We use loss L̃Dice + λL̃Focal in the AnatomyNet.

III. RESULTS

We implement the AnatomyNet in PyTorch [43], and
train it on NVIDIA Tesla P40. Batch size is set to be
1 because of different sizes of whole-volume CT images.
We first use RMSprop optimizer [44] with learning rate
being 0.002 and the number of epochs being 150. Then
we use stochastic gradient descend with momentum 0.9,
learning rate 0.001 and the number of epochs 50. We
use dice coefficient (DSC) as the final evaluation met-
ric, 2TP

2TP+FN+FP , where TP , FN , FP are true positives,
false negatives, false positives, respectively.

A. Dataset

We collect 261 training CT images which consist of
3 parts. The first part is the MICCAI 2015 training
set, which consists of 38 training CT images, denoted as
DATASET 1 [5]. The second part is the Head-Neck Ce-
tuximab dataset without MICCAI 2015 CT images from
The Cancer Imaging Archive (TCIA) [45] [46], which con-
sists of 46 CT images, denoted as DATASET 2. The
third part is Head-Neck-PET-CT dataset from 4 hospi-
tals in Canada [47] [46], which consists of 177 CT images,
denoted as DATASET 3. We conduct data collection,
such as 1) mapping annotation names named by differ-
ent doctors in different hospitals into unified annotation
names, 2) finding correspondences between the annota-
tions and the CT images, 3) converting annotations into
usable ground truth data, and 4) removing chest from
CT images. All the 261 training CT images and scripts
will be publicly available. For fair comparisons, we con-
duct benchmark comparisons on MICCAI 2015 test set,
which consists of 10 fully annotated CT images. Our ex-
periments on an internal holdout HaN CT image dataset
demonstrate that the AnatomyNet generalizes well on
new CT images.

B. DSC comparison with different numbers of
down-sampling layers

We first evaluate the effect of the number of down-
sampling layers in the U-Net on segmentation perfor-
mance evaluated according to the dice coefficient (DSC)
(Fig. 3). Pool 1 is illustrated in the AnatomyNet in
Fig. 1, which only uses one down-sampling layer. Pool

2 employs two down-sampling layers in the first two en-
coder blocks before concatenation. Pool 3 and Pool 4 are
designed to use three and four down-sampling layers in
the first three and four encoder blocks respectively. The
decoder is symmetric with the encoder. The standard
U-Net uses four down-sampling layers denoted as Pool 4
here [24]. For fair comparisons, we use the same num-
ber of filters in each layer. The number of filters in each
encoder block is the same for each network, which is 32,
40, 48, 56 from block one to block four. The decoder
layers are symmetric with the encoder layers. The dice
coefficient results are concluded in Fig. 3.

From Fig. 3, U-Net with only one down-sampling layer
yields the best average performance. It also obtains best
dice coefficient on all three small-volumed organs: op-
tic nerve left, optic nerve right and optic chiasm, which
demonstrates that the U-Net with one down-sampling
layer works better on small organ segmentation than the
standard U-Net. The probable reason is that small or-
gans reside in only a few slices and more down-sampling
layers are more likely to miss features for the small or-
gans in the deeper layers. In the following experiments,
we use only one down-sampling layer as shown in Fig. 1.

C. DSC comparison with different network
structures

Traditional U-Net uses concatenation in the decoder
as illustrated with dash lines in Fig. 1, while recent fea-
ture pyramid network (FPN) employs summation fea-
ture learning [48]. To determine which feature combi-
nation approach is better, we design a experiment to
compare the performance of concatenation features and
summation features in Fig. 4. In addition, we use the
experiment to test the effectiveness of SE features on the
3D semantic segmentation problem. To learn effective
features, we evaluate different feature learning blocks:
residual learning, squeeze-and-excitation residual learn-
ing, concatenated features and summation features in the
second experiment.

As shown in Fig. 4, the performances of concatena-
tion features are consistently better than those based on
summation features. The better performance of concate-
nation features over summation features is likely because
concatenation features provide more flexibility in feature
learning. Fig. 4 also shows that 3D SE residual U-Net
with concatenation yields the best performance, which
demonstrates the power of SE features on 3D semantic
segmentation, because the SE scheme learns the channel-
wise calibration and trys to alleviate the interdependen-
cies among channel-wise features as discussed in Section
II A.
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FIG. 3. Comparisons on different numbers of down-sampling layers with dice similarity coefficient (%). We use U-Nets with
fully convolutional network as the baseline. The U-Net with only one down-sampling layer performs better than other networks
with two down-sampling layers, three down-sampling layers, four down-sampling layers on all the three small-volumed organs:
optic nerve left, optic nerve right, and optic chiasm.

D. DSC comparison with different loss functions

We also validate the effects of different loss functions
with dice coefficient in Fig. 5. The generalized dice loss
fails in our case because adding big weights causes numer-
ical unstableness [34]. We compare dice loss, exponential
logarithmic loss, hybrid loss between dice loss and focal
loss, hybrid loss between dice loss and cross entropy. The
trade-off in hybrid loss, λ in equation 3, is tuned among
0.1, 0.5 and 1. For hybrid loss between dice loss and focal
loss, the best λ is 0.5. For hybrid loss between dice loss
and cross entropy, the best λ is 0.1.

From Fig. 5, hybrid loss with dice loss and focal
loss outperforms dice loss (2 out of 3), exponential log-
arithmic loss (3 out of 3), dice loss + cross entropy (2
out of 3) on small-volumed organs, such as chiasm, op-
tic nerve left and optic nerve right, which is consistent
with our motivation in the Section II B. Focal loss forces
our model to learn better on not-well-segmented vox-
els and improves small-volumed organ segmentation, be-
cause small-volumed organs occupy a small number of
voxels and typically cannot be predicted well. Dice loss
is better than exponential logarithmic loss, which vali-
dates the analysis of exponential logarithmic loss in the
Section II B. The hybrid loss between dice loss and cross
entropy loss is better than dice loss, because it takes both
advantages of class-level loss and voxel-level loss. The hy-
brid loss between dice loss and focal loss obtains the best
overall dice coefficient in Fig. 5.

E. DSC comparison with state-of-the-art methods

At last, we compare AnatomyNet with 3D SE residual
U-Net with dice loss and other methods including recent
results on MICCAI 2015 test set in Fig. 6. The best
result for each anatomy from MICCAI 2015 is denoted
as MICCAI 2015 Best [5].

MICCAI 2015 competition treats left and right paired
organs into one target, while we treat them as two inde-
pendent anatomies. As a result, MICCAI 2015 competi-
tion is 7 (6 organs + background) class segmentation and
ours is 10 class segmentation. This makes the segmen-
tation task more challenging. Nonetheless, the Anato-
myNet achieves a dice coefficient that is 3.3% better than
the best results from MICCAI 2015 Challenge (Fig. 6).
The AnatomyNet outperforms the atlas based ConvNets
in [25] on all classes, which is likely contributed by the
fact that the end-to-end structure in the AnatomyNet
for whole-volume CT image captures global information
for relative spatial locations among anatomies. Com-
pared with the interleaved ConvNets in [27] on small-
volumed organs, such as chiasm, optic nerve left and
optic nerve right, the AnatomyNet is better on 2 out
of 3 interested anatomies, which demonstrates that the
designed structure and hybrid loss are capable to alle-
viate the highly imbalanced problem in small-volumed
organ segmentation. The interleaved ConvNets achieve
high performance on chiasm, because interleaved Con-
vNets rely on obtaining a highly accurate small region
of interest (ROI) first, which is obtained by atlas regis-
tration. Although the hierarchical vertex regression pre-
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FIG. 4. Comparison with vanilla U-Net, U-Net with residual blocks, U-Net with 3D squeeze-and-excitation (SE) Residual
blocks, and those with summation features using dice similarity coefficient (%). Concatenation features yield better performance
than summation features. The U-Net with 3D SE Residual block obtains better performance than vanilla U-Net and that with
residual blocks.

FIG. 5. Comparison with different loss functions using dice similarity coefficient (%). Dice loss + focal cross entropy loss forces
the model to focus on learning not-well-predicted voxels and obtains the best overall class level segmentation/dice similarity
coefficient.

sented in [23] combines parotid left and right into one
class, the AnatomyNet works better on 2 out of 4 in-
terested anatomies demonstrating the effectiveness of 3D
SE U-Net end-to-end feature learning.

IV. DISCUSSION

A. Visualizations on MICCAI 2015 test

We visualize the segmentation results on all 10 test
whole-volume CT images in Fig. 7. Each row denotes
one CT image. Each column from left to right rep-
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FIG. 6. The AnatomyNet yields dice coefficient that is 3.3% better than the best method for each category in MICCAI 2015
challenge on average. Compared to methods working on a subset of anatomies, the AnatomyNet outperforms atlas assisted deep
ConvNets [25], interleaved ConvNets [27], hierarchical vertex regression [23] on all interested anatomies, 2 out of 3 interested
small-volumed organs, and 2 out of 4 interested organs respectively.

resents the segmentation results of the nine anatomies:
brain stem, mandible gland, parotid gland left and right,
submandibular gland left and right, optic nerve left and
right, chiasm respectively. For visualization purpose, we
merge the left and right organs into one sub-figure. In
each sub-figure, the left is the 2D segmentation com-
parison overlaid on the CT image, and the right is the
segmentation comparison on 3D image. Green denotes
the ground truths. Red represents predicted segmenta-
tion results. Yellow denotes the overlap between ground
truth and prediction. We visualize the slices showing
the biggest area for the related organs. Because small-
volumed organs, such as optic nerves and chiasm only oc-
cupy a few (less than 3) slices, the 3D visualizations are
meaningless and we only visualize the slice where these
organs are big. From Fig. 7, the AnatomyNet works well
on all the 10 test CTs both for small-volumed organs and
other interested organs.

B. Visualizations on holdout hospital CT images

We also test the trained model on an internal holdout
hospital CT images in Fig. 8. We randomly choose 5
CT images for test. Because of annotation inconsistency,
there is no ground truth for mandible, submandibular
left and right anatomies. From Fig. 8, the AnatomyNet
generalizes well on holdout CT images both for small-
volumed organs and other interested anatomies. The
bigger inconsistency between chiasm ground truth and
prediction is likely due to the annotation inconsistency
between the training set and holdout hospital CT images.

C. DSC comparison on training datasets

To investigate the effect of datasets, we employ U-
Net with one down-sampling layer and residual concate-
nation features to train on MICCAI 2015 training set
(DATASET 1) and the collected big dataset (DATASET
1,2,3). The results are concluded in Table I. For fair
comparisons, we force the two trainings to use the same
numbers of gradient updating. We use 1,483 epochs with
RMSprop and learning rate 0.002, and 494 epochs with
stochastic gradient descend with learning rate 0.001 and
momentum 0.9 for training on DATASET 1. From Table
I, the model achieves better performance on mandible,
optic nerve left and right, and parotid left and right by
training on the MICCAI 2015 dataset because the an-
notations are consistent with the test set. The result
demonstrates data quality (consistency between training
and testing set) is important for evaluation, and it is
consistent with previous finding in Fig. 8. However, the
training on MICCAI 2015 only is not stable and may fail
on some classes such as brain stem, chiasm in the ex-
periment, because the training set is too small (38 CT
images) and the deep 3D ConvNets are difficult to learn
all the modes from the small amount of data. We also
observe the same phenomenon with other models trained
on the two datasets. A large scale and high consistent
HaN segmentation dataset is helpful to train a more sta-
ble segmentation model.
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TABLE I. DSC (%) comparison between trained on MICCAI
2015 training set and collected dataset. Training with more
data makes model more stable.

Datasets DATASET 1 DATASET 1,2,3

Brain Stem 58.60 85.91

Chiasm 39.93 53.26

Mandible 94.16 90.59

Opt Ner L 74.62 69.80

Opt Ner R 73.77 67.50

Parotid L 88.83 87.84

Parotid R 87.24 86.15

Submand. L 78.56 79.91

Submand. R 81.83 80.24

Average 75.28 77.91

V. CONCLUSION

In this work, we propose an end-to-end atlas-free and
fully automated fast anatomical segmentation network,
AnatomyNet. To alleviate highly imbalanced challenge
for small-volumed organ segmentation, a hybrid loss with
class-level loss (dice loss) and focal loss (forcing model
to learn not-well-predicted voxels better) is employed to
train the network, and one single down-sampling layer
is used in the encoder. To handle missing annotations,
masked and weighted loss is implemented for accurate
and balanced weights updating. The 3D SE block is de-
signed in the U-Net to learn effective features. A new
public dataset consisting of 261 training CT images is
collected and used to train the model. Extensive experi-
ments demonstrate the effectiveness of these components
and good generalization ability of the AnatomyNet.
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FIG. 7. Visualizations on all the 10 test CT images. Each row represents one CT image. Each column represents 2D or 3D
comparison of one organ. Green represents ground truths, and red denotes predictions. Yellow is the overlap. The AnatomyNet
performs well on small-volumed organs and other interested organs.
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FIG. 8. Visualizations for each anatomy on holdout hospital CT images. There is no ground truth for mandible and
submandibular glands. Because this is a different source from MICCAI 2015, the annotations of brain stem and chiasm are
inconsistent with those from MICCAI 2015. The AnatomyNet generalizes well for hold out test set.
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