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ABSTRACT 9 

Today many vision-science presentations employ machine learning, especially the version 10 

called “deep learning”. Many neuroscientists use machine learning to decode neural responses. 11 

Many perception scientists try to understand how living organisms recognize objects. To them, 12 

deep neural networks offer benchmark accuracies for recognition of learned stimuli. Originally 13 

machine learning was inspired by the brain. Today, machine learning is used as a statistical tool 14 

to decode brain activity. Tomorrow, deep neural networks might become our best model of brain 15 

function. This brief overview of the use of machine learning in biological vision touches on its 16 

strengths, weaknesses, milestones, controversies, and current directions. Here, we hope to help 17 

vision scientists assess what role machine learning should play in their research. 18 
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INTRODUCTION 19 

What does machine learning offer to biological-vision 20 

scientists? Machine learning was developed as a tool for 21 

automated classification, optimized for accuracy. 22 

Machine learning is used in a broad range of applications 23 

(Brynjolfsson, 2018), e.g. regression in stock market 24 

forecasting and reinforcement learning to play chess, but 25 

here we focus on classification. Physiologists use it to 26 

identify stimuli based on neural activity. To study 27 

perception, physiologists measure neural activity and 28 

psychophysicists measure overt responses, like pressing 29 

a button. Physiologists and psychophysicists are starting 30 

to consider deep learning as a model for object 31 

recognition by human and nonhuman primates (Cadieu 32 

et al., 2014; Ziskind et al., 2014; Yamins et al., 2014; 33 

Khaligh-Razavi & Kriegeskorte, 2014; Testolin, Stoianov, 34 

& Zorzi, 2017). We suppose that most of our readers 35 

have heard of machine learning but are wondering 36 

whether it would be useful in their own research. We 37 

begin by describing some of its pluses and minuses.  38 

PLUSES: WHAT IT’S GOOD FOR  39 

At the very least, machine learning is a powerful tool for 40 

interpreting biological data. A particular form of machine learning, deep learning, is very popular  41 

GLOSSARY 
 
Machine learning is any 
computer algorithm that learns 
how to perform a task directly from 
examples, without a human 
providing explicit instructions or 
rules for how to do so. In one 
type of machine learning, called 
“supervised learning,” correctly 
labeled examples are provided to 
the learning algorithm, which is 
then “trained” (i.e. its parameters 
are adjusted) to be able to perform 
the task correctly on its own and 
generalize to unseen examples. 
 
Deep learning is a newly 
successful and popular version of 
machine learning that uses 
backprop (defined below) neural 
networks with multiple hidden 
layers. The 2012 success of 
AlexNet, then the best machine 
learning network for object 
recognition, was the tipping point. 
Deep learning is now ubiquitous in 
the internet. The idea is to have 
each layer of processing perform 
successively more complex 
computations on the data to give 
the full “multi-layer” network more 
expressive power. The drawback 
is that it is much harder to train 
multi-layer networks (Goodfellow 
et al. 2016). Deep learning ranges 
from discovering the weights of a 
multilayer network to parameter 
learning in hierarchical belief 
networks.  
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Figure 1. Top: The frequency of appearance of each of five terms — 
“linear classifier”, "perceptron", "support vector machine", “neural net” 
and “backprop” — in books indexed by Google in each year of 
publication. Google counts instances of words and phrases of n 
words, and calls each an “ngram”. Frequency is reported as a fraction 
of all instances of ngrams of that length, normalized by the number of 
books published that year (ngram / year / books published). The 
figure was created using Google’s ngram viewer 
(https://books.google.com/ngrams), which contains a yearly count of 
ngrams found in sources printed between 1500 and 2008. Bottom: 
Numbers represent worldwide search interest relative to the highest 
point on the chart for the given year for the term “deep learning” (as 
reported by https://trends.google.com/trends/). 
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(Fig. 1). Is it just a fad? For computer vision, the old 43 

paradigm was: feature detection, followed by 44 

segmentation, and then grouping (Marr, 1982). With 45 

machine learning tools, the new paradigm is to just 46 

define the task and provide a set of labeled examples, 47 

and the algorithm builds the classifier. (This is 48 

“supervised” learning; we discuss unsupervised learning 49 

below.)  50 

Unlike the handcrafted pattern recognition (including 51 

segmentation and grouping) popular in the 70’s and 80’s, 52 

deep learning algorithms are generic, with little domain-53 

specificity. 1  They replace hand-engineered feature 54 

detectors with filters that can be learned from the data. 55 

Advances in the mid 90’s in machine learning made it 56 

useful for practical classification, e.g. handwriting 57 

recognition (LeCun et al., 1989; Vapnik, 1999). 58 

Machine learning allows a neurophysiologist to decode 59 

neural activity without knowing the receptive fields 60 

(Seung & Sompolinsky,1993; Hung et al., 2005). 61 

Machine learning is a big step in the shifting emphasis in 62 

neuroscience from how the cells encode to what they 63 

encode, i.e. what that code tells us about the stimulus (Barlow, 1953; Geisler, 1989). Mapping a 64 

receptive field is the foundation of neuroscience (beginning with Weber’s 1834/1996 mapping of 65 

                                                 
1 Admittedly, these networks still demand tweaking of a few parameters, including number of layers and 
number of units per layer. 

Neural nets are computing 
systems inspired by biological 
neural networks that consist of 
individual neurons learning their 
connections with other neurons in 
order to solve tasks by 
considering examples. 
 
Supervised learning refers to 
any algorithm that accepts a set of 
labeled stimuli — a training set — 
and returns a classifier that can 
label stimuli similar to those in the 
training set. 
 
Unsupervised learning discovers 
structure and redundancy in data 
without labels. It is less widely 
used than supervised learning, but 
of great interest because labeled 
data are scarce while unlabeled 
data are plentiful. 
 
Cost function. A function that 
assigns a real number 
representing cost to a candidate 
solution by measuring the 
difference between the solution 
and the desired output. Solving by 
optimization means minimizing 
cost.  
 
Gradient descent: An algorithm 
that minimizes cost by 
incrementally changing the 
parameters in the direction of 
steepest descent of the cost 
function. 
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tactile “sensory circles”). This once required single-cell recording, looking for minutes or hours at 66 

how one cell responds to each of perhaps a hundred different stimuli. Today it is clear that 67 

characterization of a single neuron’s receptive  68 

 field, which was invaluable in the retina and V1, fails to 69 

characterize how higher visual areas encode the 70 

stimulus. Machine learning techniques reveal “how 71 

neuronal responses can best be used (combined) to 72 

inform perceptual decision-making” (Graf, Kohn, 73 

Jazayeri, & Movshon, 2010). The simplicity of the 74 

machine decoding can be a virtue as it allows us to 75 

discover what can be easily read-out (e.g. by a single 76 

downstream neuron) (Hung et al. 2005). Achieving 77 

psychophysical levels of performance in decoding a 78 

stimulus object’s identity and location from the neural 79 

response shows that the measured neural performance 80 

has all the information needed for the subject to do the 81 

task (Majaj et al. 2015; Hong et al. 2016). 82 

For psychophysics, Signal Detection Theory (SDT) 83 

proved that the optimal classifier for a known signal in 84 

white noise is a template matcher (Peterson, Birdsall, & 85 

Fox, 1954; Tanner & Birdsall, 1958). Of course, SDT 86 

solves only a simple version of the general problem of 87 

object recognition. The simple version is for known 88 

signals, whereas the general problem includes variation 89 

Convexity:   A real-valued 
function is called “convex” if the 
line segment between any two 
points on the graph of the function 
lies on or above the graph (Boyd 
& Vandenberghe, 2004). A 
problem is convex if its cost 
function is convex. Convexity 
guarantees that gradient descent 
will always find the global 
minimum. 
 
Generalization is how well a 
classifier performs on new, 
unseen examples that it did not 
see during training. 
 
Cross validation assesses the 
ability of the network to 
generalize, from the data that it 
trained on, to new data.  
 
Backprop, short for "backward 
propagation of errors", is widely 
used to apply gradient-descent 
learning to multi-layer networks. It 
uses the chain rule from calculus 
to iteratively compute the gradient 
of the cost function for each layer. 
 
Hebbian learning and 
spike-timing-dependent plasticity 
(STDP). According to Hebb’s rule, 
the efficiency of a synapse 
increases after correlated pre- and 
post-synaptic activity. In other 
words, neurons that fire together, 
wire together (Löwel & Singer, 
1992). 
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in viewing conditions and diverse objects within a category (e.g. a chair can be any object that 90 

affords sitting). SDT introduces the very useful idea of a mathematically defined ideal observer, 91 

providing a reference for human performance (e.g. Geisler, 1989; Pelli et al., 2006). However, 92 

one drawback is that it  93 

doesn’t incorporate learning. Deep learning, on the other 94 

hand, provides a pretty good observer that learns, which 95 

may inform studies of human learning.2 96 

These networks might reveal the constraints imposed by 97 

the training set on learning. Further, unlike SDT, deep 98 

neural networks cope with the complexity of real tasks. It 99 

can be hard to tell whether behavioral performance is 100 

limited by the set of stimuli, their neural representation, 101 

or the observer’s decision process (Majaj et al. 2015). 102 

Implications for classification performance are not readily 103 

apparent from direct inspection of families of stimuli and 104 

their neural responses. SDT specifies optimal 105 

performance for classification of known signals but does 106 

not tell us how to generalize beyond a training set. 107 

Machine learning does. 108 

MINUSES: COMMON COMPLAINTS 109 

                                                 
2 In the same spirit, “sequential ideal observer” and “accuracy maximization” modeling generalized ideal 
observer calculations to include a shallow form of supervised learning (Geisler, 1989; Burge & Jaini, 
2017). 
 

Support Vector Machine (SVM) 
is a type of machine learning 
algorithm for classification. SVMs 
generalize well. An SVM uses the 
“kernel trick” to quickly learn to 
perform a nonlinear classification 
by finding a boundary in 
multidimensional space that 
separates different classes and 
maximizes the distance of class 
exemplars to the boundary 
(Cortes & Vapnik, 1999). 
 
Convolutional neural networks 
(ConvNets) have their roots in the 
Neocognitron (Fukushima 1980) 
and are inspired by the simple and 
complex cells described by Hubel 
and Wiesel (1962). ConvNets 
apply backprop learning to 
multilayer neural networks based 
on convolution and pooling 
(LeCun et al., 1989; LeCun et al., 
1990; LeCun et al., 1998). 
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Some biologists point out that neural nets do not match what we know about neurons (e.g., 110 

Crick, 1989; Rubinov, 2015). Biological brains learn on the job, while neural networks need to 111 

converge before they can be used. Furthermore, once trained, deep networks generally 112 

compute in a feed-forward manner while there are major recurrent circuits in the cortex. But this 113 

may simply reflect the different ways that we use artificial and real neurons. The artificial 114 

networks are trained for a fixed task, whereas our visual brain must cope with a changing 115 

environment and task demands, so it never outgrows the need for the capacity to learn.  116 

It is not clear, given what we know about neurons and neural plasticity, whether a backprop 117 

network can be implemented using biologically plausible circuits (but see Mazzoni et al., 1991, 118 

and Bengio et al., 2015). However, there are several promising efforts to implement more 119 

biological plausible learning rules, e.g. spike-timing-dependent plasticity (Mazzoni et al., 1991; 120 

Bengio et al., 2015; Sacramento, Costa, Bengio, & Senn, 2017). 121 

Engineers and computer scientists, while inspired by biology, focus on developing machine 122 

learning tools that solve practical problems. Thus, models based on these tools often do not 123 

incorporate known constraints imposed by biological measurements. To this, one might counter 124 

that every biological model is an abstraction and can be useful even while failing to capture all 125 

the details of the living organism.  126 

Some biological modelers complain that neural nets have alarmingly many parameters. Deep 127 

neural networks continue to be opaque. Before neural-network modeling, a model was simpler 128 

than the data it explained. Deep neural nets are typically as complex as the data, and the 129 

solutions are hard to visualize (but see Zeiler & Fergus, 2013). However, while the training sets 130 

and learned weights are long lists, the generative rules for the network (the computer programs) 131 

are short. Traditionally, having very many parameters has often led to overfitting, i.e. good 132 

performance on the training set and poor performance beyond it, but the breakthrough is that 133 
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deep-learning networks with a huge number of parameters nevertheless generalize well. 134 

Furthermore, Bayesian nonparametric models offer a disciplined approach to modeling with an 135 

unlimited number of parameters (Gershman & Blei, 2011). 136 

Some statisticians worry that rigorous statistical tools are being displaced by deep learning, 137 

which lacks rigor (Friedman, 1998; Matloff, 2014, but see Breiman, 2001; Efron & Hastie, 2016). 138 

Assumptions are rarely stated. There are no confidence intervals on the solution. However, 139 

performance is typically cross-validated, showing generalization. Deep learning is not convex, 140 

but it has been proven that convex networks can compute posterior probability (e.g. Rojas, 141 

1996). Furthermore, machine learning, and statistics seem to be converging to provide a more 142 

general perspective on probabilistic inference that combines complexity and rigor.  143 

Some physiologists note that decoding neural activity to recover the stimulus is interesting and 144 

useful but falls short of explaining what the neurons do. Some visual psychophysicists note 145 

some salient differences between performance of human observers and deep networks on 146 

tasks like object recognition and image distortion (Ullman et al. 2016; Berardino et al. 2017). 147 

Some cognitive psychologists dismiss deep neural networks as unable to “master some of the 148 

basic things that children do, like learning the past tense of a regular verb” (Marcus et al., 1992). 149 

Deep learning is slow. To recognize objects in natural images with the recognition accuracy of 150 

an adult, a state-of-the-art deep neural network needs five thousand labelled examples per 151 

category (Goodfellow et al., 2016). But children and adults need only a hundred labelled letters 152 

of an unfamiliar alphabet to reach the same accuracy as fluent native readers (Pelli et al. 2006). 153 

Overcoming these challenges may require more than deep learning. 154 

These current limitations drive practitioners to enhance the scope and rigor of deep learning. 155 

But bear in mind that some of the best classifiers in computer science were inspired by 156 

biological principles (Rosenblatt, 1957; 1958; Rumelhart et al., 1986; LeCun, 1985; LeCun et al. 157 
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1989; LeCun et al. 1990; Riesenhuber & Poggio, 1999; and 158 

see LeCun, Bengio, Hinton 2015). Some of those 159 

classifiers are now so good that they occasionally exceed 160 

human performance and might serve as rough models for 161 

how biological systems classify (e.g. Yamins, et al. 2014; 162 

Khaligh-Razavi & Kriegeskorte, 2014; Ziskind, Hénaff, 163 

LeCun, & Pelli, 2014; Testolin, Stoianov, & Zorzi, 2017).  164 

MILESTONES IN CLASSIFICATION 165 

Mathematics vs. engineering. The history of machine 166 

learning has two threads: mathematics and engineering. In 167 

the mathematical thread, two statisticians, Fisher and later Vapnik, developed mathematical 168 

transformations to uncover categories in data, and proved that they give unique answers. They 169 

assumed distributions and proved convergence.  170 

In the engineering thread, a loose coalition of psychologists, neuroscientists, and computer 171 

scientists (e.g. Turing, Rosenblatt, Minsky, Fukushima, Hinton, Sejnowski, LeCun, Poggio, 172 

Bengio) sought to reverse-engineer the brain to build a machine that learns. Their algorithms 173 

are typically applied to stimuli with unknown distributions and lack proofs of convergence. 174 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/178152doi: bioRxiv preprint 

https://doi.org/10.1101/178152


 

 10

1936: Linear discriminant analysis. Fisher (1936) 175 

introduced linear discriminant analysis to classify two 176 

species of iris flower based on four measurements per flower. When the distribution of the 177 

measurements is normal and the covariance matrix between the measurements is known, linear 178 

discriminant analysis answers the question: Supposing we use a single-valued function to 179 

classify, what linear function y = w1x1 + w2x2 + w3x3 + w4x4, of four measurements x1, x2, x3, x4 180 

made on flowers, with free weights w1, w2, w3, w4, will maximize discrimination of species?3 181 

Linear classifiers are great for simple problems for which the category boundary is a hyperplane 182 

in a small number of dimensions. However, complex problems like object recognition typically 183 

require more complex category boundaries in a large number of dimensions. Furthermore, the 184 

distributions of the features are typically unknown and may not be normal. 185 

Cortes & Vapnik (1995) note that the first algorithm for pattern recognition was Fisher’s optimal 186 

decision function for classifying vectors from two known distributions. Fisher solved for the 187 

optimal classifier in the presence of gaussian noise and known covariance between elements of 188 

the vector. When the covariances are equal, this reduces to a linear classifier. The ideal 189 

template matcher of signal detection theory is an example of such a linear classifier (Peterson et 190 

al., 1954). This fully specified simple problem can be solved analytically. Of course, many 191 

important problems are not fully specified. In everyday perceptual tasks, we typically know only 192 

a “training” set of samples and labels. 193 

1953: Machine learning. The first developments in machine learning were to play chess and 194 

checkers. “Could one make a machine to play chess, and to improve its play, game by game, 195 

profiting from its experience?” (Turing, 1953). Arthur Samuel (1959) defined machine learning 196 

                                                 
3 Linear discriminant analysis is an outgrowth of regression which has a much longer history. Regression 
is the optimal least-squares linear combination of given functions to fit given data and was applied by 
Legendre (1805) and Gauss (1809) to astronomical data to determine the orbits of the comets and 
planets around the sun. The estimates come with confidence intervals and the fraction of variance 
accounted for, which rates the goodness of the explanation. 

Figure 2. Milestones in classification. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/178152doi: bioRxiv preprint 

https://doi.org/10.1101/178152


 

 11

as the “Field of study that gives computers the ability to learn without being explicitly 197 

programmed.” 198 

1958: Perceptron. Inspired by physiologically measured receptive fields, Rosenblatt (1958) 199 

showed that a very simple neural network, the perceptron, could learn to classify from training 200 

samples. Perceptrons combined several linear classifiers to implement piecewise-linear 201 

separating surfaces. The perceptron learns the weights to use in a linear combination of feature-202 

detector outputs. The perceptron transforms the stimulus into a binary feature vector and then 203 

applies a linear classifier to the feature vector. The perceptron is piecewise linear and has the 204 

ability to learn from training examples without knowing the full distribution of the stimuli. Only the 205 

final layer in the perceptron learns.  206 

1969: Death of the perceptron. However, it quickly became apparent that the perceptron and 207 

other single-layer neural networks cannot learn tasks that are not linearly separable, i.e. cannot 208 

solve problems like connectivity (Are all elements connected?) and parity (Is the number of 209 

elements odd or even?); people solve these readily (Minsky & Papert, 1969). On this basis, 210 

Minsky and Papert announced the death of artificial neural networks. 211 

1974: Backprop. The death of the perceptron showed that learning in a one-layer network was 212 

too limited. This impasse was broken by the introduction of the backprop algorithm, which 213 

allowed learning to propagate through multiple-layer neural networks. The history of backprop is 214 

complicated (see Schmidhuber, 2015). The idea of minimization of error through a differentiable 215 

multi-stage network was discussed as early as the 1960s (e.g. Bryson, Denham, & Dreyfus, 216 

1963). It was applied to artificial neural networks in the 1970s (e.g. Werbos, 1974). In the 1980s, 217 

efficient backprop first gained recognition, and led to a renaissance in the field of artificial neural 218 

network research (LeCun, 1985; Rumelhart, Hinton, & Williams, 1986). During the 2000s 219 

backprop neural networks fell out of favor, due to four limitations (Vapnik, 1999): 1. No proof of 220 
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convergence. Backprop uses gradient descent. Gradient descent with a nonconvex cost 221 

function with multiple minima is only guaranteed to find a local, not the global minimum of the 222 

cost function. This has long been considered a major limitation, but LeCun et al. (2015) claim 223 

that it hardly matters in practice in current implementations of deep learning. 2. Slow. 224 

Convergence to a local minimum can be slow due to the high dimensionality of the weight 225 

space. 3. Poorly specified. Backprop neural networks had a reputation for being ill-specified, 226 

an unconstrained number of units and training examples, and a step size that varied by 227 

problem. “Neural networks came to be painted as slow and fussy to train [,] beset by voodoo 228 

parameters and simply inferior to other approaches.” (Cox & Dean, 2014). 4. Not biological. 229 

Lastly, backprop learning may not to be physiological: While there is ample evidence for 230 

Hebbian learning (increase of a synapse’s gain in response to correlated activity of the two cells 231 

that it connects), such changes are never propagated backwards, beyond the one synapse, to a 232 

previous layer. 5. Inadequate resources. With hindsight it is clear that backprop in the 80’s was 233 

crippled by limited computing power and lack of large labeled datasets. 234 

1980: Neocognitron, the first convolutional neural network. Fukushima (1980) proposed and 235 

implemented the Neocognitron, a hierarchical, multilayer artificial neural network. It recognized 236 

stimulus patterns (deformed numbers) despite small changes in position and shape. 237 

1987: NETtalk, the first impressive backprop neural network. Sejnowski et al. (1987) reported 238 

the exciting success of NETtalk, a neural network that learned to convert English text to speech: 239 

“The performance of NETtalk has some similarities with observed human performance. (i) The 240 

learning follows a power law. (ii) The more words the network learns, the better it is at 241 

generalizing and correctly pronouncing new words. (iii) The performance of the networks 242 

degrades very slowly as connections in the network are damaged: no single link or processing 243 

unit is essential. (iv) Relearning after damage is much faster than learning during the original 244 

training…”  245 
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1989: ConvNets. Yann LeCun and his colleagues combined convolutional neural networks with 246 

backprop to recognize handwritten characters (LeCun et al., 1989; LeCun et al., 1990). This 247 

network was commercially deployed by AT&T, and today reads millions of checks a day 248 

(LeCun, 1998). Later, adding half-wave rectification and max pooling greatly improved its 249 

accuracy in recognizing objects (Jarrett et al., 2009). 250 

1995: Support Vector Machine (SVM). Cortes & Vapnik (1995) proposed the support vector 251 

network, a learning machine for binary classification problems. SVMs generalize well and are 252 

free of mysterious training parameters. Many versions of the SVM are convex (e.g. Lin, 2001). 253 

2006: Backprop revived. Hinton & Salakhutdinov (2006) sped up backprop learning by 254 

unsupervised pre-training. This helped to revive interest in backprop. In the same year, a 255 

supervised backprop-trained convolutional neural network set a new record on the famous 256 

MNIST handwritten-digit recognition benchmark (Ranzato et al., 2006). 257 

2012: Deep learning. Geoff Hinton says, “It took 17 years to get deep learning right; one year 258 

thinking and 16 years of progress in computing, praise be to Intel.” (Cox & Dean, 2014; LeCun, 259 

Bengio, & Hinton, 2015). It is not clear who coined the term “deep learning”.4 In their book, Deep 260 

Learning Methods and Applications, Deng & Yu (2014) cite Hinton et al. (2006) and Bengio 261 

(2009) as the first to use the term. However, the big debut for deep learning was an influential 262 

paper by Krizhevsky et al. (2012) describing AlexNet, a deep convolutional neural network that 263 

classified 1.2 million high-resolution images into 1000 different classes, greatly outperforming 264 

previous state-of-the-art machine learning and classification algorithms.  265 

                                                 
4 The idea of “deep learning” is not exclusive to machine learning and neural networks (e.g. Dechter, 
1986) 
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CONTROVERSIES 266 

The field is growing quickly, yet certain topics remain hot. For proponents of deep learning, the 267 

ideal network is composed of simple elements and learns everything from the training data. At 268 

the other extreme, computer vision scientists argue that we know a lot about how the brain 269 

recognizes objects, which we can engineer into the networks before learning (e.g. gain control 270 

and normalization). Some engineers look to the brain only to copy strengths of the biological 271 

solution, others think there are useful clues in its limitations as well (e.g. crowding). 272 

Is deep learning the best solution for all visual tasks? Deep learning is not the only thing in 273 

the vision scientist’s toolbox. The complexity of deep learning may be unwarranted for simple 274 

problems that are well handled by, e.g. SVM. Try shallow networks first, and, if they fail, go 275 

deep.  276 

Why object recognition? The visual task of object recognition as has been very useful in 277 

vision research because it is an objective task that is easily scored as right or wrong, is 278 

essential in daily life, and captures some of the magic of seeing. It is a classic problem with a 279 

rich literature. Deep neural nets solve it, albeit with a million parameters. Recognizing objects is 280 

a basic life skill, including recognition of words, people, things, and emotions. The concern that 281 

the research focus on object recognition might be merely an obsession of the scientists rather 282 

than a central task of biological vision is countered by hints that visual perception is biased to 283 

interpret the world as consisting of discrete objects even when it isn’t, e.g. when we see animals 284 

in the clouds. 285 

Of course, there are many other important visual tasks, including interpolation (e.g. filling in) and 286 

extrapolation (e.g. estimating heading).  The inverse of categorization is synthesis. Human 287 

estimation of one feature, e.g. of brightness or speed, is imprecise and adequately represented 288 

by roughly 7 categories (Miller, 1956). For detection of image distortion, a simple model with 289 
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gain-control normalization is better than current deep networks (Berardino et al. 2017). 290 

Scientists, like the brain, use whatever tool works best. 291 

Deep learning is not convex. A problem is convex if the cost function is convex, i.e. if the line 292 

between any two points on the function lies on or above the function. This guarantees that 293 

gradient descent will find the global minimum. For some combinations of stimuli, categories, and 294 

classifiers, convexity can be proved. In machine learning, kernel methods, including learning by 295 

SVMs, have the advantage of easy-to-prove convexity, at the cost of limited generalization. In 296 

the 1990s, SVMs were popular because they guaranteed fast convergence even with a large 297 

number of training samples (Cortes & Vapnik, 1995). Thus, when the problem is convex, the 298 

quality of solution is assured, and one can rate implementations by their demands for size of 299 

network and training sample. However, cost functions for deep neural networks are not convex. 300 

Unlike convex functions, nonconvex functions can have multiple minima and saddle points. The 301 

challenge in high dimensional cost functions is the saddle points, which greatly outnumber the 302 

local minima, but there are tricks for not getting stuck at saddle points (Dauphin et al. 2014). 303 

Although deep neural networks are not convex, they do fit the training data, and generalize well 304 

(LeCun, Bengio, & Hinton, 2015).  305 

Shallow vs. deep networks. The field’s imagination has focused alternately on shallow and 306 

deep networks, beginning with the Perceptron in which only one layer learned, followed by 307 

backprop, which allowed multiple layers and cleared the hurdles that doomed the Perceptron. 308 

Then SVM, with its single layer, sidelined the multilayer backprop. Today multilayer deep 309 

learning reigns; Krizhevsky et al. (2012) attributed the success of AlexNet to its 8-layer depth; it 310 

performed worse with fewer layers. Some people claim that deep learning is essential to 311 

recognize objects in real world scenes. For example, the “Inception” 22-layer deep learning 312 

network won the Image Net Real World Challenge in 2014 (Szegedy et al. 2015).  313 
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The need for depth is hard to prove, but, in considering the depth vs. width of a feed-forward 314 

neural network, Eldan and Shamir (2016) show that a radial function can be approximated by a 315 

3-layer network with far fewer neurons than the best 2-layer network (also see Telgasky, 2015). 316 

Object recognition implies a classification function that assigns one of several discrete values to 317 

each image. Mhaskr et al. (2017) suggest that for real-world recognition the classification 318 

function is typically compositional, i.e. a hierarchy of functions, one per node, in feed-forward 319 

layers, in which the receptive fields of higher layers are ever larger. They argue that scalability 320 

and shift invariance in natural images require compositional algorithms. They prove that deep 321 

hierarchical networks can approximate compositional functions with the same accuracy as 322 

shallow networks but with exponentially fewer training parameters. 323 

Supervised vs. unsupervised. Learning algorithms for a classifier can be supervised or not, 324 

i.e. need labels for training, or don’t. Today most machine learning is supervised (LeCun, 325 

Bengio, & Hinton, 2015). The images are labeled (e.g. “car” or “face”), or the network receives 326 

feedback on each trial from a cost function that assesses how well its answer matches the 327 

image’s category. In unsupervised learning, no labels are given. The algorithm processes 328 

images, typically to minimize error in reconstruction, with no extra information about what is in 329 

the (unlabeled) image. A cost function can also reward decorrelation and sparseness (e.g. 330 

Olshausen and Field, 1996). This allows learning of image statistics and has been used to train 331 

early layers in deep neural networks. Human learning of categorization is sometimes done with 332 

explicitly named objects — “Look at the tree!” — but more commonly the feedback is implicit. 333 

Consider reaching your hand to raise a glass of water. Contact informs vision. On specific 334 

benchmarks, where the task is well-defined and labeled examples are available, supervised 335 

learning can excel (e.g. AlexNet), but unsupervised learning may be more useful when few 336 

labels are available. 337 
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CURRENT DIRECTIONS 338 

What does deep learning add to the vision-science toolbox? Deep learning is more than 339 

just a souped-up regression (Marblestone et al., 2016). Like Signal Detection Theory (SDT), it 340 

allows us to see more in our behavioral and neural data. In the 1940’s, Norbert Wiener and 341 

others developed algorithms to automate and optimize signal detection and classification. A lot 342 

of it was engineering. The whole picture changed with the SDT theorems, mainly the proof that 343 

the maximum-likelihood receiver is optimal for a wide range of simple tasks (Peterson et al., 344 

1954). In white noise a traditional receptive field computes the likelihood of the presence of a 345 

signal matching the receptive field weights. It was exciting to realize that the brain contains 1011 346 

likelihood computers. Later work added prior probability, for a Bayesian approach. Tanner & 347 

Birdsall (1958) noted that, when figuring out how a biological system does a task, it is very 348 

helpful to know the optimal algorithm and to rate observed performance by its efficiency relative 349 

to the optimum. SDT solved detection and classification mathematically, as maximum likelihood. 350 

It was the classification math of the sixties. Machine learning is the classification math of today. 351 

Both enable deeper insight into how biological systems classify. Of course, as noted above, 352 

SDT is restricted to the case of known signals in additive noise, whereas deep learning can 353 

solve real world object recognition like detecting a dog in a photo after training on labeled 354 

examples. In the old days we used to compare human and ideal classification performance 355 

(Pelli et al. 2006). Today, we also compare human and machine learning. Deep learning is the 356 

best model we have today for how complex systems of simple units can recognize objects as 357 

well as the brain does. Deep learning, i.e. learning by multi-layered neural networks using 358 

backprop, is not just AlexNet but also includes ConvNets and other architectures of trained 359 

artificial neural networks. Several labs are currently comparing patterns of activity of particular 360 

layers to neural responses in various cortical areas of the mammalian visual brain (Yamins et al. 361 

2014; Khaligh-Razavi & Kriegeskorte, 2014).  362 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 20, 2018. ; https://doi.org/10.1101/178152doi: bioRxiv preprint 

https://doi.org/10.1101/178152


 

 18

What computer scientists can learn from psychophysics. Computer scientists build 363 

classifiers to recognize objects. Vision scientists, including psychologists and neuroscientists, 364 

study how people and animals classify in order to understand how the brain works. So, what do 365 

computer and vision scientists have to say to each other? Machine learning accepts a set of 366 

labelled stimuli to produce a classifier. Much progress has been made in physiology and 367 

psychophysics by characterizing how well biological systems can classify stimuli. The 368 

psychophysical tools (e.g. threshold and signal detection theory) developed to characterize 369 

behavioral classification performance are immediately applicable to characterize classifiers 370 

produced by machine learning (e.g. Ziskind, Hénaff, LeCun, & Pelli, 2014; Testolin, Stoianov, & 371 

Zorzi, 2017).  372 

Psychophysics. “Adversarial” examples have been presented as a major flaw in deep neural 373 

networks (Mims, 2018; Hutson, 2018). These slightly doctored images of objects are 374 

misclassified by a trained network, even though the doctoring has little effect on human 375 

observers. The same doctored images are similarly misclassified by several different networks 376 

trained with the same stimuli (Szegedy, et al., 2013). Humans too have adversarial examples. 377 

Illusions are robust classification errors. The blindspot-filling-in illusion is a dramatic adversarial 378 

example in human vision. While viewing with one eye, two finger tips touching in the blindspot 379 

are perceived as one long finger. If the image is shifted a bit so that the fingertips emerge from 380 

the blindspot the viewer sees two fingers. Neural networks lacking the anatomical blindspot of 381 

human vision are hardly affected by the shift (but see Azulay & Weiss, 2018). The existence of 382 

adversarial examples is intrinsic to classifiers trained with finite data, whether biological or not. 383 

In the absence of information, neural networks interpolate and so do biological brains. 384 

Psychophysics, the scientific study of perception, has achieved its greatest advances by 385 

studying classification errors (Fechner, 1860). Such errors can reveal “blindspots”. Stimuli that 386 

are physically different yet indistinguishable are called metamers. The systematic understanding 387 
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of color metamers revealed the three dimensions of human color vision (Palmer, 1777; Young, 388 

1802; Helmholtz, 1860). In recent work, many classifiers have been trained solely with the 389 

objects they are meant to classify, and thus will classify everything as one of those categories, 390 

even doctored noise that is very different from all of the images. It is important to train with 391 

sample images that represent the entire test set.  392 

CONCLUSION 393 

Machine learning is here to stay. Deep learning is better than the “neural” networks of the 394 

eighties. Machine learning is useful both as a model for perceptual processing, and as a 395 

decoder of neural processing, to see what information the neurons are carrying. The large size 396 

of the human cortex is a distinctive feature of our species and crucial for learning. It is 397 

anatomically homogenous yet solves diverse sensory, motor, and cognitive problems. Key 398 

biological details of cortical learning remain obscure, but, even if they ultimately preclude 399 

backprop, the performance of current machine learning algorithms is a useful benchmark. 400 

RESOURCES  401 

We recommend textbooks on deep learning by Goodfellow, Bengio, & Courville (2016) and Ng 402 

(2017). There are many packages for optimization and machine learning in MATLAB and 403 

Python. 404 

 405 
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FIGURES AND CAPTIONS 605 
 606 

 607 
 608 
Figure 1. Top: The frequency of appearance of each of five terms — “linear classifier”, "perceptron", "support vector 609 
machine", “neural net” and “backprop” — in books indexed by Google in each year of publication. Google counts 610 
instances of words and phrases of n words, and calls each an “ngram”. Frequency is reported as a fraction of all 611 
instances of ngrams of that length, normalized by the number of books published that year 612 
(ngram / year / books published). The figure was created using Google’s ngram viewer 613 
(https://books.google.com/ngrams), which contains a yearly count of ngrams found in sources printed between 1500 614 
and 2008. Bottom: Numbers represent worldwide search interest relative to the highest point on the chart for the 615 
given year for the term “deep learning” (as reported by https://trends.google.com/trends/). 616 
 617 
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 620 
Figure 2. Milestones in classification. 621 
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