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Abstract 
 
Introduction: Oncogenic somatic mutations confer proliferative advantage and undergo positive clonal selection. 
We developed software and applied new analytical approaches to identify: (1) somatic mutations in diverse 
tissues, (2) somatically mutated genes under positive and negative selection, (3) post-transcriptional 
modifications in the mitochondrial transcriptome, and (4) inherited germline alleles predisposing people to 
higher somatic mutation burden or higher levels of post-transcriptional modification. Methods: Transcriptome 
sequence data (Genotype Tissue Expression project) for 7051 tissue samples from 549 postmortem donors 
and representing 44 tissue types were used. Germline mutations were inferred from whole-exome DNA 
sequencing and SNP arrays. DNA somatic mutations were inferred from variant allele frequencies (VAF) in 
RNA-seq data. Post-transcriptional modifications were inferred from Polymorphism Information Content (PIC) at 
the p9 sites of mitochondrial tRNA sequences. Positive and negative clonal selection was evaluated using a 
nonsynonomous/synonomous mutation rate (dN/dS) model. Genome-wide association studies (GWAS) were 
assessed with mitochondrial PIC for post-transcriptional modification level, or using the total number of somatic 
mutations observed per donor for somatic mutation burden. Results: Our dN/dS model identified 78 genes 
under negative selection for somatic mutations (dN/dS < 1, padj < 0.05) and 14 under positive selection (dN/dS > 
1, padj <0.05). Our GWAS identified 2 sites associated with post-transcriptional modification (1 approaching 
significance with p=5.99x10-8, 1 with p<5x10-8) and ~20 sites associated with somatic mutation burden (p<5x10-

8). Conclusions: To our knowledge these are the first genome-wide association studies on normal somatic 
mutation burden. These studies were an attempt to increase understanding of the somatic mutation process. 
Our work identified somatic mutations at the global organismal level that may promote cell proliferation in a 
tissue-specific manner. By identifying tissue-specific mutations in actively expressed genes that appear before 
cancer phenotype is detected, this work also identifies gene candidates that might initiate tumorigenesis. 
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Introduction 
Mutations that confer or deny a proliferative advantage, including those in oncogenes and tumor suppressors, 
will become enriched in tissues from many organs of the body and from many individuals as a function of age. 
These mutations may arise from UV and oxidative damage or because of errors in replication during tissue 
renewal. The combined impact of environmental mutagens and tissue renewal lead to accumulation of somatic 
mutations as a function of age, and selection can give progenitor cells and their progeny a growth advantage. 
 
However, still uncharacterized are many genes, including but not limited to oncogenes and tumor suppressors, 
which promote proliferative growth when mutated. The tissue samples investigated in this project are not from 
cancer tissue, but rather are from normal tissues, which accumulate somatic mutations over time.1 The tissue-
specific expression profile of early oncogenic mutations remains poorly understood. One approach to identifying 
genes that control cell proliferation and survival, some of which may be novel oncogenes and tumor 
suppressors, is to identify genes in which somatic mutations show hallmarks of strong positive selection. The 
ratio of non-synonymous to synonymous point mutations, known as the dN/dS ratio, compares the observed 
ratio of non-synonymous to synonymous mutations against the theoretical ratio achieved by enumerating all 
possible point mutations in each codon of a gene of interest.2 This method has been used often in evolutionary 
biology and is increasingly used in cancer biology.3 In the case of strong positive selection for somatic 
mutations, non-synonymous (missense) mutations are predicted to become proportionally overrepresented, 
while synonymous (silent) mutations are predicted to become proportionally underrepresented. Thus, in the 
case of positive selection, it is expected that most often dN/dS > 1. Similarly, in the case of negative selection, 
the predictions are that generally dN/dS < 1 and in the absence of selection dN/dS = 1. Here, we use dN/dS 
models in conjunction with genome-wide association studies (GWAS) and sequencing technology that makes it 
possible to obtain whole-transcriptome data for numerous tissues.4 We also validate our somatic mutation call-
set and our donor genotyping by analyzing genes involved in mitochondrial post-transcriptional modification.5 
 
Methods 
RNA-seq data were obtained from the Genotype Tissue Expression project (GTEx V6p release). This dataset 
contains 550 postmortem donors with 7051 tissue samples across 44 tissue types. Germline mutations were 
inferred from whole-exome DNA sequencing and SNP arrays in the GTEx library. Somatic mutations were 
inferred from variant allele frequency (VAF) in transcriptome-wide RNA sequencing (equation 1: N is the total 
sample coverage, k is the alternative allele coverage, and p is the background error rate from sequencing 
techniques). Post-transcriptional modification was inferred from polymorphism information content (PIC) at the 
p9 sites of mitochondrial tRNA sequences (equation 2: f is the fraction of RNA-seq reads corresponding to a 
nucleotide). 

Pr(x ≥ k) =
N
i
⎛

⎝
⎜

⎞

⎠
⎟ pi (1− p)N−i

i=k

N

∑                (1) 

PIC =1− f 2
i=1

4

∑                  (2) 

Average PIC=
PIC× sequence read count

P9 sites
∑

sequence read count
P9 sites
∑

                    (3) 

PIC was calculated for each tissue sample at each mitochondrial base pair called as a variant (equation 1). 
PIC was observed to be > 0.5 at known mitochondrial methylation positions in the 9th base pair of mitochondrial 
tRNA genes positions (Fig 2A).5 PIC at mitochondrial genome positions 1610, 2617, 5520, 7526, 8303, 9999, 
10413, 12146, 13710, and 14734 (relative to hg19) was used (Figs 1C & F). The phenotype in the GWAS for 
RNA editing was a weighted average PIC value (equations 2-3). The phenotype in the GWAS for somatic 
mutations was the number of somatic mutations per megabase of RNA-seq, scaled to a value between 0 and 1. 
All GWAS was performed using PLINK v1.07.6,7 Germline variants selected for the analysis had mean allele 
frequency (MAF) > 1%, mean allele count (MAC) > 3, and p(Hardy Weinberg Disequilibrium) < 0.1%. Covariate 
analysis was used to eliminate population stratification and a linear association model was used. The threshold 
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for declaring statistical significance was 5x10-8, a benchmark that is widely used in the GWAS community. 
 
While inherited alleles associated with increased incidence of somatic mutations and post-transcriptional 
modification were assayed using GWAS, putative somatic oncogenes were assayed using a dN/dS model 
(equation 3). 

dN / dS = nobs,ns
posi,ns ⋅ ri

triplet
∑

nobs,syn
posi,syn ⋅ ri

triplet
∑

              (3) 

nobs represents the total number of observed somatic mutations, either synonymous (silent) or nonsynonymous 
(missense), for a given gene across all tissue samples. In order to calculate posi, the number of possible 
mutations falling into 1 of 96 classes, every SNP was simulated at every position of any gene with observed 
mutations. The 96 classes of SNPs represent 3 possible nucleotide changes in all 64 codons, but dividing by 
the 2-fold degeneracy of dsDNA. Since different classes of mutations happen with different likelihood (for 
example transition vs. transversion), rate constants ri were used to adjust the potential-mutation counts and 
generate expected-mutation counts. Rate constants were obtained for each of the 96 mutation classes by 
summing all observed mutations and dividing by the sum of all possible mutations across all genes sequenced. 
Annovar (v2016Feb01) was used to assign a gene ID to all mutations and annotate them as synonymous or 
nonsynonymous.8 P-values were obtained for all dN/dS values using Poisson regression. Adjusted p-values 
were obtained using a false discovery rate (FDR) of 5% and significance threshold of p adj<0.05. Only genes 
with ≥ 6 somatic mutations (n=1385 genes) were used in the analysis of dN/dS as genes with fewer mutations 
tended not to rise to statistical significance. Muscle and sun-exposed skin were not used in the dN/dS analysis 
as these tissues were observed to have different mutation rate constants ri from the majority of tissues. 

Results 
dN/dS Model 
Our work to identify genes that might initiate oncogenesis used a dN/dS model to investigate transcriptome 
data at the tissue-specific level. Table 1 summarizes all genes found to be significant for positive selection. This 
table also highlights the tissues in which genes are expressed, one of the important features of our dataset. As 
shown in Table 1, the 2 genes with dNdS most significantly > 1 (lowest p value) are ARRB2, a beta arrestin 
gene, and CSF3R, a leukemia-associated colony stimulating factor gene. The ARRB2 mutations were found 
exclusively in whole blood (ARRB2 is expressed most highly in whole blood, but is also expressed in numerous 
other tissues such as adipose, brain, and spleen) and were observed in 50 of the 549 donors. This gene is 
important in the Wnt signaling pathway and is an oncogene.10 Similarly, CSF3R is implicated in leukemia.11 
Mutations were observed in lung and whole blood tissues from 104 individuals. Interestingly, lung tissue is 
typically contaminated with substantial amounts of blood, so the enrichment of CSF3R mutations seen in lung 
may be ultimately attributable to biological processes happening in blood. Twelve other genes with dNdS>1 
reached significance (padj<0.05) using FDR=0.05. For example: CARD19 (C9orf89), a Caspase recruitment 
protein (mutations observed in 23 donors in whole blood and lung samples; padj=0.0048); LZTS2 (leucine zipper 
tumor suppressor 2, observed in nerve and artery tissues and in 20 different donors, padj=0.017); and SPI1 
proto-oncogene (observed in 26 different donors in lung and whole blood padj=0.049) all reached significance. 
As shown in Table 1, several of these genes have known involvement in cancer. Furthermore, most genes in 
Table 1 have dNdS > 5, showing that the observed proportion of nonsynonymous mutations is more than five 
times greater than would be expected if somatic mutations were not under positive selection. 
 
Fig 1A shows the distribution of dN/dS for all genes studied across all tissues. The majority of genes appear to 
be under neutral or slightly positive selection for somatic SNPs. Median dN/dS = 1.2 for genes with ≥ 6 somatic 
mutations and the data appear to follow a Poisson distribution. However, dN/dS can only be assessed with 
mutations that are at a high enough tissue-wide frequency to detect and that are in sufficiently expressed 
genes. These widely distributed and expressed mutations are candidates to be important for oncogenesis. 
While the majority of mutations appear to be under fairly neutral selection, Fig 1B shows that some mutations 
are under positive or negative selection, with more significant results in the category of negative selection. 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2018. ; https://doi.org/10.1101/396739doi: bioRxiv preprint 

https://doi.org/10.1101/396739
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 5	

Somatic Mutations Validated and Genes Responsible for Mitochondrial Post-Transcriptional 
Modification Discovered 
In order to validate our somatic mutations call set (equation 1 using GTEX v6p), to examine whether our call 
set included signals from RNA editing rather than from somatic mutation, and to use our broad dataset to 
uncover new information about post-transcriptional modification, we performed GWAS on mitochondrial tRNA 
mutations. GWAS hits (mitochondrial PIC values phenotype × somatic calls genotype) are presented in rows 1-
2 of Table 2. The phenotype used in mitochondrial GWAS is shown in Fig 2, where we successfully replicated 
the finding that the p9 position of mitochondrial tRNA is methylated.5 Critically, a tRNA methyltransferase 
variant (exon 1 of TRMT61B, p=1.117x10-8) was the most significant somatic mutation in our GWAS to explain 
variation in post-transcriptional modification (Table 2, row 1). This same gene was also found in the study we 
replicated and is directly mechanistically involved in tRNA modification. One of our top hits (which failed to pass 
the significance threshold, p = p=6x10-8) is interesting because it is a novel finding of 2 neighboring mutations 
in caspase genes (p=6x10-8), and was not reported in the original study. The caspase genes are unique in that 
they appear negatively correlated with tRNA methylation (negative β-value). Furthermore, the mutation calls we 
used for the tRNA study were only seen in an early, unfiltered version of our data, suggesting RNA editing was 
successfully filtered out from later somatic mutation data used for dN/dS and other GWAS. 
 
GWAS Results Identify Potential Somatic Mutation-Causing Alleles 
We performed 3 GWAS. We looked for (1) somatic mutation burden phenotype × exome calls genotype (QQ 
plot Fig 3A, Manhattan plot Fig 3D, raw genotype vs. phenotype scatter Fig 3H); (2) for somatic mutation 
burden phenotype × SNP array genotype (QQ plot Fig 3B, Manhattan plot Fig 3E); and (3) for post-
transcriptional modification phenotype × exome calls genotype (QQ plot Fig 3C, Manhattan plot Fig 3F, raw 
genotype vs. phenotype scatter Fig 3G). Across QQ plots, the fact that our p-values closely track a random 
distribution of p-values for low and mid level p-values, but start to deviate toward higher significance for larger 
p-values, suggests that the studies were well calibrated. Likewise, our Manhattan plots show an acceptable 
level of random background association with several alleles rising to significance (p<5x10-8). Looking more 
closely at individual SNPs identified, our GWAS for variation in somatic mutation load had several novel results 
(Fig 3 A,B,D,E,H and Table 2, rows 3-16). A total of 3 significant alleles were identified from exome sequencing 
calls and a total of 59 significant alleles were identified from SNP array data. The SNP array data contains 
many more loci, which may explain why more significant results were found. In exome sequencing calls, the 
most significant hit was in a known tumor suppressor gene, exon 14 of CCDC67. This gene encodes a protein 
that is implicated in papillary thyroid carcinoma.12 Additionally, GWAS results using exome SNPs, the 2nd most 
significant allele was in an NBPF9 (neuroblastoma family protein 9) intron; a gene that may be associated with 
neuroblastoma.13 This NBPF9 variant was also the variant with the largest effect size (β>0.3) in the GWAS. In 
the SNP array, the most significant result was in a non-coding, putative regulatory region of chromosome 13. 
The 2nd and 3rd highest hits clustered together in the SNP array and were both in DZANK1, an ankyrin-coding 
gene on chromosome 20. Interestingly, the same gene is the third most significant gene in the GWAS 
performed on somatic germline mutation calls (Table 2), suggesting a novel role for this gene in facilitating 
SNPs in tissues throughout the body. Several other significant SNP array positions appeared to be cancer-
related. For example, an intronic mutation was observed in ST6GAL1, an oncogene activated by Ras, which 
upregulates cell migration.14 
 
Discussion 
Results presented here are consistent with the notion that tumorigenesis might be initiated differently in different 
tissues of the body (Table 1, 2nd to last column). The results also identify candidates for new tumor suppressors 
and oncogenes (Tables 1 and 2). The fact that two known oncogenes were the top results for our dN/dS model 
reinforces the notion that oncogenes undergo positive clonal selection even in normal tissue. The median 
dN/dS of 1.2 across all tissues suggests that unlike Darwinian selection, which shows strong purifying 
(negative) selection over millions to billions of year, the forces of natural selection do not appear to act strongly 
on tissue mutations acquired during a person’s lifetime.2 The tissue mutations observed in this study may even 
be under slightly positive selection since our whole-transcriptome data only includes those SNPs that are 
present in a high enough proportion of tissue samples and that are sufficiently expressed to be detected. 
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It is possible that some of these highly expressed SNPs are involved in initiating oncogenesis. We validated our 
data by replicating and adding new results to GWAS of individual variation in mitochondrial tRNA modification. 
The fact that we could observe mitochondrial tRNA modification and that we could find established variants 
suggests that our data are appropriate for answering our questions. Using GWAS, we investigated tRNA 
modification, but also looked into organismal-level variants that contribute to somatic mutation. Discovering 
these new oncogenes and novel mechanisms of tumorigenesis could open the door to new therapeutic targets 
for the treatment cancer and to better differentiation between healthy and diseased tissue when considering 
treatment. 
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Table 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Legend: dN/dS results are summarized for 14 significant (FDR 5%) genes with dN/dS>1. The top 2 
genes in the table met the Bonferroni correction factor (p<0.05, n=1385). Not depicted: 78 genes had dN/dS 
significantly lower than 1 (FDR 5%), 34 of which met Bonferroni correction. 
  

Gene Function (Ref 9) dN/dS S. Obs NS. Obs S. Pos NS. Pos padj Tissues # 
Donors 

ARRB2 Beta-arrestin (signaling) 9.41 2 64 989.7 3366.6 5.20e-4 blood 50 
CSF3R Colony stimulating factor 4.46 8 124 1852.1 6432.5 3.73e-5 blood & lung 104 

CARD19 
(C9orf89) 

Caspase recruitment 
protein. Inhibits NFkB 

— 0 28 494.85 1313.2 0.0048 blood & lung 23 

LZTS2 Leucine zipper tumor 
suppressor 

— 0 23 1769.7 4669.5 0.0167 Nerve & artery 20 

SPI1 Proto-oncogene. Myeloid 
& lymphoid develoment 

9.73 1 32 804.00 2643.1 0.0495 Lung & whole 
blood 

26 

BDH2 3-hydroxybutyrate 
dehydrogenase 

— 0 18 659.22 1670.7 0.0499 Many, whole body 18 

SPARC Proteolytic matrix 
remodeling; tumor 
invasion 

7.58 2 45 737.12 2186.6 0.0072 Many, whole body 40 

SNX3 Nexin family intracellular 
trafficking 

10.4 1 30 482.63 1390.4 0.0303 Heart, lung, blood, 
lymphocyte 

30 

ZYX Focal adhesion and 
signal transduction 

3.54 8 77 1495.7 4067.6 0.0036 Many, whole body 66 

TG Thyroglobulin 2.52 17 120 6965.2 19512 0.0033 Thyroid, adrenal, 
brain, esoph, 
fibroblast 

34 

RPL12 Ribosomal protein — 0 21 479.72 1138.3 0.0218 Many, whole body 26 
A2M Protein cleavage 2.31 16 98 3843.9 10209 0.0202 Many, whole body 62 

NDE1 Neurodevelopment 
protein, centrosome and 
dynein interaction 

2.48 17 124 5837.5 17141 0.0042 Artery & colon 3 

CSDC2 Binds histone mRNA 13.9 1 36 427.74 1107.8 0.0042 Adipose, artery, 
heart, ovary, 
uterus 

28 
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Table 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Legend: Summary of GWAS results. All significant positions shown, except “somatic vars×SNP array” 
where only top results are depicted & the 2nd “PIC value” result approaches significance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GWAS study Location Function (Ref 9) β-value 
(effect size) 

p-value Gene 

PIC Value × 
Exome Calls 

Chr2:29092850 tRNA methylase 0.0413 1.12e-8 TRMT61B Exon 1 

 Chr11:104,897,536 Apoptosis-related caspase -0.1673 5.99e-8 CASP1 intron 
Somatic Vars × 
Exome Calls 

Chr1:144,989,914 Neuroblastoma Breakpoint Family 0.3060 2.44e-8 NBPF9 intron 

 Chr11:93170919 Coiled Coil Domain Containing 67, 
promotes centriole amplification 

0.2142 4.81e-10 CCDC67 Exon 14 

 Chr20:18,446,026 Double zinc ribbon and ankyrin repeat 
domains 1 

0.2234 3.32e-8 DZANK1 intron 

Somatic Vars × 
SNP Array 

Chr13:91609870 (Likely regulatory) 0.1601 2.52e-10 (Non-coding) 

 Chr20:18368305 Double zinc ribbon and ankyrin repeat 
domains 1 

0.2297 2.88e-10 DZANK1 intron 

 Chr10:29165089 Uncharacterized protein 0.2295 3.06e-10 C10orf126 intron 
 Chr7:106403560 unknown 0.2460 5.37e-10 AF086203 
 Chr2:38409838 (Likely regulatory) 0.2239 6.96e-10 (Non-coding) 
 Chr3:186747485 Glycosyltransferase 0.2666 1.25e-9 ST6GAL1 intron 
 Chr2:38407303 Oxidation and electron transport 0.212 1.82e-9 CYP1B1 intron 

 
 Chr6:114473296 Heparan sulfate sulfotransferase 0.198 2.10e-9 HS3ST5 intron 
 Chr7:146723583 Neurexin cell adhesion molecule 0.227 5.06e-9 CNTNAP2 intron 
 Chr16:130781408 DNA interacting protein, interacts with 

RB1 tumor suppressor 
0.242 5.71e-9 RNF40 intron 

 Chr3:60846952 Regulates cell proliferation, induce 
apoptosis via AKT1 and SRC 

0.146 5.90e-9 FHIT intron 
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Figure 1 A. Histogram of dN/dS value for genes with ≥ 6 somatic mutations. The data appear to 
follow a Poisson distribution with median=1.24  B dN/dS value vs. mutational load rank scaled 
from 0 to 1 for each gene with ≥ 6 somatic mutations. The size of each circle depicts significance. 
Red circles are significant: padj<0.05 at FDR=5%. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. PIC value across the mitochondrial genome. tRNA positions are highlighted in red (note 
peaks in those positions). The 9th position of each tRNA was used as the phenotype in the post-
transcriptional GWAS. 
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Figure 3 A,B,C. Quantile-
quantile (QQ) plots for the 
exome mutation burden 
phenotype × germline 
variants called from seq, 
exome mutation burden 
phenotype × germline 
variants called from SNP 
array variants, and post-
transcriptional modification 
phenotype (equations 2-3) 
× exome mutation burden 
respectively. D,E,F 
Manhattan plots for the 
same three GWAS, 
respectively. G and H 
Genotype (Ref/Ref, Ref/Alt, 
Alt/Alt) compared to 
phenotype (see Methods) 
for significant SNPs of the 
post-transcriptional × 
exome mutation burden 
GWAS and somatic × 
exome mutation burden 
GWAS, respectively.  
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