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Background: Current diagnostic systems for neurodevelopmental disorders do not have clear 

links to underlying neurobiology, limiting their utility in identifying targeted treatments for 

individuals. Several factors contribute to this issue, including the use of small samples in 

neuroimaging research and heterogeneity within diagnostic categories. Here, we aimed to 

investigate differences in functional brain network integrity between traditional diagnostic 

categories (autism spectrum disorder [ASD], attention-deficit/hyperactivity disorder [ADHD], 

typically developing [TD]) and carefully consider the impact of comorbid ASD and ADHD on 

functional brain network integrity in a large sample. We also assess the neurobiological validity 

of a novel, potential alternative nosology based on behavioral measures of executive function.   

Method: Five-minute resting-state fMRI data were obtained from 168 children (128 boys, 40 

girls) with ASD, ADHD, comorbid ASD and ADHD, and TD children. Independent component 

analysis and dual regression were used to compute within- and between-network functional 

connectivity metrics at the individual level.  

Results: No significant group differences in within- nor between-network functional 

connectivity were observed between traditional diagnostic categories (ASD, ADHD, TD) even 

when stratified by comorbidity (ASD+ADHD, ASD, ADHD, TD). Similarly, subgroups classified 

by executive functioning levels showed no group differences.  

Conclusions: Using clinical diagnosis and behavioral measures of executive function, no group 

differences were observed among the categories examined. Therefore, we suggest that brain 

imaging metrics may more effectively define clinical subgroups than behavioral metrics, and 

may contribute to the establishment of a neurobiologically valid nosology for 

neurodevelopmental disorders. 
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Background 
 

Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder 

(ADHD) are behaviorally heterogeneous, prevalent neurodevelopmental disorders with 

few clear links between diagnostic criteria and specific neurobiological alterations1,2. 

These disorders exhibit shared deficits in executive function3 and associated functional 

brain alterations4,5, which may be exacerbated by the high rates of comorbidity between 

ASD and ADHD6. These challenges limit the utility of the diagnostic and statistical 

manual of mental disorders’ (DSM-57) criteria as predictors of etiology or treatment 

response8. The NIH has proposed the Research Domain Criteria (RDoC) framework, 

which instead suggests the use of neurocognitive constructs that are linked to 

underlying neurobiology to investigate mental health disorders9. Following these 

guidelines, a potential alternative nosology may be developed that is specifically tied to 

targeted treatments. In this study, we first assess the neurobiological validity of 

traditional diagnostic categories by evaluating differences in functional brain network 

integrity between children with ASD, ADHD and typically developing (TD) children. 

Comorbidity between ASD and ADHD is rarely considered in neuroimaging studies. 

Here, we explicitly examine brain network connectivity in children with comorbid ASD 

and ADHD separately from children with ASD (without ADHD), ADHD (without ASD), 

and TD children. Finally, we assess the neurobiological validity of a novel classification 

system based on behavioral measures of executive function as an alternative to the 

DSM-5 classification system.  

The DSM-5 defines ASD according to behavioral symptoms of 

social/communication deficits and restricted and repetitive behaviors; ADHD is defined 
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by either primarily inattentive or hyperactive symptoms, or a combination of both7. 

Although there exists a large body of work implicating functional brain network 

alterations in ASD and ADHD1, to date, no biomarkers have been identified to 

supplement diagnosis of these disorders. Here, we focus on functional connectivity as 

an important marker for dysfunction in these neurodevelopmental disorders. 

Case-control studies comparing functional connectivity in ASD and ADHD to TD 

children have produced largely inconsistent results11,12, although studies of children with 

ADHD appear to be more consistent than studies of ASD14. Both hyperconnectivity15,16 

and hypoconnectivity17,18 have been reported in children with ADHD and ASD. The 

neuroscience field is becoming increasingly aware of the lack of reproducible findings 

across studies, which may be the result of low sample sizes, inflated false-positive rates 

due to analytic choices, and heterogeneity inherent to groups of interest19. In response, 

the field is calling for a focus on replication studies using adequately powered 

samples20. Here, we aim to resolve the discrepancy in prior studies characterizing brain 

networks of children with ASD and ADHD by comparing functional network integrity 

between groups in a large sample of children.  

Few neuroimaging studies have directly compared network functional 

connectivity of children with ASD and ADHD, resulting in inconclusive findings of both 

common and distinct network alterations across case-control studies4,21. Further, only 

two prior functional neuroimaging studies considered the impact of comorbidity on 

diagnostic group differences by examining an ASD with comorbid ADHD group distinct 

from non-comorbid ASD and ADHD groups4,5. These studies demonstrated that children 

with ASD and comorbid ADHD exhibit functional brain network abnormalities that 
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resemble alterations in children with ASD (without ADHD) and ADHD (without ASD) 

plus unique abnormalities specific to comorbidity between ASD and ADHD4,5. These 

prior results suggest that some brain network findings may be nonspecific across ASD 

and ADHD, and some may only hold for subgroups within a disorder (e.g., a comorbid 

group). The current study addresses both of these concerns in the context of two highly 

prevalent neurodevelopmental disorders. The first aim of this study is to test differences 

in functional connectivity between children with ASD, ADHD, comorbid ASD and ADHD, 

and TD children. 

Inconsistent findings and non-specificity of functional network alterations in ASD 

and ADHD may also be attributed to the heterogeneity characteristic of these disorders. 

Individual differences among children within a DSM diagnostic category are increasingly 

recognized across the biological psychiatry field, with recent calls to account for this 

variability in research studies1,22. One possible approach for parsing heterogeneity in 

these disorders is to define more homogeneous subgroups of children with ASD and 

ADHD. Based on DSM-5 criteria, there are no currently defined subgroups for ASD7. 

Although ADHD has three DSM-defined subgroups (Inattentive, Hyperactive/Impulsive, 

and Combined), these are currently inadequate to capture the full range of symptoms23 

or to predict treatment response2. In addition to high levels of within-group variability, 

there is considerable overlap in both phenotypic and biological alterations in ASD and 

ADHD, one of the most striking similarities being common difficulties in executive 

function22. Shared alterations in structural10 and functional4 neural underpinnings of 

executive function across ASD and ADHD have likewise been reported. Importantly, 

Chantiluke et al. (2014) showed that children with “pure” ASD and ADHD exhibited little 
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to no disorder-specific functional alterations during a temporal discounting task, 

whereas the comorbid group exhibited pronounced functional differences compared 

with all other groups5. This finding highlights the inadequacy of defining subgroups 

solely within a single disorder, and instead calls for the definition of subgroups that may 

cut across disorders.  

To this end, we recently leveraged both theoretical (focusing on executive 

functions) and data-driven (using a subgrouping method called latent profile analysis) 

computational psychiatry approaches to develop a possible alternative categorization of 

neurodevelopmental disorders. We demonstrated that behavioral measures of 

executive function can be used to define subgroups of children across various 

diagnostic groups: ASD, ADHD, comorbid ASD and ADHD, and TD children24. Three 

subgroups emerged— “above average,” “average,” and “impaired” executive 

functions— which crossed traditional diagnostic boundaries. Here, we follow up these 

findings by assessing the neurobiological validity of the current DSM categories of ASD 

and ADHD, in addition to considering comorbidity. Moreover, we assess the 

neurobiological validity of an alternative nosology based on executive function 

subgroups (i.e., “above average,” “average,” and “impaired” subgroups). We 

operationalize neurobiological validity as the separability of groups based on within- and 

between-network functional connectivity of three major intrinsic connectivity networks 

(ICNs) important for cognition27: the frontoparietal network (FPN), salience network 

(SN), and DMN28. 

We predicted that children with ADHD would exhibit reduced DMN connectivity 

and stronger DMN-FPN and DMN-SN coupling14 compared with TD children. We 
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expected that children with ASD would exhibit hyperconnectivity within FPN, DMN, and 

SN15,29 compared with TD children. Inconsistent findings comparing ASD, ADHD, and 

ASD with comorbid ADHD groups precludes establishing well-founded a priori 

hypotheses specific to the comorbid ASD and ADHD group. Further, we anticipated that 

there would be a parametric increase in functional connectivity of the FPN and SN 

across executive function subgroups, such that the “impaired” subgroup would exhibit 

the lowest functional connectivity and the “above average” group would exhibit the 

highest functional connectivity30.  

Methods and Materials 

Participants 

Participants aged 8 to 13 years (N=168) included a subset of children used in our 

previous study24. Written informed consent was obtained from all legal guardians and 

written assent was obtained from all children. All procedures were approved by the 

Institutional Review Board at the Johns Hopkins School of Medicine and all methods 

were carried out in accordance with the approved guidelines.  

Diagnostic and IQ measures 

Community diagnoses of ASD were confirmed with the Autism Diagnostic 

Observation Schedule (ADOS-G32 or ADOS-233, based on study enrollment date) and 

Autism Diagnostic Interview-Revised (ADI-R34). The Diagnostic Interview for Children 

and Adolescents IV35 was used to confirm community ADHD diagnoses, determine 

whether children with ASD had comorbid ADHD, and for exclusionary purposes. 

Community diagnoses of ADHD were also confirmed with the Conners’ Parent Rating 

Scales (CPRS-R:L36 or CPRS-337, based on study enrollment date) and the ADHD 
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Rating Scale IV, Home version38 (Table 1). Executive functions used for the latent 

profile analysis were measured primarily with a parent-report (eight subscales of the 

BRIEF40), in addition to two laboratory measures, the Statue subscale of the NEPSY-II41 

and the backward digit span of the WISC-IV. See supplementary information for more 

details. 

Subsamples 

To compare the integrity of ICNs between groups delineated by primary 

diagnosis (ASD, ADHD, TD), three equally sized diagnostic groups (N=129, three 

groups of n=43) were randomly selected from the larger sample of 168 participants in 

order to produce unbiased group ICA results (hereafter, ‘Diagnostic group sample’). 

These diagnostic groups were delineated by primary diagnosis; individuals may have 

had additional secondary diagnoses. For example, the “ASD” group included individuals 

with comorbid psychiatric diagnoses, including ADHD (n=26, 61%). Some children in 

the “ADHD” group had comorbid psychiatric diagnoses, but this did not include 

comorbid ASD, given that ASD is commonly considered a primary and not secondary 

diagnosis (see Table 1 for more details). Diagnostic groups did not differ in age, sex, 

handedness, FSIQ, or head motion (mean framewise displacement [FD42], translational 

and rotational motion, Table 2). 

To address the issue of comorbidity in assessing diagnostic group differences, 

an additional group analysis was performed. Diagnostic groups were categorized as TD, 

ADHD, ASD (without ADHD), and ASD+ADHD (ASD with comorbid ADHD). Due to 

sample size limitations, group size for this analysis was limited to 22 (N=88, ‘Diagnostic 

comorbid sample’). These groups did not differ in age, sex, handedness, or head motion 
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(Table S1). Due to sample size limitations, we were unable to match the diagnostic 

comorbid samples on FSIQ (p<.001). 

A subset of the 168 participants eligible for this study was generated to ensure 

equal group sizes for each executive function (EF) subgroup (‘EF subgroup sample’, 

N=129, three groups of n=43). The ‘EF subgroup sample’ was representative of the 

Dajani et al. (2016) sample24 in EF scores, age, FSIQ and the distribution of diagnostic 

categories within each EF subgroup. EF subgroups did not differ in age, sex, 

handedness or mean head motion, but did differ on FSIQ (p<.001) and reached a near-

significant difference in mean FD for the raw data (p=.06, Table S2). Following 

preprocessing, there were no group differences in mean FD (p=.36, Figure 2). The 

difference in FSIQ was expected given the subgroups were delineated based on EF, 

which tends to be highly correlated with IQ metrics43.  

Data acquisition 

Resting state fMRI (rs-fMRI) data were acquired for participants on a Phillips 3T 

scanner using an 8-channel head coil (TR=2.5s, flip angle=70°, sensitive encoding 

acceleration factor=2, 3mm slices, voxel size= 2.7x2.7x3 mm). Most participants had a 

156-volume dataset, but a subset had a shorter acquisition time of 128 volumes (156 

volumes: n=114, 128 volumes: n=15 in the ‘EF subgroup sample’). High-resolution T1-

weighted scans were also acquired to facilitate registration of the functional image to 

standard space (TR=8.0ms, TE=3.7ms, 1mm isotropic voxels). Participants were asked 

to withhold stimulant medication (e.g., Adderall) the day before and on the day of MRI 

scanning, similar to prior neuroimaging studies comparing children with ASD and 

ADHD4,44. Non-stimulant medications were continued as prescribed (e.g., 
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antidepressants, allergy medication, see Table S3 for detailed medication status 

information). 

Experimental Design and Statistical Analysis 

Preprocessing 

Dual regression analyses employed in this study require all participants to have 

equal rs-fMRI scan lengths, therefore all participants’ rs-fMRI data were truncated to the 

shortest participant’s scan length by removing volumes at the end of the scan, resulting 

in all scans including 121 volumes (5 minutes of data). Standard preprocessing was 

conducted in FSL 5.0.9. In addition, a state-of-the-art ICA-based denoising procedure 

(ICA-AROMA45) was used to remove motion-related artifacts in native space (see 

supplemental information).  

Group ICA  

We ran a group ICA using the FSL MELODIC v3.14 toolbox 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC) with temporal concatenation to identify 

common spatial patterns across participants. Five components of interest were 

manually identified from the group ICA by two of the authors (DRD and LQU): right 

FPN50, left FPN50, SN51, and anterior and posterior DMN50. To ensure unbiased 

networks were produced for each subsample and subsequent analyses, a separate 

group ICA model was run for each of the three subsamples. Networks were qualitatively 

highly similar across subsamples (Figure S1). 

Dual Regression 

Dual regression is a reliable technique which allows for the identification of group 

differences in the spatial and temporal features of ICNs common to the entire 
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sample25,26. Using FSL’s dual regression command 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/DualRegression/UserGuide), individual-level spatial 

and temporal maps were constructed for each of the five components of interest 

generated from the group ICA. To test group differences in within-network connectivity, 

the normalized individual-level spatial maps were subjected to permutation testing using 

FSL’s randomise tool for each of the five components of interest 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide, 5000 permutations). To test 

for group differences in between-network connectivity, the FSLNets package was 

implemented in MATLAB (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). For each 

subsample, F-tests were conducted to ascertain the presence of group differences in 

within-network and between-network connectivity strength. Significance was determined 

using a threshold-free cluster enhancement of p<.05 (FWE-corrected) for both within- 

and between-network analyses, as in previous studies15,29. 

Results 

Effect of rigorous motion correction 

A 2x1 repeated-measures ANOVA was used to assess whether motion (indexed 

by mean FD42) decreased as a function of preprocessing with ICA-AROMA by 

comparing mean FD for raw and preprocessed data. The ANOVA demonstrated a 

significant decrease in mean FD following preprocessing, F(1, 332)=25.36, p<.001 (raw: 

M=.22 SD=.14, preprocessed: M=.04 SD=.02,  Figure 2).  

Comparisons between diagnostic groups 

No within- or between-network connectivity differences were found when 

comparing diagnostic groups (TD, ADHD, ASD; within-network: FWE-corrected p’s>.26, 
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between-network: FWE-corrected p’s>.37). When comparing diagnostic groups and 

statistically controlling for the effects of EF subgroup, F-tests remained non-significant 

(within-network: FWE-corrected p’s>.20, between-network: FWE-corrected p’s>.11).  

Comparisons between comorbid diagnostic groups 

When diagnostic groups were broken down according to comorbidity (TD, ADHD 

[without ASD], ASD [without ADHD], ASD+ADHD), F-tests revealed no group 

differences in within-network (FWE-corrected p’s>.30) or between-network connectivity 

(FWE-corrected p’s>.14).  

Comparisons between EF subgroups 

 Group differences in network connectivity strength were assessed across five 

ICNs between children with “above average,” “average,” or “impaired” EF. F-tests 

revealed no significant differences between EF subgroups in within-network nor 

between-network connectivity (within-network: FWE-corrected p’s>.24, between-

network: FWE-corrected p’s>.29). Likewise, after controlling for diagnostic status, no 

differences in connectivity emerged (within-network: FWE-corrected p’s>.25, between-

network: FWE-corrected p’s>.47). 

Discussion 
 

With the recent exponential increase in computational power and growing 

awareness of the limitations of current psychiatric diagnostic systems, there have been 

numerous recent calls to leverage the strengths of computational psychiatry approaches 

to develop a more parsimonious and neurobiologically valid nosology of mental health 

disorders52,53. This study is the first to use ICA dual regression, a reliable data-driven 

approach to investigate differences in both within- and between-network functional 
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connectivity between clinical groups, to assess the neurobiological separability of a 

traditional diagnostic classification system and a novel subgrouping system based on 

behavioral measures of executive function, while rigorously correcting for motion-related 

artifacts that are pervasive in pediatric psychiatric populations. We also carefully 

consider the impact of comorbidity between ASD and ADHD on brain network functional 

connectivity. Results indicate that the current DSM categories classify children into 

groups exhibiting negligible functional connectivity differences of major cognitive 

networks, suggesting limited neurobiological validity of current DSM categories. 

Contrary to our hypotheses, executive function subgroups displayed limited differences 

in functional connectivity of major cognitive networks, suggesting that a nosology based 

solely on a behavioral subgrouping system may not map onto differences in underlying 

neurobiology.  

Comparisons between traditional diagnostic categories (i.e., ASD, ADHD, and 

TD), which are based on observable symptoms according to DSM criteria, showed no 

differences in functional connectivity across major cognitive networks. Several reasons 

may explain these null findings. First, it may be that these diagnostic categories do 

exhibit differences in functional connectivity, but findings may be method-specific and 

do not extend to dual regression ICA-based analyses. Second, it is possible that a 

moderating factor, such as sample-specific IQ, gender distribution or symptom severity, 

may affect whether differences in functional connectivity are observed. Third, previously 

published findings may simply represent false positives. Finally, it may be that this study 

represents a false negative.  
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Prior studies comparing TD children and children with ASD and ADHD using 

ICA-derived networks report network connectivity differences between diagnostic 

groups. Specifically, studies of individuals with ADHD report reduced segregation of 

DMN-FPN networks in children, adolescents, and adults54,55, but results from within-

network connectivity studies are less coherent. For example, both hyperconnectivity16 

and hypoconnectivity18 have been reported in ADHD for the FPN and the DMN. The 

ASD literature is similarly inconsistent, even when limited to studies using dual 

regression ICA. For example, there have been reports of both within-network 

hyperconnectivity15,29 and hypoconnectivity of the FPN17 and DMN17,56. Although results 

are not consistent across studies, they clearly demonstrate that positive results are 

possible when using ICA dual-regression to investigate network integrity in children with 

ASD and ADHD, ruling out the possibility that previously reported network connectivity 

differences in ASD and ADHD are method-specific. Discrepancies in results across 

studies may be due to individual differences in network connectivity within these 

traditional diagnostic categories, thus diminishing their neurobiological separability, and 

ultimately, their validity. 

Heterogeneity within ASD and ADHD categories, characterized by a wide range 

of IQ, symptom severity, and the presence or absence of comorbid psychiatric 

disorders, may lead to inconsistent findings across studies, ultimately culminating in 

non-generalizable results. Our null findings when comparing diagnostic groups are in 

line with a recent review of classification studies of ASD and ADHD using neuroimaging 

techniques, which suggested that heterogeneity within and between disorders may be 

limiting researchers’ (and machines’) ability to distinguish disorders based on 
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neurobiology57. Two factors may be contributing to the limited neurobiological 

separability of ASD and ADHD categories: high within-category heterogeneity and high 

between-category similarity. There is considerable evidence for the existence of 

subgroups within ASD58 and ADHD diagnostic categories59, which are often delineated 

with neuropsychological measures. Recent evidence has also emerged for 

neurobiological subgroups of ADHD based on network connectivity of the reward 

system60 and other large-scale brain networks61. In addition, there is substantial overlap 

in ASD and ADHD categories in symptomatology (e.g., social skills deficits), behavioral 

domains beyond symptoms (e.g., executive dysfunction), and genetic factors62 in 

addition to high rates of comorbidity between ASD and ADHD. In sum, these diagnostic 

categories are not distinct from one another based on numerous criteria. Evidence for 

both high within-group heterogeneity and between-group overlap reduces the validity of 

current DSM categories for ASD and ADHD, and thus may explain our lack of 

dissociability between disorders based on functional connectivity metrics.  

Nonetheless, the results presented here contradict past findings of significant 

differences in functional connectivity between children with ASD, ADHD and TD 

children, which may be explained by the improved methodology used in this study. Past 

studies using ICA dual regression to compare children with ASD or ADHD to TD 

children used small sample sizes (n=20-25 per group)15,18,29,56,63,64. It is well established 

that low sample sizes contribute to reduced power to detect true results. However, it is 

less appreciated that positive results reported from underpowered studies also have a 

greater likelihood of being false19,65. Further, the exorbitant number of researcher 

degrees of freedom available in fMRI analyses, including choice of preprocessing 
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pipeline, analysis method, group matching procedures, thresholding procedures, and 

multiple comparison correction lead to inflated false-positive rates19. Here, we nearly 

double the sample size of past studies and arrive at null results, which in combination 

with the fact that past results are inconsistent across studies, suggests that some 

previous results could be attributed to false positives65. In addition, we employ a 

rigorous motion correction procedure not used in any previous study of functional 

connectivity differences in ASD and ADHD. ICA-AROMA is a denoising approach that 

reduces the likelihood of group differences emerging solely due to differences in in-

scanner motion. The strength of long-range functional connectivity is underestimated in 

cases of increased head motion66, which is rife in studies of youth with 

neurodevelopmental disorders46. Previous studies of within-network connectivity of the 

DMN in both children with ASD56,64 and ADHD14 that did not use ICA-AROMA may have 

been influenced by residual effects of motion. Taken together, these results suggest 

that findings of reduced long-range connectivity in ASD and ADHD may be a byproduct 

of increased motion artifacts in these clinical groups. 

Few neuroimaging studies consider the impact of comorbid ASD and ADHD on 

case-control findings, and instead rely on the primary diagnosis of children to classify 

patients. This leads to inherent heterogeneity in clinical groups studied, likely leading to 

inconsistencies in findings across the neuroimaging literature. The current study is one 

of the first functional neuroimaging studies to directly compare children with ASD, 

ADHD, comorbid ASD and ADHD, and TD children, and the first to do so using ICA dual 

regression combined with ICA-AROMA. Here, we do not find statistically significant 

differences between ASD and ADHD groups, even when accounting for comorbidity. 
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Compared to the group difference tests for the traditional diagnostic groups (ASD, 

ADHD, TD) and executive function subgroups, the analysis accounting for comorbidity 

may have been underpowered, with only 22 participants per group. Therefore, it is 

possible that the lack of observed differences in functional connectivity in children with 

comorbid ASD and ADHD represent a false negative. Ideally, this analysis should be 

replicated in future studies with a larger sample size to confirm whether group 

differences in functional connectivity exist between children with comorbid ASD and 

ADHD and other clinical and typically developing populations. 

As an alternative nosology to DSM-5 classifications, we tested whether there 

existed differences in functional connectivity between “above average,” “average” and 

“impaired” EF subgroups24. Contrary to our hypotheses, we observed no differences in 

functional connectivity between these subgroups, suggesting that EF-defined subgroups 

are not neurobiologically distinct based on networks important for cognition. There are 

multiple possible explanations for this null result. One possibility is that EF in children 

may be best assessed dimensionally rather than categorically67. The primary goal of this 

study was to assess the validity of the traditional categorical nosology (i.e., the DSM-5) 

and an alternative categorical nosology (i.e., EF subgroups). In characterizing 

neurodevelopmental and psychiatric disorders, recent studies have revealed the 

importance of testing whether categorical, dimensional, and hybrid categorical-

dimensional models best describe psychiatric disorders67. Future studies would benefit 

from testing both symptom-based and executive function-based dimensional models to 

determine whether these may better characterize neurobiological differences between 

children. Additionally, our results may have been influenced by our choice of measures 
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for EF subgrouping, which were primarily based on a parent-report of EF symptoms 

(i.e., the BRIEF40). We chose to focus on a parent-report of EF symptoms because of 

the strong psychometric properties of the measure and ease of obtaining the 

information in a clinical setting. Although using a parent-report of observable EF clearly 

has easily translatable implications for clinical practice, which is a current challenge for 

the field68, the choice to focus on a parent-report of behavior to characterize psychiatric 

disorders may be many steps removed from the underlying neurobiology. This leads to 

a rather simple explanation for these results – that behavior does not map one-to-one to 

underlying neurobiology. 

There are numerous lines of evidence to suggest that brain-behavior 

relationships are not simply one-to-one69. Varying types of functional network miswirings 

across development may manifest as a singular phenotype70, suggesting that distinct 

brain abnormalities may appear behaviorally as the same neurodevelopmental disorder. 

Likewise, disparate genetic etiologies may lead to similar behavioral profiles10,71. 

Diagnostic categories should necessarily define neurobiologically homogeneous groups 

to allow for the development of targeted treatments specific to a neurobiological 

signature of the disorder. This suggests that advances in mental health research 

necessarily rely on characterizing underlying neurobiological mechanisms of 

pathophysiology, and that psychiatry may be fundamentally limited as long as 

assessments are limited to observable phenomena72. 

Applying principles of computational psychiatry to clinical research has the 

potential to transform the mental health field from the current trial-and-error choice of 

treatments towards precision medicine. Current psychiatric diagnostic systems rely on 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main text  Dina R. Dajani 

 19

observable behaviors to classify disease, with unknown links to underlying 

neurobiology52. Biomarkers, on the other hand, may provide information that may be 

able to stratify current diagnostic categories or replace symptom-based classification 

systems completely. Here, we aimed to leverage the strengths of computational 

psychiatry methodology to propose an alternative nosology based on behavioral 

measures of executive function, which we predicted would lead to neurobiologically 

distinct subgroups. Contrary to predictions, we found that EF subgroups could not be 

distinguished based on within- or between-network connectivity metrics of major 

cognitive networks, emphasizing the notion that nosologies reliant on behavioral data 

alone may not lead to discovery of neurobiologically distinct categories, limiting their 

utility in predicting prognosis and efficacious treatments.  

Limitations 

Although the present study had numerous strengths including a larger sample 

than previous similar studies, the results reported here should be considered in light of 

several limitations. It is difficult to draw strong conclusions from null results, as it is 

possible that they may be due to under-powered samples. Children in the clinical 

samples had various psychiatric comorbidities aside from ASD and ADHD (most 

commonly, oppositional defiant disorder [ODD]). While this is expected for children with 

ADHD given the high rates of comorbidity with ODD73, it may have introduced additional 

confounds that were not taken into account in this study. Future studies may consider 

the impact of different types and number of comorbid disorders on brain network 

integrity. One alternative explanation for our finding of no group differences in functional 

network integrity between EF subgroups is that another RDoC domain, such as social 
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communication, may be better suited for developing an alternative nosology for children 

with neurodevelopmental disorders. We look forward to future studies exploring the 

efficacy of various domains and units of analysis outlined by the RDoC matrix. 

Conclusions 

We present findings that traditional diagnostic categories of ASD and ADHD 

could not be distinguished from one another or from TD children based on within- and 

between-network functional connectivity of three major cognitive networks: the 

frontoparietal, salience, and default-mode networks. Likewise, EF subgroups did not 

reflect neurobiologically distinct subgroups. Our study provides evidence that behavioral 

variables may be less informative than initially thought to create neurobiologically 

informed subgroups. The field of computational psychiatry is nascent53, and will 

therefore require the pursuit of new avenues and the continuous refinement and 

validation of new hypotheses. Based on the current findings, we suggest future work 

should employ data-driven approaches applied to neurobiological variables, such as 

functional connectivity metrics, to create parsimonious, biologically validated categories 

of neuropsychiatric diseases. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements  Dina R. Dajani 

 21

We thank Jeanette Mumford for her contribution to the statistical modeling of the group 

difference tests. This work was supported by the National Institute of Mental Health 

(R01MH107549) to LQU. This work was also funded by Autism Speaks and NIH: 

R01NS048527, R01 MH085328, R01 MH078160, the Johns Hopkins University School 

of Medicine Institute for Clinical and Translational Research, and NIH/NCRR CTSA 

Program, UL1-RR025005, to S.H.M. 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Disclosures  Dina R. Dajani 

 22

All authors reported no biomedical financial interests potential conflicts of interest. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  Dina R. Dajani 

 23

1. Ameis S. Heterogeneity Within and Between Autism Spectrum Disorder and 
Attention-Deficit/Hyperactivity Disorder: Challenge or Opportunity? JAMA 
psychiatry. 2017. 

2. Mueller A, Hong DS, Shepard S, Moore T. Linking ADHD to the Neural Circuitry 
of Attention. Trends in Cognitive Sciences. 2017. 

3. Leno VC, Chandler S, White P, et al. Testing the specificity of executive 
functioning impairments in adolescents with ADHD, ODD/CD and ASD. 
European child & adolescent psychiatry. 2017:1-10. 

4. Di Martino A, Zuo XN, Kelly C, et al. Shared and distinct intrinsic functional 
network centrality in autism and attention-deficit/hyperactivity disorder. Biol 
Psychiatry. 2013;74(8):623-632. 

5. Chantiluke K, Christakou A, Murphy CM, et al. Disorder-specific functional 
abnormalities during temporal discounting in youth with Attention Deficit 
Hyperactivity Disorder (ADHD), Autism and comorbid ADHD and Autism. 
Psychiatry research. 2014;223(2):113-120. 

6. Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder 
in children - what do we know? Fronteirs in Human Neuroscience. 2014;8:268. 

7. American Psychiatric Association. DSM 5. American Psychiatric Association; 
2013. 

8. Clark L, Cuthbert B, Lewis-Fernández R, Narrow W, Reed G. ICD-11, DSM-5, 
and RDoC: Three approaches to understanding and classifying mental disorder. 
Psychological Science in the Public Interest. 2017;18(2):xxx-xxx. 

9. Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a 
new classification framework for research on mental disorders. American Journal 
of Psychiatry. 2010;167(7):748-751. 

10. Dougherty CC, Evans DW, Myers SM, Moore GJ, Michael AM. A Comparison of 
Structural Brain Imaging Findings in Autism Spectrum Disorder and Attention-
Deficit Hyperactivity Disorder. Neuropsychology review. 2016;26(1):25-43. 

11. Mash LE, Reiter MA, Linke AC, Townsend J, Muller RA. Multimodal approaches 
to functional connectivity in autism spectrum disorders: An integrative 
perspective. Dev Neurobiol. 2017. 

12. Hull JV, Jacokes ZJ, Torgerson CM, Irimia A, Van Horn JD. Resting-State 
Functional Connectivity in Autism Spectrum Disorders: A Review. Frontiers in 
psychiatry. 2016;7:205. 

13. Mahone EM, Denckla MB. Attention-Deficit/Hyperactivity Disorder: A Historical 
Neuropsychological Perspective. Journal of the International Neuropsychological 
Society : JINS. 2017;23(9-10):916-929. 

14. Castellanos FX, Aoki Y. Intrinsic Functional Connectivity in Attention-
Deficit/Hyperactivity Disorder: A Science in Development. Biol Psychiatry Cogn 
Neurosci Neuroimaging. 2016;1(3):253-261. 

15. Uddin LQ, Supekar K, Lynch CJ, et al. Salience network-based classification and 
prediction of symptom severity in children with autism. JAMA psychiatry. 
2013;70(8):869-879. 

16. de Celis Alonso B, Hidalgo Tobon S, Dies Suarez P, Garcia Flores J, de Celis 
Carrillo B, Barragan Perez E. A multi-methodological MR resting state network 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  Dina R. Dajani 

 24

analysis to assess the changes in brain physiology of children with ADHD. PLoS 
One. 2014;9(6):e99119. 

17. Bos DJ, van Raalten TR, Oranje B, et al. Developmental differences in higher-
order resting-state networks in Autism Spectrum Disorder. Neuroimage Clin. 
2014;4:820-827. 

18. Yoo JH, Kim D, Choi J, Jeong B. Treatment effect of methylphenidate on intrinsic 
functional brain network in medication-naïve ADHD children: A multivariate 
analysis. Brain Imaging and Behavior. 2017:1-14. 

19. Poldrack RA, Baker CI, Durnez J, et al. Scanning the horizon: towards 
transparent and reproducible neuroimaging research. Nature reviews 
Neuroscience. 2017;18(2):115-126. 

20. Fletcher PC, Grafton ST. Repeat after me: replication in clinical neuroimaging is 
critical. NeuroImage: Clinical. 2013;2:247. 

21. Christakou A, Murphy CM, Chantiluke K, et al. Disorder-specific functional 
abnormalities during sustained attention in youth with Attention Deficit 
Hyperactivity Disorder (ADHD) and with autism. Molecular psychiatry. 
2013;18(2):236-244. 

22. Corbett BA, Constantine LJ, Hendren R, Rocke D, Ozonoff S. Examining 
executive functioning in children with autism spectrum disorder, attention deficit 
hyperactivity disorder and typical development. Psychiatry research. 2009;166(2-
3):210-222. 

23. Lee S, Burns GL, Snell J, McBurnett K. Validity of the Sluggish Cognitive Tempo 
Symptom Dimension in Children: Sluggish Cognitive Tempo and ADHD-
Inattention as Distinct Symptom Dimensions. Journal of Abnormal Child 
Psychology. 2014;42(1):7-19. 

24. Dajani DR, Llabre MM, Nebel MB, Mostofsky SH, Uddin LQ. Heterogeneity of 
executive functions among comorbid neurodevelopmental disorders. Scientific 
Reports. 2016;6:36566. 

25. Filippini N, MacIntosh BJ, Hough MG, et al. Distinct patterns of brain activity in 
young carriers of the APOE-ε4 allele. Proceedings of the National Academy of 
Sciences. 2009;106(17):7209-7214. 

26. Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable 
intrinsic connectivity networks: test-retest evaluation using ICA and dual 
regression approach. Neuroimage. 2010;49(3):2163-2177. 

27. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model 
of insula function. Brain Struct Funct. 2010;214(5-6):655-667. 

28. Uddin LQ. Salience processing and insular cortical function and dysfunction. 
Nature Reviews Neuroscience. 2015;16(1):55-61. 

29. Nomi JS, Uddin LQ. Developmental changes in large-scale network connectivity 
in autism. NeuroImage: Clinical. 2015. 

30. Reineberg AE, Andrews-Hanna JR, Depue BE, Friedman NP, Banich MT. 
Resting-state networks predict individual differences in common and specific 
aspects of executive function. NeuroImage. 2015;104(Supplement C):69-78. 

31. Satterthwaite TD, Wolf DH, Erus G, et al. Functional maturation of the executive 
system during adolescence. Journal of Neuroscience. 2013;33(41):16249-16261. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  Dina R. Dajani 

 25

32. Lord C, Risi S, Lambrecht L, et al. The Autism Diagnostic Observation 
Schedule—Generic: A standard measure of social and communication deficits 
associated with the spectrum of autism. Journal of autism and developmental 
disorders. 2000;30(3):205-223. 

33. Lord C, Rutter M, DiLavore PC, Risi S, Gotham K, Bishop SL. Autism diagnostic 
observation schedule: ADOS-2. Western Psychological Services Los Angeles, 
CA; 2012. 

34. Rutter M, Le Couteur A, Lord C, Faggioli R. ADI-R: Autism diagnostic interview--
revised: Manual. OS, Organizzazioni speciali; 2005. 

35. Reich W, Welner Z, Herjanic B. Diagnostic interview for children and 
adolescents-IV (DICA-IV) Multi-Health Systems. Toronto, Canada. 1997. 

36. Conners CK. Conners' Rating Scales--revised: User's Manual. Multi-Health 
Systems, Incorporated; 1997. 

37. Conners CK. Conners 3rd edition. Multi-Health Systems Toronto,, Ontario, 
Canada; 2008. 

38. DuPaul GJ, Power TJ, Anastopoulos AD, Reid R. ADHD Rating Scale-IV: 
Checklists, norms, and clinical interpretation. Vol 25: Guilford Press New York; 
1998. 

39. Wechsler D. Wechsler Intelligence Scale for Children-WISC-IV. Psychological 
Corporation; 2003. 

40. Gioia GA, Isquith PK, Guy SC, Kenworthy L. Behavior Rating Inventory of 
Executive Function: BRIEF. Psychological Assessment Resources Odessa, FL; 
2000. 

41. Korkman M, Kirk U, Kemp S. NEPSY-II: administration manual. San Antonio, TX: 
The Psychological Corporation. 2007. 

42. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but 
systematic correlations in functional connectivity MRI networks arise from subject 
motion. Neuroimage. 2012;59(3):2142-2154. 

43. Arffa S. The relationship of intelligence to executive function and non-executive 
function measures in a sample of average, above average, and gifted youth. 
Archives of Clinical Neuropsychology. 2007;22(8):969-978. 

44. Dennis EL, Jahanshad N, McMahon KL, et al. Development of insula connectivity 
between ages 12 and 30 revealed by high angular resolution diffusion imaging. 
Hum Brain Mapp. 2014;35(4):1790-1800. 

45. Pruim RH, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA 
and alternative strategies for motion artifact removal in resting state fMRI. 
Neuroimage. 2015;112:278-287. 

46. Yerys BE, Jankowski KF, Shook D, et al. The fMRI success rate of children and 
adolescents: typical development, epilepsy, attention deficit/hyperactivity 
disorder, and autism spectrum disorders. Human brain mapping. 
2009;30(10):3426-3435. 

47. Pruim RH, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-
AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI 
data. Neuroimage. 2015;112:267-277. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  Dina R. Dajani 

 26

48. Satterthwaite TD, Wolf DH, Loughead J, et al. Impact of in-scanner head motion 
on multiple measures of functional connectivity: Relevance for studies of 
neurodevelopment in youth. NeuroImage. 2012;60(1):623-632. 

49. Salimi-Khorshidi G, Douaud G, Beckmann CF, Glasser MF, Griffanti L, Smith 
SM. Automatic denoising of functional MRI data: combining independent 
component analysis and hierarchical fusion of classifiers. Neuroimage. 
2014;90:449-468. 

50. Smith SM, Fox PT, Miller KL, et al. Correspondence of the brain's functional 
architecture during activation and rest. Proceedings of the National Academy of 
Sciences of the United States of America. 2009;106(31):13040-13045. 

51. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity 
networks for salience processing and executive control. The Journal of 
neuroscience : the official journal of the Society for Neuroscience. 
2007;27(9):2349-2356. 

52. Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from 
neuroscience to clinical applications. Nat Neurosci. 2016;19(3):404-413. 

53. Chekroud AM, Lane CE, Ross DA. Computational Psychiatry: Embracing 
Uncertainty and Focusing on Individuals, Not Averages. Biol Psychiatry. 
2017;82(6):e45-e47. 

54. Kessler D, Angstadt M, Welsh RC, Sripada C. Modality-spanning deficits in 
attention-deficit/hyperactivity disorder in functional networks, gray matter, and 
white matter. The Journal of neuroscience : the official journal of the Society for 
Neuroscience. 2014;34(50):16555-16566. 

55. Sudre G, Szekely E, Sharp W, Kasparek S, Shaw P. Multimodal mapping of the 
brain's functional connectivity and the adult outcome of attention deficit 
hyperactivity disorder. Proceedings of the National Academy of Sciences of the 
United States of America. 2017;114(44):11787-11792. 

56. Washington SD, Gordon EM, Brar J, et al. Dysmaturation of the default mode 
network in autism. Hum Brain Mapp. 2014;35(4):1284-1296. 

57. Uddin L, Dajani D, Voorhies W, Bednarz H, Kana R. Progress and roadblocks in 
the search for brain-based biomarkers of autism and attention-
deficit/hyperactivity disorder. Translational psychiatry. 2017;7(8):e1218. 

58. Feczko E, Balba N, Miranda-Dominguez O, et al. Subtyping cognitive profiles in 
Autism Spectrum Disorder using a random forest algorithm. Neuroimage. 2017. 

59. Fair DA, Bathula D, Nikolas MA, Nigg JT. Distinct neuropsychological subgroups 
in typically developing youth inform heterogeneity in children with ADHD. 
Proceedings of the National Academy of Sciences. 2012;109(17):6769-6774. 

60. Costa Dias TG, Iyer SP, Carpenter SD, et al. Characterizing heterogeneity in 
children with and without ADHD based on reward system connectivity. Dev Cogn 
Neurosci. 2015;11:155-174. 

61. Gates KM, Molenaar PC, Iyer SP, Nigg JT, Fair DA. Organizing heterogeneous 
samples using community detection of GIMME-derived resting state functional 
networks. PloS one. 2014;9(3):e91322. 

62. Rommelse NN, Franke B, Geurts HM, Hartman CA, Buitelaar JK. Shared 
heritability of attention-deficit/hyperactivity disorder and autism spectrum 
disorder. Eur Child Adolesc Psychiatry. 2010;19(3):281-295. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  Dina R. Dajani 

 27

63. Choi J, Jeong B, Lee SW, Go HJ. Aberrant development of functional 
connectivity among resting state-related functional networks in medication-naive 
ADHD children. PLoS One. 2013;8(12):e83516. 

64. Starck T, Nikkinen J, Rahko J, et al. Resting state fMRI reveals a default mode 
dissociation between retrosplenial and medial prefrontal subnetworks in ASD 
despite motion scrubbing. Frontiers in human neuroscience. 2013;7:802. 

65. Ioannidis JP. Why most published research findings are false. PLoS Med. 
2005;2(8):e124. 

66. Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on 
intrinsic functional connectivity MRI. NeuroImage. 2012;59(1):431-438. 

67. Barch DM. Biotypes: Promise and Pitfalls. Biol Psychiatry. 2017;82(1):2-3. 
68. Paulus MP, Huys QJ, Maia TV. A Roadmap for the Development of Applied 

Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging. 
2016;1(5):386-392. 

69. Pessoa L. Understanding brain networks and brain organization. Physics of life 
reviews. 2014;11(3):400-435. 

70. Di Martino A, Fair DA, Kelly C, et al. Unraveling the miswired connectome: a 
developmental perspective. Neuron. 2014;83(6):1335-1353. 

71. Pelphrey K. Charting a Course for Autism Biomarkers. Biol Psychiatry. 
2017;82(3):155-156. 

72. Pine DS. Clinical Advances From a Computational Approach to Anxiety. Biol 
Psychiatry. 2017;82(6):385-387. 

73. Angold A, Costello EJ, Erkanli A. Comorbidity. Journal of child psychology and 
psychiatry. 1999;40(1):57-87. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2018. ; https://doi.org/10.1101/396317doi: bioRxiv preprint 

https://doi.org/10.1101/396317
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information  Dajani et al. 

 28

Tables 
 

Table 1. Diagnostic information.  
Data is presented for full sample of eligible participants, N=168.  
a: Conduct disorder, Major depressive disorder, Mania or hypomania, panic disorder, 
and somatization disorder. b: Reporting n=130 for Conners (1997) and n=32 with 
Conners-3 (2008); Conners missing data: n=6; ADHD Home Rating Scale IV missing 
data: n=4. c: Conners Parent Rating Scales T-scores. d: ADHD Home Rating Scale IV 
symptom counts. e: ADI missing data: n=2 ASD participants; Reporting n=22 with 
ADOS-2 data and n=34 with ADOS-G. f: Autism Diagnostic Interview-Revised reciprocal 
social interaction. g: Verbal communication. h: Restricted and repetitive behaviors. i: 

Table 1. Diagnostic information 

  Primary diagnosis 

TD ADHD ASD 

n=59 n=53 n=56 

Secondary Dx (present), No. (%) 2 (3.2) 24 (44.4) 43 (76.8) 
  ADHD 0 -- 34 (60.7) 
  Oppositional defiant 0 21 (39.6) 14 (25.0) 
  Simple Phobia 1 (1.7) 6 (11.3) 14 (25.0) 
  Generalized anxiety 0 0 7 (12.5) 
  Obsessive compulsive 0 0 5 (8.9) 
  Separation Anxiety 0 0 1 (1.8) 
  Dysthymia 0 0 1 (1.8) 
  CD, MDD, Mania, PD, Somata 0 0 0 
ADHD Measuresb, M (SD) 

     Conners Hyper/Impulsivec 48 (5.51) 71 (12.54) 66 (10.85) 
  Conners Inattentionc 45 (4.71) 73 (8.2)  (.) 
  Conners 3 Hyper/Impulsivec 45 (6.95) 76 (11.74) 80 (9.55) 
  Conners 3 Inattentionc 43 (8.69) 77 (9.57) 84 (4.85) 
  ADHD Hyperactivityd 0.22 (.59) [0-3] 4.00 (2.89) [0-9] 3.76 (2.23) [0-8] 
  ADHD Inattentiond 0.20 (.58) [0-3] 7.00 (1.91) [2-9] 5.76 (2.75) [0-9] 
ASD Measurese, M (SD) 

     ADI-R Af -- -- 20.57 (5.66) 
  ADI-R Bg -- -- 15.67 (4.70) 
  ADI-R Ch -- -- 6.26 (2.15) 
  ADOS-2 Social Affect -- -- 7.59 (3.28) 
  ADOS-2 RRBi -- -- 4.14 (1.73) 
  ADOS-G CSj -- -- 11.97 (3.20) 
  ADOS-G RRBk -- -- 3.00 (1.67) 
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Restricted and repetitive behaviors. j: Communication and social interaction. k: 
Stereotyped behaviors and restricted interests. 
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Table 2. ‘Diagnostic group sample’ demographics 

  Diagnostic groups   

TD ADHD ASD P 
value n=43 n=43 n=43 

Sex 31 M/12 F 31 M/12 F 34 M/9 F .69 
Age 10.50 (1.02) 10.03 (1.25) 10.37 (1.45) .23 
  range [8.00 - 12.58] [8.00 - 12.42] [8.17 - 12.92] 

 
Racea 6, 3, 7, 27 7, 0, 8, 28 1, 0, 4, 37 .05 
Ethnicityb, No.Hispanic/Latino 2 4 3 .07 
FSIQc 112.4 (11.53) 110.7 (11.33) 107.49 (10.16) .12 

  range [90 - 145] [93 - 136] [90 - 131]  
Motiond 0.23 (0.12) 0.26 (0.14) 0.26 (0.15) .49 
Handednesse, No. L,R 4, 1, 37 5, 0, 38 3, 0, 39 .64 
a: Numbers for each of the following racial categories presented in the following order: 
African American, Asian, Biracial, Caucasian, b: FSIQ: WISC-IV full-scale IQ, c: Mean 
framewise displacement, d: Number of children with left, ambidextrous, right, 
handedness. 
Table 2. ‘Diagnostic group sample’ demographics. 
a: Numbers for each of the following racial categories presented in the following order: 
African American, Asian, Biracial, Caucasian, b: FSIQ: WISC-IV full-scale IQ, c: Mean 
framewise displacement, d: Number of children with left, ambidextrous, right, 
handedness. 
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Figures 
 

 
Figure 1. Fifteen-component ICA results for the ‘EF subgroup’ sample. 
Components E (posterior DMN), F (L FPN), H (anterior DMN), I (R FPN), and K (SN) 
were used to assess group differences in network connectivity. One artifactual 
component emerged (component J).  
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Figure 2. Effect of rigorous motion correction. 
Mean FD is in mm, displayed on raw data and data after preprocessing with ICA-
AROMA
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Participants 

In our previous study1, a latent profile analysis using eight behavioral indicators 

of EF was conducted to determine subgroups of children (8-13 years, M=10.01, 

SD=1.37, N=321) with varying levels of EF ability in a mixed group of typically 

developing children (TD, n = 128), children with ADHD (n = 93), children with ASD 

without ADHD (n = 30), and children with comorbid ASD and ADHD (n = 66). Three 

classes emerged that did not reproduce diagnostic categories: “above average”, 

“average”, and “impaired” EF. 

Diagnostic group sample IQ matching. IQ was measured with the Wechsler 

Intelligence Scale for Children IV (WISC-IV39). To match diagnostic groups on FSIQ, 

first a subsample was generated from the sample of 168 participants by excluding 

participants with FSIQ < 90 and randomly excluding a proportion of TD participants with 

high IQs (>115). Second, participants were randomly selected to ensure each 

diagnostic group had equal sample sizes. 

Diagnostic measures 

 Community diagnoses of ASD and ADHD were confirmed with a mixture of 

parent report, parent interviews, and child interviews.  

ADOS-G and ADOS-2. The Autism Diagnostic Observation Schedule-Generic (ADOS-

G2) and the Autism Diagnostic Observation Schedule-2 (ADOS-23) are child clinical 

interviews with structured and semi-structured parts that focus on social and 

communicative behaviors in children. Participants recruited prior to the release of the 

ADOS-2 received the ADOS-G. Community diagnoses of ASD were confirmed by a 
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score of ≥ 7 for the total score on the ADOS-2 or the communication and social 

interaction score on the ADOS-G.  

ADI-R. The Autism Diagnostic Interview- Revised (ADI-R4) is a parent clinical interview 

that assesses key diagnostic features of autism like reciprocal social interaction, 

communication, and repetitive/stereotyped behaviors. All ASD participants met criteria 

for ASD based on established cutoffs (≥ 10 for social interaction, ≥ 8 for 

communication/language, ≥ 3 for RRBs) except for one participant. This participant met 

criteria for ASD based on the social interaction and RRB subscales, but scored a 4 on 

the communication/language subscale. This participant was retained in the ASD group 

because they met criteria based on the ADOS-G (total score: 16).  

Conners’ PRS. The Conners’ Parent Rating Scales- Revised, Long Version (CPRS-

R:L5) and the Conners’ Parent Rating Scales- 3rd Edition, Full-length (CPRS-36) are 

parent reports of their child’s ADHD symptoms, oppositional defiant disorder and 

conduct disorder. T-Scores of 60 or higher on the DSM-IV (for the Revised version) and 

DSM-IV-TR (for the 3rd Edition) Hyperactive/Impulsive or Inattentive scales were used 

to confirm community ADHD diagnoses. One ADHD participant did not meet these 

criteria (Hyperactive/Impulsive: 58, Inattentive: 55), but did meet criteria based on the 

DICA-IV. TD participants who had T-Scores >65 on either the Hyperactive/Impulsive or 

Inattentive scales were excluded from the study.  

ADHD-RS-IV, Home version. The ADHD Rating Scale-IV, Home version7 is a parent 

report of their child’s ADHD symptoms over the previous 6 months. Community 

diagnoses of ADHD were confirmed if children met for 6 out of 9 DSM-IV symptoms on 

either the Hyperactive/Impulsive or Inattention scales. Ten ADHD participants did not 
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meet these criteria, but did meet criteria for ADHD based on both the DICA-IV and 

Conners’ PRS. TD participants who met on 4 out of 9 symptoms on either the 

Hyperactive/Impulsive or Inattention scales were excluded from the study.  

DICA-IV. The Diagnostic Interview for Children and Adolescents IV8 is a structured 

parent interview to evaluate current psychiatric diagnoses in the child. The Attention 

Deficit Disorder subscale was used to: 1) confirm community ADHD diagnoses and 2) to 

determine whether the children with community ASD diagnoses also had comorbid 

ADHD. TD children who met criteria for any disorder were excluded except for one 

participant who met criteria for a simple phobia of bugs. Scores on the DICA-IV and 

clinical judgment by a child neurologist (S.H.M) determined ADHD subtype. 

Rs-fMRI data acquisition 

Children completed a mock scanning session prior to fMRI data collection to 

acclimatize them to the scanning environment.  Following data acquisition, the first 10 

volumes of rs-fMRI datasets were immediately discarded to account for magnet 

stabilization. Children were asked to relax and focus on a crosshair while remaining as 

still as possible. 

Preprocessing  

 To be eligible for the current study, participants were required to have a 

good quality resting-state fMRI dataset based on visual inspection. Data quality was 

visually inspected for both raw structural and functional images, and following brain 

extraction and registration. All data included passed quality checks at each step, except 

for a single structural image with considerable ringing due to motion. In this case, 
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registration passed our quality check, therefore we opted to retain this case in the final 

sample. 

Participants with excessive in-scanner motion (> 5mm of absolute maximum 

motion) were excluded from the study. To reduce motion artifacts, volumes in raw rs-

fMRI data that contained motion spikes (>3mm or degrees) at the beginning or end of 

the scan were deleted for 5 participants (volumes deleted were restricted to the first or 

last volumes of the scan to preserve the temporal continuity of the time series). 

Standard preprocessing procedures included the following: First, structural 

images were brain extracted using FSL’s BET tool. Using FEAT, fMRI data underwent 

motion correction, 4D intensity normalization, smoothing with a 6mm kernel, and 

estimation of linear and non-linear warping parameters to normalize to the MNI152 2mm 

template. Following the removal of motion-related signals in native space using ICA-

AROMA (see below for more details), warping parameters were applied to denoised 

functional images. 

ICA-AROMA 

Accounting for head motion is especially important in rs-fMRI studies of pediatric 

and clinical populations42,46. Therefore, we employed a state-of-the-art method called 

ICA-AROMA45,47. ICA-AROMA takes advantage of ICA’s ability to separate noise from 

signal components at the individual level, automatically identifies head motion-related 

components trained on four theoretically identified features, and regresses the variance 

associated with these motion-related features from the individual-level data. Specifically, 

ICA-AROMA identifies components strongly associated with head motion estimates, 

high-frequency content, and brain edge and ventricle intensity. A validation study using 
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samples of healthy controls and children with ADHD demonstrated that this method 

effectively removes motion-related variance from fMRI data, distance-dependent effects 

of motion, and preserves signals of interest45. In addition, ICA-AROMA has benefits 

over traditional motion correction procedures such as motion scrubbing42 or spike 

regression48 in that ICA-AROMA largely preserves the temporal degrees of freedom and 

autocorrelation structure in the data, and does not require model training or hand-

labeling of components as required for ICA-FIX49. Of note, this method does not identify 

components related to white matter or cerebrospinal fluid, but these components were 

identified at the group-level ICA and removed from further analysis (see ‘Group ICA’ 

section).  

Group ICA 

 Multiple group ICAs were run specifying various component numbers (13,15, and 

20) to determine the optimal number of components for this denoised dataset. ICA-

AROMA removes many artifactual components prior to group ICA9. In the Pruim et al. 

(2015) paper, implementing ICA-AROMA prior to group ICA resulted in only 11 

automatically estimated components compared to simply regressing motion parameters, 

which resulted in 22 estimated components. For this dataset, estimating fifteen 

components was optimal in identifying large-scale networks, while avoiding lumping of 

multiple networks together or dividing networks into individual brain regions (Figure 1). 

Of the fifteen components estimated for the ‘EF class sample’, only one component 

(Figure 1, component J) was identified as noise due to cerebrospinal fluid signal. 

Five components of interest were manually identified from the group ICA by two 

of the authors (DRD and LQU): right FPN50, left FPN50, SN51, and anterior and posterior 
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DMN50. Specifically, right and left FPN components were identified by the presence of 

lateralized dorsolateral PFC, ventrolateral PFC and lateral parietal cortices51. The SN 

was identified by the presence of anterior insula and dorsal ACC51. In children, the DMN 

tends to decompose into anterior and posterior components15,29. The anterior DMN was 

identified by the primary presence of ventromedial PFC and the posterior DMN was 

identified by the precuneus and posterior cingulate cortex50. 

FSLNets 

FSLNets takes the individual-level time courses produced from the dual regression 

analysis and computes between-network correlations, resulting in a Fisher’s r to z 

transformed correlation matrix. Full (zero-order) correlation matrices were restricted to 

the 5 components of interest, resulting in a 5x5 matrix produced for each individual. 
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Table S1. 'Diagnostic comorbid sample' demographics 

Diagnostic groups 

 

TD ADHD ASD ASD+ADHD 
P value 

n=22 n=22 n=22 n=22 
Sex 19 M/3 F 14 M/8 F 17 M/5 F 19 M/3 F .21 
Age 

       range [8.00 - 12.58] [8.08 - 12.33] [8.00 - 12.50] [8.00 - 12.50] 
   mean 10.41 (1.23) 10.17 (1.16) 9.69 (1.30) 10.33 (1.28) .23 

Racea 2, 2, 3, 15 6, 0, 1, 15 0, 0, 1, 20 2, 1, 2, 16 .18 
Ethnicityb  
No. Hispanic/Latino 1 1 1 3 .50 

FSIQc 
       range [90 - 147] [88 - 124] [67 - 131] [63 - 115]  

  mean 117.96 (16.46) 106.5 (10.46) 104.95 (14.76) 95.43 (13.73) .00002 
Motiond 0.23 (0.11) 0.28 (0.15) 0.25 (0.11) 0.32 (0.23) .21 
Handednesse  
No. L,R 3, 19 2, 20 2, 20 2, 18 .95 

a: African American, Asian, Biracial, Caucasian, b: FSIQ: WISC-IV full-scale IQ, c: Mean 
framewise displacement, d: Number of children with left, ambidextrous, right, handedness, TD: 
typically developing, ASD+ADHD: ASD with comorbid ADHD 
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Table S2. ‘EF subgroup sample’ demographics 

  EF subgroups   

Above Average Average Impaired P 
value n=43 n=43 n=43 

Sex 30 M/13 F 35 M/8 F 35 M/8 F .33 
Age 

      range [8.42 - 12.58] [8.00 - 12.75] [8.00 - 12.92]  
  mean 10.19 (1.02) 10.20 (1.37) 10.04 (1.33) .81 
Racea 7, 2, 6, 28 3, 1, 6, 33 5, 1, 4, 33 .79 
Ethnicity, No. Hispanic/Latino 2 0 7 .009 
FSIQb 

      range [90 - 142] [84 - 147] [63 - 129]  
  mean 116.86 (12.44) 111.43 (14.54) 103.72 (13.78) .00008 
Motionc 0.24 (0.13) 0.23 (0.12) 0.30 (0.20) .06 
Handednessd, No. L,A,R 3, 1, 39 5, 0, 38 4, 0, 38 .65 

No. (%) in EF group     
  TD 41 (95%) 15 (35%) 0 

 
  ADHD 1 (2%) 16 (37%) 19 (44%) 

 
  ASD 1 (2%) 10 (23%) 6 (14%) 

 
  ASD+ADHD 0 2 (5%) 18 (42%) 

 
a: African American, Asian, Biracial, Caucasian, b: FSIQ: WISC-IV full-scale IQ, c: 
Mean framewise displacement, d: Number of children with left, ambidextrous, right, 
handedness, ASD+ADHD: ASD with comorbid ADHD 
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Table S3. Medication status 
None Non-stimulant Stimulant 

EF subgroups 
     Above average EF 43 (100%) 0 (0%) 0 (0%) 

   Average EF 24 (57%) 5 (12%) 13 (31%) 

   Impaired EF 22 (52%) 2 (5%) 18 (43%) 

Diagnostic groups 
     TD 42 (100%) 0 (0%) 0 (0%) 

   ADHD 14 (33%) 0 (0%) 29 (67%) 

   ASD 24 (56%) 7 (17%) 11 (26%) 

Diagnostic comorbid groups 
     TD 22 (100%) 0 (0%) 0 (0%) 

   ADHD 6 (29%) 0 (0%) 15 (71%) 

   ASD 15 (68%) 4 (18%) 3 (14%) 

   ASD+ADHD 11 (55%) 2 (10%) 7 (35%) 
Distribution of participants who were taking no medication, taking non-stimulant 
psychotropic medication or taking stimulant medication at the time of study enrollment. 
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Figure S1. ICA components for 5 major cognitive networks across subsamples. 

 
The five major cognitive networks (R FPN, L FPN, SN, posterior DMN, anterior DMN) 
were estimated in three separate group ICAs for each subsample of interest: 1) EF 
subgroups, 2) Diagnostic groups, 3) Diagnostic comorbid groups. This figure 
qualitatively illustrates the similarities between estimated components for each 
subsample. 
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