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Abstract 
High-throughput viral genetic sequencing is needed to monitor the spread of drug resistance, 
direct optimal antiretroviral regimes, and to identify transmission dynamics in generalised 
HIV epidemics. Public health efforts to sequence HIV genomes at scale face three major 
technical challenges: (i) minimising assay cost and protocol complexity, (ii) maximising 
sensitivity, and (iii) recovering accurate and unbiased sequences of both the genome 
consensus and the within-host viral diversity. Here we present a novel, high-throughput, 
virus-enriched sequencing method and computational pipeline tailored specifically to HIV 
(veSEQ-HIV), which addresses all three technical challenges, and can be used directly on 
leftover blood drawn for routine CD4 testing. We demonstrate its performance on 1,620 
plasma samples collected from consenting individuals attending 10 large urban clinics in 
Zambia, partners of HPTN 071 (PopART). We show that veSEQ-HIV consistently recovers 
complete HIV genomes from the majority of samples of different subtypes, and is also 
quantitative: the number of HIV reads per sample obtained by veSEQ-HIV estimates viral 
load without the need for additional testing. Both quantitativity and sensitivity were assessed 
on a subset of 126 samples with clinically measured viral loads, and with standardized 
quantification controls (VL 100 – 5,000,000 RNA copies/ml). Complete HIV genomes were 
recovered from 93% (85/91) of samples when viral load was over 1,000 copies per ml. The 
quantitative nature of the assay implies that variant frequencies estimated with veSEQ-HIV 
are representative of true variant frequencies in the sample. Detection of minority variants 
can be exploited for epidemiological analysis of transmission and drug resistance, and we 
show how the information contained in individual reads of a veSEQ-HIV sample can be used 
to detect linkage between multiple mutations associated with resistance to antiretroviral 
therapy. Less than 2% of reads obtained by veSEQ-HIV were identified as in silico 
contamination events using updates to the phyloscanner software (phyloscanner clean) that 
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we show to be 95% sensitive and 99% specific at ‘decontaminating’ NGS data. The cost of 
the assay — approximately 45 USD per sample — compares favourably with existing VL 
and HIV genotyping tests, and provides the additional value of viral load quantification and 
inference of drug resistance with a single test. veSEQ-HIV is well suited to large public health 
efforts and is being applied to all ~9000 samples collected for the HPTN 071-2 (PopART 
Phylogenetics) study. 
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1. Introduction 

Achieving sustained reductions in the incidence of HIV infections through programmes of 
universal access to testing and antiretroviral treatment (UTT) remains a major goal in public 
health. Current international focus has been on working towards the UNAIDS ‘90-90-90’ 
targets: 90% of people living with HIV (PLWH) diagnosed, 90% of those on antiretroviral 
therapy, and 90% of those successfully virally suppressed [1]. However, this leaves 27% of 
PLWH not virally suppressed and still at risk of transmitting. There is substantial heterogeneity 
in risks of both becoming infected and transmitting HIV; if certain traits that associate with HIV 
transmission  (such as high sexual partner exchange rates, and low rates of accessing sexual 
health services) are disproportionately found in the virally unsuppressed population, this will 
undermine the ability of the 90-90-90 goals to control the epidemic [2] [3]. Consistent with this 
concern, an interim analysis of the HPTN 071 (PopART) cluster-randomized trial of UTT in 
Zambia found the percentage of individuals who knew their HIV+ status was lowest in men and 
in younger people [34]. There is therefore urgent need to study transmission patterns and identify 
any correlates of enhanced transmission risk that could be specifically targeted for intervention. 
The success of UTT programmes is also threatened by drug resistance, which is expected to 
increase in frequency as treatment is scaled up [4]. A 2017 report by the WHO identified parts 
of the world where more than 10% of people living with HIV already harbour virus resistant to 
antiretroviral compounds [5]. 

Both transmission patterns and the spread of drug resistance can be better understood 
using viral sequence data. To date, clinical drug resistance testing has primarily relied on 
Sanger consensus sequencing of pol genes. In high-income countries, where drug resistance 
testing is routinely performed to guide choice of effective ART, pol sequences have been used 
to identify transmission clusters [6]. The potential for viral whole-genome sequencing to 
transform global health surveillance operations has been noted [7] and implementation would 
benefit from the higher throughput of next-generation sequencing (NGS) technologies. NGS 
also produces detailed minority variant information, which can enhance resolution in 
transmission analyses, indicate direction of transmission [8], and detect low-frequency drug-
resistant viral variants. Despite its benefits, adoption of NGS for HIV has been slow, in part 
due to technical difficulties in obtaining whole genome sequences for all genotypes 
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particularly at low viral loads, and uncertainty over distinguishing low-frequency mutations 
from the sequencing artefacts and contamination that occur during massively-parallel 
sequencing. And although costs are lower than Sanger consensus sequencing, they remain 
prohibitively high for wide-scale use in low and middle-income countries. 

Large-scale sequencing of HIV genomes with NGS using overlapping 2-3 kb PCR 
amplicons [9] has been used to produce complete genomes for European samples [10], but 
the method’s performance was found to be far from optimal on sub-Saharan African samples, 
with amplification failures resulting in biased genome coverage [11]. In our previously 
reported protocol, veSEQ, for Hepatitis C Virus (HCV), a virus which is even more diverse 
than HIV, we avoided such a genotype-dependent failure rate by avoiding virus-specific PCR 
altogether [12]. Oligonucleotide probes of 120 bp were designed to capture the known 
epidemic diversity of HCV; we found that these probes could effectively capture target 
material with at least 80% nucleotide homology, in a manner that was unbiased with respect 
to diversity within this range (0 to 20%). The probes were used to enrich viral sequences from 
total RNA-seq libraries generated from plasma. We have since translated this principle to 
other viruses (Zika virus [13] ; HBV, in progress). 

Here we describe our adoption of this sequencing method for HIV, optimising both 
genome coverage and average fragment size (the latter enhancing the resolution of within-
host phylogenetics). We report our method, veSEQ-HIV, a comprehensive laboratory and 
computational pipeline, able to distinguish true minor variants, including low-frequency drug 
resistance mutations, from sequencing artefacts. We show our method to be quantitative –
capable of estimating viral load across at least five orders of magnitude – and obtain whole 
genome sequences at viral loads as low as 100 RNA copies per ml. We describe our 
optimisations to minimise the bias inherent in PCR amplification, while also minimising 
quantities of reagents, reducing their cost to one fifth of the WHO 2015 budget 
recommendation for both viral load measurements and drug resistance testing [14]. 

We demonstrate the method’s performance using the first 1,620 samples collected from consenting 
invividuals attending a government ART clinic within 9 of the HPTN 071 (PopART) trial  
communities. The PopART phylogenetics study (HPTN-071-2) is an ancillary study to the main 
PopART clinical trial; the largest ever cluster-randomized trial of HIV prevention that compares 
standard of care to a comprehensive intervention package of proactive home-based testing, rapid linkage 
to care, immediate initiation of ART and additional standard preventative measures [15]. 

 
2. Methods 

2.1. Patient population 
Patients were recruited to the HPTN 071-2 (PopART phylogenetics) study by research 

assistants at ten urban primary healthcare facilities, located in nine of the twelve Zambian 
communities of the main trial  (one community had two health care facilities) [15]. The nine 
communities involved were evenly split between the three study arms of HPTN-071. Patients 
were recruited if they were aged 18 or over, if not currently taking ART, and if they 
specifically consented to the ancillary phylogenetic study. Most patients were either newly 
enrolled in the clinic, or enrolled and newly eligible for ART; a small fraction were recruited 
having recently missed several doses of ART.
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Figure 1: Information included in the veSEQ-HIV method. The veSEQ-HIV method was developed to provide 
multiple measurements from a single assay, including viral load, genotype, inference of the transmission 
events and drug resistance levels.  

 
The study protocol is available here [https://www.hptn.org/sites/default/files/inlinefiles/HPTN%20071-
2%2C%20Version%202.0%20%28 07-14-2017%29.pdf], and has been approved by the ethics 
committees of the University of Zambia (c/o  the Zambian ministry of health) and of the London School 
of Hygiene and Tropical Medicine. 

2.2. Sampling 
No additional blood sample was required for this ancillary study. Saved unused samples 

of blood collected from consenting individuals undergoing routine CD4 testing were 
transported to the local hospital, usually on the same day. Blood was centrifuged twice and 
two 500 µL aliquots of plasma were frozen at -80◦C. Samples were transported to a central 
research laboratory (ZAMBART facility) in Lusaka, Zambia, using a mobile -80◦C freezer, 
and then shipped to the sequencing laboratory in the UK. Samples were processed 
approximately in order of collection, and represent the diversity of the population recruited at 
the beginning of the study (Figure 2). 

2.3. Laboratory methods 
Total RNA was extracted with magnetised silica from HIV-infected plasma lysed with 

guanidine thiocyanate and with ethanol washes and elution steps performed using the 
NUCLISENS easyMAG system (bioMérieux). The total 30 µl elution was reduced in volume 
with Agencourt RNAClean XP (Beckman Coulter) to maximize the input RNA mass while 
minimizing volume for library preparation. 

Libraries retaining directionality were prepared using the SMARTer Stranded Total RNA-
Seq Kit v2 — Pico Input Mammalian (Clontech, Takara Bio) with the following protocol 
specifications. Total RNA was first denatured at 72˚C with the addition of tagged random 
hexamers to prime reverse transcription, followed by cDNA synthesis according to the 
manufacturer protocol option with no fragmentation. The first strand cDNA was then 
converted into double-stranded dual-indexed amplified cDNA libraries using in-house sets of 
96 i7 and 96 i5 indexed primers [16], using a maximum of 12 PCR cycles. All reaction 
volumes were reduced to one quarter of the SMARTer kit recommendation and set up was 
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Figure 2: Study participants with sequenced HIV samples, by HPTN-071 (PopART) community number. 
Panel A, Women; Panel B, Men. Sequenced samples came from the nine communities in the 071-2 ancillary 
study in Zambia, with differences in total numbers reflecting differences in size of community catchment 
area and number of participating healthcare facilities. All three study arms were equally represented 
among the nine communities. 

 
either prepared manually, or automated using the Echo 525 (Labcyte) low-volume liquid 
handler. 

No depletion of ribosomal cDNAwas carried out prior to target enrichment. Equal 
volumes (5 µl from a total of 12.5 µl) of each amplified library were pooled in 96-plex without 
prior clean-up. The pool was cleaned with a lower ratio of Agencourt AMPure XP than 
recommended by the SMARTer protocol, to eliminate shorter libraries (0.68X). The size 
distribution and concentration of the 96-plex was assessed using a High Sensitivity D1000 
ScreenTape assay on a TapeStation system (Agilent) and a Qubit dsDNA HS Assay (Thermo 
Fisher Scientific). 

A total of 500 ng of pooled libraries was hybridized (SeqCap EZ Reagent kit, Roche) to a 
mixture of custom HIV-specific biotinylated 120-mer oligonucleotides (xGen Lockdown 
Probes, Integrated DNA Technologies), ten pulled down with streptavidin-conjugated beads 
as previously reported [12]. Unbound DNA was washed off the beads (SeqCap EZ 
Hybridization and Wash kit, Roche), and the captured libraries were then PCR amplified to 
produce the final pool for sequencing using a MiSeq (Illumina) instrument with v3 chemistry 
for a read length up to 300 nt paired-end. Alternatively, upto 384 samples were sequenced on 
HiSeq 2500 set to Rapid run mode using HiSeq Rapid SBS Kit v2 with maximum read lengths 
of 250 nt. 

2.4. Clinical viral loads 
Clinical viral load measurements were obtained within the Oxford University 

Hospital’s clinical microbiology laboratory using the COBAS®  AmpliPrep/COBAS®  

TaqMan®  HIV1 Test (Roche Molecular Systems, Branchburg, NJ, USA). 
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2.5. Analytics 
Raw sequencing reads were first processed with Kraken [17] to identify human and bacterial 

reads. Kraken was run with default parameters (k=31 with no filtering), using a custom database 
containing the human genome together with all bacterial, archaeal and viral genomes from 
RefSeq, a subset of fungal genomes, and all 9,049 complete HIV genomes from GenBank (last 
updated 18 May 2018). Reads were filtered to retain only viral and unclassified sequences, and 
these were trimmed to remove adaptors and low-quality bases using Trimmomatic [18], 
retaining reads of at least 80 bp. Filtered, trimmed sequences were assembled into contigs using 
SPAdes [19] and metaSPAdes [20] with default parameters for k (21 to 127). Contiguous 
sequences assembled from both assembly runs were clustered using cd-hit-est to remove 
redundant contigs [21], retaining the longest sequence in each cluster with minimum sequence 
identity threshold of 0.9. Contigs together with the filtered reads were then used to generate HIV 
genomes and variant frequencies using shiver [22], with position-based deduplication of reads 
enabled. Samples for which no contigs could be assembled were mapped to the closest known 
HIV reference as identified by Kallisto [23], hashing the filtered reads against a set of HIV 
references downloaded from the Los Alamos HIV database (http://www.hiv.lanl.gov/), and 
taking the closest matching genome as the mapping reference for shiver. QC metrics from each 
processing step are presented in Supplementary Table 1. 

Sequence-derived viral load, in copies per ml, was calculated from the number of dedupli- 
cated HIV reads for each sample, using the regression slope and intercept determined from 
the clinically measured viral load in a subset of 126 samples. To ensure a defined value of the 
log transformation for samples with zero reads, a pseudocount of 1 was added to the read 
number. The equation was: 
 

log10 (seq derived viral load) = 0.83 log10(no. of deduplicated reads + 1) + 1.23 
 
Contaminant reads were identified and removed using phyloscanner for in-depth analyses 

of pol sequencing data. A total of 373 overlapping genomic windows each of length 340 bp 
were selected, staggering the starting positions by 5 bp. For each window, a phylogeny was 
inferred for all read pairs that fully spanned that window, and ancestral state reconstruction 
divided the reads for each sample into distinct groups (subgraphs), with the phyloscanner 
Sankoff k parameter set to 12.5. A group of reads was flagged as likely contamination if it 
contained three or fewer reads, or less than 0.1% of the total number of reads from the sample 
in that window. The consensus sequence and minority base frequencies were then re-
calculated from the resulting cleaned mapped reads using shiver [22]. The cleaned mapped 
reads were also reanalysed with phyloscanner for inference of transmission between sampled 
individuals [8, 24]. 

Finally, both the consensus sequence and the cleaned reads were analysed with the 
Stanford drug resistance tool [25] to determine consensus and minority drug resistance levels. 
Aggregated drug resistance predictions, accounting for mutations linked on the same read 
pair, were calculated as the maximum level of resistance (Susceptible < Potential low-level 
< Low-level < Intermediate < High-level) observed in at least 20% of merged read pairs 
spanning each position. 
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3. Results 

3.1. Optimisation of existing methods 
The starting point for this protocol was the established method, veSEQ, for genomic 

characterisation of Hepatitis C Virus [12]. Several issues limited the direct application of 
veSEQ to HIV. First, compared with HCV, HIV is more frequently found with viral loads 
below 104 copies per ml, which is close to the threshold for reproducible whole-genome 
sequencing by veSEQ. Second, the veSEQ protocol was relatively laborious, with many steps 
and limited options for increasing throughput. Third, the veSEQ protocol involved 
fragmentation of the RNA in addition to the random priming of cDNA synthesis, resulting in 
short fragment size that would limit the use of the data for studies of within-host diversity. 
Minority variants are of particular importance for the identification of drug resistance and 
phylogenetically informed analysis of transmission [8]. Finally, all data generated by NGS 
suffer from issues of contamination, which need to be addressed for any application that 
analyses individual read sequences rather than the consensus of a large number of reads. 

To address these limitations, we performed a series of optimisations (Supplementary Table 2), 
resulting in changes throughout the protocol. Briefly, our aims were to increase fragment size, maximise 
throughput, reduce sample processing time, simplify processing steps, and reduce reagent costs. Our 
final laboratory protocol consists of the following steps: 

1. Viral particle lysis using chaotropic guanidine thiocyanate and total nucleic acid 
extraction using magnetised silica (easyMAG, bioMérieux). 

2. RNA concentration and sample volume reduction using magnetised silica beads 
(RNAClean XP, Beckman Coulter). 

3. Synthesis of libraries in low volume reactions, with low-temperature RNA denaturation 
and the Switching Mechanism At the 5’ end of RNA Template (SMART) technology 
[26] to convert RNA to double stranded Illumina libraries within a single tube reaction 
(Clontech). 

4. Minimal PCR amplification and double-indexing of sequencing libraries using indexed 
primers to reduce risks of index miss-assigned reads and false minority variants being 
generated by template switching. 

5. Pooling libraries by equal volume, rather than by equal mass, with reduced hands-on 
time. 

6. Size selection of pooled libraries using a stringent cleanup with AMPure XP magnetised 
silica beads (dependent on the molecular-size distribution of the non-size-selected 
pooled sequencing libraries, assessed by gel electrophoresis) 

7. Bait capture of virus sequences using a panel of oligonucleotide probes designed to 
capture the expected diversity of HIV in sub-Saharan Africa. 

8. Parallel library production and sequencing of 384 libraries on a HiSeq Rapid instrument 
set to produce 250 nt paired-end sequences within a single batch. 

The resulting raw data is processed using open-source computational tools to: 
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1. Provide quality control statistics to help the laboratory quickly detect and fix problems. 
2. Remove unwanted information and contaminants from raw sequencing output files. 
3. Infer a sequence-derived viral load. 
4. Infer consensus genotypes, minority variants and minority haplotypes. 
5. Infer transmission chains, with quantified statistical support for links and direction of 

transmission. 
6. Infer drug resistance, both at the consensus and minority haplotype level. 

3.2. Quantification of viral load 
Viral load is a measure of the concentration of virus in a sample. It is usually measured with 

highly standardised and regulated clinical assays using quantitative PCR that amplifies both the 
material to be tested and spiked internal standards of known viral load. Consistent with our 
previous study of veSEQ applied to HCV, we found that in contrast to amplicon-based sequencing, 
veSEQ-HIV was quantitative, in that the amount of recovered sequence correlated with the viral 
load [27]. This arises because PCR conditions remain non-saturating and because of the unbiased 
nature of the probes used for virus enrichment. A further slight improvement is obtained by 
computationally removing duplicate copies of viral fragments from sequence data, which are 
generated by non-viral-specific PCR steps in the protocol. To assess quantitativity, we validated 
the protocol on a subset of 126 samples for which viral load measurements were obtained with a 
clinical assay. Figure 3A shows the correlation between the clinical viral load and number of viral 
fragments recovered during sequencing along with the R2 value (0.89). This correlation was robust 
over a wide range of viral loads (Figure 3B), including a subset that were below the quantifiable 
limit of the clinical assay (<50 copies per ml). The quantitative nature of veSEQ-HIV also implies 
that the inferred frequency of minority variants in sequence data is a good reflection of the 
corresponding frequencies in the sample. 

3.3. Relationship between clinical viral load and number of mapped reads 
The relationship between number of reads and viral load was linear on a log-log scale with 

a slope of 0.83. This corresponds to some non-linearity on a linear scale, consistent with 
moderate bias of the sequencing method towards preferential recovery of the virus at low viral 
loads. This does not affect the use of the number of viral fragments to infer viral loads, since 
the relationship is well described mathematically. 
Following the validation step, we defined “sequence-derived log viral load” as the linear 
transform of the log number of deduplicated sequence fragments (Figure 3C). The lower limit 
of detection is approximately 50 copies per ml. We calculated the sequence-derived viral load 
for all 1,620 sequenced samples using this transformation, and characterised the population 
distribution (Figure 3D). This distribution was bimodal, with the minor peak at very low viral 
load corresponding to individuals with HIV read counts below the quantifiable limit of 
conventional assays. 

To ensure ongoing quantitativity and guard against batch effects, we introduced a panel 
of quantification standards, in line with the procedure used to calibrate clinical viral load 
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Figure 3: Panels A and B: Relationship between clinical viral load and number of mapped reads in a subset 
of 126 samples for which clinical viral load was measured independently; panels C shows the relationship 
between the clinical viral load and the sequence-derived viral load (using the equation in the main text) for 
these 126 samples. Panel D shows the frequency of sequence-derived viral load estimates for all 1,620 
samples. 

 
assays. The standards comprised five dilutions of subtype B virus spiked into plasma 
(AcroMetrix HIV-1 Panel copies/ml, Thermo Fisher Scientific), and either one or two 
negative plasma controls. These were grouped with each batch of 90 HPTN-071-2 (PopART 
phylogenetics) samples at the point of RNA extraction. Although the sequence-derived viral 
load for this work was based solely on the clinically-quantified samples, the batch-specific 
standards can also be used to calculate the sequence-derived viral load and to quantify 
contamination within each sequencing run (Figure 4). We first introduced these standards in 
batch 6, and have been using these to monitor the quantitativity of each batch. 

3.4. Genome coverage and sensitivity to viral load 
The length of the consensus sequence, i.e. the amount of the genome that could be 

recovered from the reads, depends on the minimum read depth required to make a consensus 
call at each genomic position. Here, we define ‘read depth’ as the number of mapped reads 
covering each position in the genome after removal of PCR duplicates. To estimate the 
threshold for minimum read depth, we analysed our data with the tool 
LinkIdentityToCoverage.py in shiver, calculating the mean similarity between reads and the 
sample-specific consensus from shiver. The point at which reads consistently matched the 
sample consensus saturated at a depth of 5 reads, and we took this as our threshold for reliably 
inferring a consensus. This may be a conservative estimate given that sequencing negative 
controls resulted in no HIV reads after our multi-stage removal of contamination. However, 
we sought to produce not only accurate whole-genome consensus sequences, but also 
sufficient read depth for analyses of within-host diversity and  
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Figure 4: Within-batch quantification standards for calculating sequenced-derived viral load. Standard 
dilutions of subtype B virus were sequenced alongside HPTN-071 (PopART) samples, with the same 
dilution series in each batch. The figure shows the R2 values for linear regression lines fitted separately for 
each batch of standards. Shaded regions represent 95% confidence intervals with 1000 bootstrap replicates. 

 
characterisation of low-frequency drug resistance mutations. 

Complete HIV sequences were obtained from the large majority of samples (Figure 5). 
The patterns of read depth were reproducible between individuals, with similar patterns of 
high and low coverage across the genome. Importantly, we did not observe a drop-off in 
coverage below 5 reads to be systematically associated with particular parts of the genome 
(Figure 6). 

Prior to batch 7, we used the original veSEQ approach for RNA fragmentation and cDNA 
generation followed by enzymatic-ligation of adapters for library preparation [12], which 
accounts for the different patterns of read depth observed in these batches (Figure 7). 

Following adoption of the SMARTer protocol from batch 7 onwards, we observed no 
significant batch effects. As discussed, we calculate viral load from the number of HIV reads 
obtained; Figure 8 shows that larger values of sequence-derived viral load (or equivalently larger 
total numbers of reads) are associated with a greater depth of reads across the whole of the HIV 
genome. 

Consequently, the success rate of reconstructing whole genomes increases with viral load; 
with the optimised veSEQ-HIV method we obtained complete genomes (defined as at least 8 
kb) supported by a depth of at least 5 reads for 93% of samples with a viral load of 1000 copies 
per ml or more. Figure 9 shows the dependence of this success rate on viral load in more detail, 
for both the subset of samples with clinically validated viral load, and the full dataset with 
sequence-derived viral load. Sigmoid functions (fit to the data with least 
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Figure 5: Length of recovered HIV genome for all sequenced samples. We consider a position in the genome 
accurately determined when the read depth is at least 5. 

 
squares) indicate the viral load thresholds above which at least 8 kb genomes tend to be 
recovered: these are between 103 and 104 copies per ml, depending on the required depth of 
reads supporting the consensus. 

3.5. Assay specificity 
Complete HIV genomes, defined as sequence length over 8,000 bp with minimum read 

depth of 5, were recovered from HIV samples spanning the known HIV subtype diversity in 
Zambia (Figure 10). HIV subtypes were inferred by sequence similarity to HIV reference 
genomes from LANL; for a subset of genomes the subtype of the consensus was also inferred 
using the REGA HIV-1 subtyping tool [28]. The predominant subtype was C, for which 86% 
(1282/1498) of samples yielded complete genomes. Other subtypes of well-characterised 
complete genomes included A (A1 and A2), D, G, and J (Figure 10), as well as the subtype 
B standards, demonstrating good probe affinity across HIV diversity. Among possible 
recombinants (category “Other”), a lower proportion of samples yielded complete genomes 
32% (6/19) — as expected given the difficulty in identifying the subtype of partial genomes. 
There was a strong relationship between the sequence-derived log viral load and genome 
recovery for all subtypes, consistent with viral load (and therefore total number of HIV reads)  
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Figure 6: Read depth across the HIV genome for all samples in a single batch. Each coloured line 
corresponds to a single sample. The thick red line indicates the overall geometric mean for the batch. This 
is shown for the most recent batch (16_17_19, 456 samples), chosen for illustrative purposes. 

 

Figure 7: Mean read depth across the HIV genome for each batch of sequenced samples. Batches 4 – 6 were 
sequenced prior to the adoption of the full optimised protocol and did not include size selection of pooled 
libraries. 
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Figure 8: Mean read depth across the HIV genome by log sequence-derived viral load. Each line corresponds 
to all samples within the indicated log sequence-derived viral load range, with the shaded area showing the 
interquartile range. Higher read depth for samples with higher viral load results in greater coverage across 
the entire HIV genome. 

 
 

Figure 9: Genome recovery success rate as a function of viral load. Panel A, subset of 126 samples for which 
a clinically validated viral load measurement was available; Panel B, full data set using the sequence-derived 
viral load. For each sample we show three consensus genome lengths: those called requiring minimum read 
depths of 1, 5 and 15. The solid curved lines are least-squares sigmoid fits to the data. The dashed straight 
lines indicate the viral load values required to achieve a complete genome, defined as at least 8000 bp. The 
figures set within each plot report the fraction of samples with complete genomes, stratified by viral load. 

A B
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Figure 10: Probe sensitivity by HIV subtype and sequence-derived viral load. The category “Other” consists 
of potential inter-subtype recombinants. The marker size is proportional to sequence-derived log viral load. 
A minority of genomes (n=9, all subtype C) had a duplication of the repetitive LTR region in the consensus 
resulting in genome length greater than 10,000 bp; we have since modified our computational pipeline to 
prevent such artefacts. Quantitative standards (HXB2, subtype B) are not included in this analysis. 

 

3.6. Contamination 
Contamination can be physically introduced in the laboratory, or occur due to index 

misassignment errors during sequencing. It can undermine several important inferences, 
namely estimations of viral load (in particular distinguishing low viral load from aviraemia), 
the direction of transmission using within-host phylogenetics, and drug-resistant minor 
variants. 

Phyloscanner contains several procedures not only for detecting contaminant reads in 
NGS datasets [8], but also for ‘blacklisting’ them (specifically removing them from 
consideration for further analysis). Blacklisting works by identifying reads in a sample that 
are either identical to those from a second sample but present in much smaller numbers, or by 
identifying reads that, while unique to a given sample, are relatively few in number and very 
phylogenetically distinct from the majority of the sample’s reads. For this analysis, we 
calculated the proportions of reads identified as probable contaminants in the 1,620 samples: 
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Figure 11 shows the results. In panel A, each point represents one sample. Out of the total set 
of HIV reads obtained from all samples, 1.2% were identified as contamination; the mean 
percentage of reads per sample found to be contamination was 2.09%, reflecting variation in 
coverage between samples (for samples with few reads, small collections of reads which are 
suspected contaminants make up a larger proportion of the total). The complete workflow is 
included within phyloscanner (phyloscanner clean). 

We validated the blacklisting procedure on reads within the pol gene, which contains the 
majority of drug resistance mutations. We selected 100 samples with at least 2,000 reads in 
pol and cleaned each according to the method described. This set of 100 was divided into two 
groups of 50, and for each sample in the first group, 0.1% of reads were replaced with the 
same number of random reads from one member of the second group. We then tested 
phyloscanner’s removal of these known contaminant reads, using with the same settings as 
above. Cleaning removed 262 out of 274 contaminant reads, giving an overall sensitivity of 
95.6%; the distribution of these reads over the 50 samples is shown in Figure 6B. 73 of 
291,815 non-contaminant reads were identified as contaminants, giving an overall specificity 
of over 99.9%. Knowledge of the actual proportion of contaminant reads in a simulation 
exercise of this sort allows phyloscanner settings to be tuned for optimal performance. 

 

Figure 11: Panel A: Scatter plot of number of kept and blacklisted reads for 1,620 samples. A pseudocount 
of 1 has been added to values on both axes in order to allow use of a log scale. The coloured lines represent 
thresholds at which 50%, 10% and 1% of reads are identified as contaminants; samples appearing below each 
line have at least that many suspicious reads. The number of samples in each category were 343 (18.1%), 689 
(36.4%) and 1088 (57.5%) respectively. Panel B: For 50 samples artificially contaminated by replacing 0.1% 
of their reads with the same number from another sample, the reads correctly identified as contaminants 
(red) and those not identified (blue). 

 
 

3.7. Insert size 
veSEQ-HIV aims not only to accurately determine the consensus genome that is, the most 

common base in the viral quasispecies at each position in the genome but also to accurately 
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determine the variability between viruses in the quasispecies. Like most high-throughput NGS 
protocols, veSEQ-HIV requires fragmentation of the virus RNA into so-called ‘inserts’; we 
sought to optimise the length of these inserts to be as long as possible within the limits of what 
the sequencing machine was able to process. In previous work we found that inserts of 350 bp 
or more offer useful insights into within-host phylogenetic diversity [8]. Figure 12 shows how 
veSEQ-HIV was optimised to consistently generate over 40% of inserts above this desirable 
length. 

Figure 12: Optimisation of the proportion of sequenced fragments longer than 350 bp. Batches are 
presented in chronological order, spanning a period of 18 months. The SMARTer protocol was introduced 
with batch 7; bead-based size selection was introduced at batch 11; reagent volumes were scaled down for 
batch 16_17_19 with no detrimental effect on the proportion of all deduplicated fragments greater than 350 
bp in length. 

 
 

3.8. Cost 
The cost of implementing a high-throughput virus genomics system will vary by setting, 

depending on many local factors. In our laboratory in Oxford, the reagent and consumables 
cost of the entire assay, from frozen blood to final data, is approximately 45 USD in 2018, 
50% lower than the cost of a locally obtained clinical viral load. 

 
 

3.9. Drug Resistance 
The observation that sustained pressure from suboptimal treatment with ART 

invariably selects multiple mutations at the consensus level is evidence that linkage 
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between mutations increases the overall replicative fitness of a virus exposed to 
treatment. If low-frequency mutations are observed at multiple different positions, Sanger 
consensus sequencing does not tell us whether they occur together (we know only that 
there are some minor variants at one position and some at the other, but not whether these 
are found within the same viruses). Hence, we cannot distinguish whether there is a 
variety of different viruses each with a low level of drug resistance due to a different 
mutation, or a small subset of viruses with multiple resistance mutations, giving a higher 
overall level of resistance. Making this distinction may be relevant to predictions of 
treatment success and the fixation and transmission of mutations within populations. 
Furthermore, because the consensus sequence represents average information at each 
base, minority nucleotide substitutions occurring within the same codon can lead to 
spurious predictions of the true amino acids. 

NGS resolves these problems by providing information on linkage between mutations 
located on the same sequenced fragment. Figure 13 shows an example of the genetic and 
phenotypic diversity of reads spanning regions of the pol gene that contain several sites 
affecting resistance to the NNRTI and NRTI classes of ART drugs. The sample from patient 
A contains reads with as many as 6 mutations co-occurring on the same sequenced molecule. 
We calculate the overall phenotype for an individual as the maximum level of drug resistance 
in reads across the pol gene. We require any given mutation to be present in at least 20% of 
clean reads, after removal of contamination and PCR duplicates as described. In the same 
individual, the most susceptible virus appears closest to the root of the phylogenetic tree (i.e. 
is closest to the founder virus), which suggests accumulation of resistance mutations during 
the course of infection. Consistent with this, the individual took ART prior to sample 
donation. 

3.10. Discussion 
We have developed, optimised and validated veSEQ-HIV, a complete high-throughput laboratory 

and computational process for recovering complete HIV genomes including minority variant 
frequencies, estimating viral load, and detecting ART drug resistance (Figure 14). The method has been 
shown to work with 1,620 genetically diverse samples collected from 10 Zambian clinics participating 
in the HPTN-071 (PopART) trial, producing complete genomes from >90% of samples with viral 
loads >1,000 copies per ml. The assay works with residual plasma taken from routine CD4 
count testing obtained in field conditions, without introducing undue contamination or 
degradation of the samples or the need for additional blood draws. 

Sequence-derived viral load estimated by veSEQ-HIV is cheaper than some existing 
commercial viral load tests, and is highly reproducible. Reported R2 values between commonly 
used clinical viral load assays range from 0.80 to 0.94 [29]. The veSEQ-HIV assay compared 
with the TaqMan assay, validated here on 126 samples, which gave an R-sq value of 0.89, well 
within this range. The detection and quantification limits of veSEQ-HIV (50 – 100 copies per 
ml) are likewise comparable with those of clinical viral load assays. Although the sample size 
for this validation exercise is small, we show that quantification is reproducible between runs by 
inclusion of quantification reference standards derived from an HXB2 isolate, diluted in normal 
human plasma. In future work, more clinical viral loads will be cross-referenced across several 
of sequences runs in order to confirm that a single clade B HXB2 isolate is a suitable 
quantification standard for other (mostly clade C) isolates. We expect this to be the case because 
we have previously shown bait capture performs without significant bias across a range of HCV 
subtypes, greater than the diversity of HIV observed here [12].  

The throughput of veSEQ-HIV is suitable for large-scale public health applications. In our 
research setting a single technician is able to process 360 samples per week, and with use 
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Figure 13: Within-host diversity in two patients with differing patterns of drug resistance. The phylogenetic 
relationship (left) and drug resistance results (right) inferred from 350 bp alignments of the polymerase 
gene for two patients. Each tip in the phylogeny and line in the resistance plot corresponds to a unique viral 
genotype recovered from the patient’s quasispecies. The predicted level of resistance to drugs from the NRTI 
and NNRTI classes (bottom) are shown. 
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of a 384-well low-volume liquid handler, we can prepare the same number of samples in a 
day. Routine combination testing to provide vital information on viral suppression, drug 
resistance and transmission, in near real time, is entirely possible with veSEQ-HIV. 

Figure 14: Overview of veSEQ-HIV: a complete laboratory and computational pipeline for high-throughput 
sequencing. RNA extraction from plasma samples is carried out in a CL-3 certified laboratory, before 
transfer to a dedicated genomics facility for library preparation, bait capture, and finally sequencing. Raw 
sequencing data is pre-processed to remove host and contaminant RNA, and these computationally filtered 
reads together with their de novo assembled contigs are used to determine the consensus genome and minority 
variant frequencies using shiver. QC metrics are then calculated, and the proportion of contaminant reads 
originating from other samples is estimated with Kallisto. Samples which result in a successful read mapping 
are then cleaned with phyloscanner with OptiPhy settings to remove contaminant reads, and clean reads are 
used to infer transmission patterns with phyloscanner, and to make drug resistance predictions with HIVdb. 

 
The aim of our ongoing work is to provide insights into the outcome of the HPTN 071 

(PopART) trial [15]. Analysis of viral genetics will be used to estimate the proportion of 
transmissions that occur during early and acute HIV infection, the proportion of transmission 
events that occur from individuals living within or outside of the trial communities, and the 
demographic and epidemiological correlates of being a transmitter. All analyses will take 
place in both intervention and control communities. Similar analyses are planned for other 
recent trials of treatment as prevention [30]. Combining these data, for example in the 
PANGEA consortium [31] [http://pangea-hiv.org], will provide further insights into the 
generalisability of findings, and larger scale patterns of viral flow and human migration. 

As well as being cost-effective, our method has several advantages over previous high-
throughput approaches [9]. Because our method minimises the biases involved in PCR, and 
computationally controls contamination, our estimates of the frequency of minority genetic 
variants are likely to be more robust. Second, the design of our probes is unbiased with respect 
to the range of commonly found HIV viral variants. Abbott Laboratories has recently reported 
on a similar method, developed in parallel to ours, which they show works across a wider 
panel of reference genomes [32, 33]. 

There remain important limitations to our approach. Whilst we have validated our 
approach to minimise contamination, and provide QC tools to detect mix-ups as quickly as 
possible, the risk of large-scale mix-ups increases with higher throughput. This should be 
mitigated with sample barcoding and sample tracking. Second, our results remain to be 
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independently clinically validated: veSEQ-HIV is not a licensed viral load, genotyping or 
drug resistance assay. Cross validation against licensed drug resistance assays is a priority. 

3.11. Future directions 
The veSEQ-HIV protocol is tuned for high-throughput applications, and so is ideally 

suited for laboratories that process a large number of samples. Capital investments are modest, 
and the protocol is simple for technicians to adopt. Maintenance and supply issues could be 
problematic in lowand middle-income countries, where the need is greatest. 

In separate experiments, we successfully sequenced bait-captured viral genomes on the 
portable Oxford Nanopore instrument in a single day, both in our laboratory and in a 
semimobile BSL3 laboratory in Zambia. Read lengths are longer; however, as has been 
reported elsewhere, the error rate in single reads is high. We are pursuing strategies to correct 
error by repeatedly sequencing linked fragments derived from single templates, but presently, 
due to limits to multiplexing, costs per sample for Nanopore are substantially higher. 

Future areas for improvement might include increasing automation, reducing initial capital 
expenditure costs, and reducing the reliance on regular supply chains of consumables. We did not 
explore the extent to which the bait capture step could be shortened or simplified; such 
improvements would further simplify the implementation of our method and would be needed to 
achieve a high-throughput protocol that could turn around sequence data in a single working day. 
Extending the length of individual sequences to capture whole viral haplotypes would improve 
applications in epidemiology and pathogenesis research. 

The method can easily be adapted to study other RNA viruses or a panel of RNA viruses 
without loss of sensitivity. Since oligonucleotide probes are typically a one-off investment, 
sequencing several pathogens does not substantially increase the cost of the assay. 

The computational component of the method is currently optimised for our local cluster 
infrastructure, and needs to be streamlined and made platform-independent. It is also possible 
to tune performance and port the code to be run either on secure cloud services or on 
standalone machines with reduced computational burden. Patient groups should be regularly 
consulted on the ethical use of this technology, providing maximal benefits whilst minimising 
the risks (Coltart et al., Lancet HIV in press). 

In summary, we have reported a cost-saving high-throughput protocol that, with current 
technologies produces a sequence-derived viral load, a high-resolution drug resistance 
genotype, and data that can be used to provide highly granular insights into HIV 
epidemiology. The method has proven robust to field conditions in Zambia and carries no 
additional testing burden for patients: we used residual blood from routine CD4 tests. 
Sequencing will provide insights into the outcome of the HPTN 071 trial, and in our view, 
could be included with much higher coverage than is commonly done in future 
epidemiological and intervention studies of RNA virus spread. 
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