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ABSTRACT: Safety pharmacology screening against a wide range of unintended vital targets 
using in vitro assays is crucial to understand off-target interactions with drug candidates. With the 
increasing demand for in vitro assays, ligand- and structure-based virtual screening approaches have been 
evaluated for potential utilization in safety profiling. Although ligand based approaches have been 
actively applied in retrospective analysis or prospectively within well-defined chemical space during the 
early discovery stage (i.e., HTS screening and lead optimization), virtual screening is rarely implemented 
in later stage of drug discovery (i.e., safety). Here we present a case study to evaluate ligand-based 3D 
QSAR models built based on in vitro antagonistic activity data against adenosine receptor 2A (A2aR). The 
resulting models, obtained from 268 chemically diverse compounds, were used to test a set of 1,897 
chemically distinct drugs, simulating the real-world challenge of safety screening when presented with 
novel chemistry and a limited training set. Due to the unique requirements of safety screening versus 
discovery screening, the limitations of 3D QSAR methods (i.e., chemotypes, dependence on large training 
set, and prone to false positives) are less critical than early discovery screen. We demonstrated that 3D 
QSAR modelling can be effectively applied in safety assessment prior to in vitro assays, even with 
chemotypes that are drastically different from training compounds. It is also worth noting that our model 
is able to adequately make the mechanistic distinction between agonists and antagonists, which is 
important to inform subsequent in vivo studies. Overall, we present an in-depth analysis of the appropriate 
utilization and interpretation of pharmacophore-based 3D QSAR models for safety screening.

Introduction
Safety profiling against a wide range of molecular off-targets, prior to in vivo toxicity testing 

with animal models, has been widely implemented across the pharmaceutical industry[1-5]. Such a 
“bottom-up-approach” [6,7] reflects a continuous effort for a paradigm shift in early safety 
evaluations[8]. Besides preventing hazardous chemicals from entering animals, systematic screening 
is a necessary step to realize the vision of predicting human adverse events from mechanisms of action 
and the molecular targets involved. Safety profiling utilizes in vitro high throughput screens (HTS) 
against a broad array of unintended and vital targets. However as a safety screening panel typically 
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includes a large number of targets, i.e., up to ~200[1,9], developing each liability target into a reliable 
HTS assay is resource demanding. As complementary approaches to help improve the utilization of in 
vitro HTS assays, tools such as ligand- and structure-based virtual screening have been evaluated. One 
advantage for in silico approaches is that it can be used to examine new compounds before they are 
synthesized, providing an attractive possibility for early hazard identification. If molecules with 
undesirable properties can be ruled out using in silico approaches, such as virtual screening, 
significant resources can be saved where only “prescreened” molecules are advanced to more costly in 
vitro screens. 

For liability targets with little or no structural information, a ligand-based approach using 
quantitative structure activity relationship (QSAR) models may provide value[10-13]. QSAR is a 
machine learning process to develop meaningful correlations (model) between independent variables 
(e.g., structural features of compounds, molecular descriptors) and a dependent variable which is 
typically the value one wishes to predict [14]. The conceptual basis of such modeling is based on the 
hypotheses that compounds of similar structural features may exhibit similar biological activities[15]. 
A QSAR model is determined by factors such as activity data [16-18], molecule descriptors[16,19], 
and statistical algorithms[19,20]. Due to the advantages in throughput, cost saving(labor and 
reagents), turn-around-time, and the possibility to test compounds even before they are made, QSAR 
has been frequently used in various aspects of drug discovery such as lead optimization[14]. However, 
it has not been widely used in safety profiling, especially the 3D (i.e., pharmacophore) QSAR models, 
as most of commonly used QSAR models used in safety were built based on 2D features or molecular 
descriptors[21], such as the OECD QSAR toolbox[22], SEA[23], Toxmatch[24], ToxTreev[25],  and 
DSSTox [26]. It is important to bear in mind the unique aspects for a safety profiling. In an efficacy 
screening (one target against many compounds), only the small amount of positives was considered. 
Quantitative determination of potency is crucial for lead optimization and ranking compounds. The 
negatives were of less value. Whereas in a safety profiling (often one compound against many 
targets), every data point counts including all negatives. In fact a negative result against a liability 
target for a drug candidate would be regarded as “good news”. As such, a false negative (contributing 
to sensitivity) result would be of greater concern in the safety space in comparison to a false positive 
(contributing to specificity), because it would mean advancing a potentially hazardous compound into 
further development. Quantitative value of potency is of less importance than efficacy screening. Due 
to these unique features and mindset, questions regarding QSAR applications remain in data 
interpretation as well as how to best incorporate these tools [27].

We present here a case study to evaluate the utilization of 3D QSAR modeling as a part of 
integrated approach to support safety profiling. Adenosine receptor 2a (A2aR) is one of the four class 
A GPCRs that regulate the activity of adenosine’s biological actions as a signaling molecule[28,29]. 
Due to its presence in both central nervous system and peripheral tissues[28,29], A2aR plays important 
roles in a wide range of biological processes such as locomotion, anxiety, memory, cognition, sleep 
regulation,  angiogenesis, coronary blood flow, inflammation, and the anti-tumoral immunity [30-38]. 
Disruption of A2aR activities, consequentially, may result in undesired side effects in behavioral, 
vascular, respiratory, inflammatory, and central nervous systems. Indeed A2aR is a well-established 
liability target, as demonstrated in an industrial survey across four pharmaceutical companies [1]. 
Here, we developed QSAR models to predict compounds’ antagonistic activity against A2aR. It is 
important to note that the crystallographic structure of A2aR is known,59 in contrast to a large number 
of safety targets (e.g., ion channels and transporters). To make this study generalizable to those 
targets, however, we chose not to incorporate the structural data for A2aR in model building, but rather 
used it to provide additional insights to evaluate the performance of the ligand QSAR model. In our 
study, we collected 268 in house and external compounds with IC50 values against A2aR available, 
which were used to build the QSAR models. The majority of these compounds were obtained from 
early chemistry scaffolds and SAR. Hence, these compounds represented a diverse chemical space but 
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not necessarily with ideal “drug-like features”. Bearing in mind that the goal is prospective utilization 
of QSAR in secondary pharmacology profiling, we tailored our study specifically within the setting of 
drug discovery. First, overtraining the model(s) was avoided. During drug development, it may not be 
practically possible to obtain many training compounds and assay results, hence the need to 
implement QSAR model. Therefore, we did not adhere the 4:1 or 10:1 ratio [39,40] for training and 
test sets. Second, as new chemotypes are constantly made in pharmaceutical development to drive 
SAR, a different external set of compounds were used to further challenge the QSAR models, as 
illustrated in Fig 1. This additional level of challenge came from 1,897 known drugs. Among these 
drugs, a subset of 75 known A2aR ligands was used as an external set. The 75 ligands in the subset are 
different in structure compared to the initial 268 training and test compounds. These 75 compounds 
were thoroughly tested to evaluate prospective utilization of the generated QSAR model(s) before 
applying them to screen the rest of ~1,800 drugs from the DrugBank[41]. These ~1,800 drugs further 
differ from the 268 compounds in chemical structure, which created a more realistic challenge. It is 
important to note that the focus of our study is the repurpose of existing QSAR tools in the realm of 
drug safety, rather than developing novel QSAR methodology. We demonstrate that, due to the unique 
requirements of safety screening, the well-known limitations of QSAR methods (i.e., chemotypes, 
dependence on large training set, and prone to false positives) are less critical than in early discovery 
screening. Overall, what we present is an in-depth case study for the utilization of in silico methods in 
early safety profiling.
 

MATERIALS AND METHODS 
Materials. 

All compounds for in vitro assay validation were purchased from Sigma or Fisher Scientific 
where available. Data set. A total of 268 compounds were used as training (and test) set for 
pharmacophore-based 3D QSAR modeling. Among them, 87 compounds were downloaded from 
ChEMBL [42], and were then tested either by functional Ca2+ or cAMP assays. An additional 13 
compounds were obtained from literature search and Guide to Pharmacology[43]. Another 168 
internal compounds were selected based on our historical in-house Ca2+ flux assays. Chemical 
clustering analysis for these 268 compounds was performed using Schrödinger Canvas [44]. The pIC50 
values, i.e., the negative logarithm values of IC50 were also calculated. Activity threshold of pIC50 = 
5.0 was applied to set active from inactive compounds.

To validate the generated QSAR models, the SMILES codes and molecular descriptors of 1,806 
approved and 179 withdrawn drugs were downloaded from the DrugBank [41]. After removing 
duplicates and applying the cutoff of 1,000 Da for molecular weight, 1,832 marketed drugs were 
obtained. An additional 65 known A2aR ligands, containing both agonists and antagonists, were 
downloaded from The Guide to Pharmacology as enrichment. These 65 compounds, along with 10 
additional A2aR antagonists among the 1,832 Drugbank compounds, composed of a subset of 75 A2aR 
ligands, which were used to evaluate the performance of QSAR models. Collectively, 1,897 
compounds were used as an external set. 

Methods
Similarity comparison of chemical features between two sets of compounds. 

The radial binary fingerprints of chemicals were generated in Schrödinger Canvas (version 2.4), 
using the default settings according to the user manual. The subsequent comparison between sets were 
also carried out in Canvas using the Tanimoto similarity metrics, the resulting heat map of 
visualization was also generated.
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Chemical structure preparation. 
The 2D structures of all compounds in training, test, and external sets were converted to 3D 

using LigPrep (version 10.2, Schrödinger, LLC), using the default settings according to the user 
manual, where hydrogens were added, salts were removed, stereoisomers were generated, and the 
most probable ionization states were calculated at pH value of 7.0 ± 2.0 using the Epik module 
[45,46]. During ligand preparation, specified chirality was retained. As the conformations of the given 
compounds were unknown when bound to target, a series of 3D conformers (≤10 per rotatable bond, 
and ≤100 per ligand) were generated. The redundant conformers were eliminated using RMSD cut off 
value of 1.0 Å. The subsequent energy minimization of each structure was carried out using OPLS3 
force field [47], and was filtered through a relative energy window of 10.0 kcal/mol to exclude high 
energy structures. 
Creating pharmacophore based models. 

The molecules were classified as actives and inactives by setting an activity threshold in Phase 
(actives: pIC50 ≥ 5.0) and inactives: pIC50 < 5.0). Each energy minimized ligand structure is described 
by a set of points (i.e., pharmacophore sites) in 3D space, representing various chemical features 
contributing to non-covalent binding between the ligand and the target of interest. These 
pharmacophore sites were characterized by type, position as well as directionality. Phase has 6 built-in 
pharmacophore types: hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobe (H), 
negative ionizable (N), positive ionizable (P), and aromatic ring (R). Pharmacophore features that are 
common to most actives (e.g., ≥ 50%) were identified to perceive pharmacophore hypotheses.
Such generated pharmacophore hypotheses were then scored based on the superimposition of the site 
points, vector alignment and volume overlap [48]. Scoring was obtained first with all active 
compounds, and then inactive compounds. The hypotheses that matched the inactive ligands were 
penalized as described in details by Dixon et al [48]. Default values were used for weights (w) of 
actives and inactives. 
Pharmacophore-based 3D QSAR modeling. 

3D QSAR models were generated using atom-based PLS (partial least square) regression 
method. The default value of PLS of 3 was applied. For each of the top scored pharmacophore 
hypothesis, a QSAR model was built using training compounds that matched the pharmacophore on at 
least 3 sites and yielded best alignments [48].  Specifically, to generate a QSAR model, a rectangular 
grid was defined to include the space occupied by the aligned training set actives. The grid was 
divided into uniformly sized cubes of 1 Å3. The cube was deemed as occupied if the center of a 
pharmacophore site was within the radius of the corresponding sphere. Based on the differences in the 
occupancy of cubes and the different types of sites that reside in these cubes, a compound may 
therefore be represented by a string of zeros and ones. This resulted in binary values as 3D descriptors. 
QSAR models were created by using partial least square regression (PLS) to the pool of binary valued 
variables [48]. 

The generated QSAR models were examined using the test set compounds. By comparison of 
the predicted and experimentally determined pIC50 values, the statistical parameters R2 (correlation 
coefficient), SD (standard deviation of regression) and Root Mean Square Deviation (RMSD) were 
calculated to evaluate the overall significance of the model. The best performed model was selected 
for the subsequent virtual screen.
Pharmacophore-based 3D QSAR virtual screening. 

The 1,897 known drugs were energy minimized and conformations were generated to form the 
3D database (library) in Phase. The pharmacophore hypotheses of the best 3D QSAR models were 
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used to screen against this library for compounds that match such pharmacophore features. The pIC50 
values of the hit compounds were then predicted using the 3D QSAR model. 
In vitro Assays. 

Competition binding assay using radioactive ligands and functional assay monitoring cAMP 
were carried out as a paid service provided by CEREP (Poitiers, France). The functional assays 
monitoring Ca2+ flux were carried out as a paid service provided by DiscoveRx (Carlsbad, CA). The 
competition binding assays were carried out at a fixed compound concentration of 10 µM. The cAMP 
and Ca2+ assays were carried out in concentration-response mode, at 10, 3.165, 1.001, 0.317, 0.100, 
0.003, 0.001, and 0 µM.

RESULTS
Data preparation and chemical clustering. 

The 268 compounds, from public sources and in-house, were divided into training and test sets 
via 3 approaches as illustrated in Fig 1, as QSAR outcome might be affected by how training and test 
sets were separated [40,49]. In the first approach, a randomized separation was used, resulting in 141 
training compounds, and 127 test compounds. Cheminformatics analysis revealed that the training and 
test sets contained 26 and 37 chemical clusters, respectively, among which only 8 clusters were shared 
between the 2 sets. A second method to create a training set covering more chemical clusters was also 
applied. As the 268 compounds contained 55 chemical clusters, the centroids of the 55 chemical 
clusters (among which only 8 are actives), and randomly selected 27 actives, were grouped into the 
training set. The remaining 185 compounds were used as the test set. In the third approach, all 268 
compounds were used as one training set to create common pharmacophore hypotheses. To make a 
distinction, the training and test sets obtained from random separation were referred to as training 1 
and test 1. The training and test sets from the clustering method were referred to as training 2 and test 
2. The training set from the third approach was referred to as training 3. The obtained hypotheses from 
these training sets were subsequently used to build pharmacophore-based 3D QSAR models. 

Fig 1. Workflow illustration for pharmacophore-based 3D QSAR modeling and virtual screening to 
identify compounds with antagonistic activities against A2aR.

The similarity analysis between training and test sets was carried out using Canvas [44]. 
Training 1 and test 1 exhibited some difference in their chemical features, as revealed by the similarity 
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index, ranging from 0.01 to 0.65 (Fig 2A). As shown in the heat map in Fig 2B, the similarity index 
between the training 2 and test set 2 compounds ranged from 0.01 to 0.67.

The 1,897 compounds bore less similarity with the 268 compounds, which were represented by 
the 55 centroids. The similarities with the 55 representatives ranged from 0.01 to 0.37, and 0.01 to 
0.13, with the subset of 75 A2aR ligands (Fig 2C) and the 1,832 compounds (Fig 2D), respectively. 
This is perhaps not entirely surprising, as the 268 compounds represented chemical space at the 
discovery stage, whereas the 1,897 molecules represented the true drug space. Due to low structural 
similarities, the screening of 1,897 drugs using pharmacophore-based 3D models generated from early 
stage chemicals presented a “real world” case scenario in Drug Discovery.

Fig 2. The heat map demonstration for binary fingerprint similarities between training 1 and test 1 
(A), training 2 and test 2 (B), the 55 representations of the 268 compounds and the subset of 75 A2aR 
ligands (C), as well as the 55 representations and the 1,832 DrugBank drugs (D). The heat map of 
1,832 drugs was truncated due to space limitation. The heat maps were generated using Schrodinger 
Canvas, as described in details in Materials and Methods. The lowest similarity (0.0) was shown in 
black, whereas the highest similarity (1.0) was shown in red. See supplementary data for a zoomed in 
version for each panel.

Pharmacophore modeling. 
The training set compounds were divided into actives (pIC50 ≥ 5.0), and inactives (pIC50 < 5.0), 

consistent with our in house in vitro profiling practice. Training sets 1, 2, 3 contained 54, 35 and 97 
actives, respectively. Various combinations of common pharmacophores were identified. From 
training set 1, 6 four-pharmacophore-site variants were generated to match ≥ 40 out of 53 actives. 
From training 2, a total of 7 five-pharmacophore-site variants were generated to match ≥ 21 of the 35 
actives. Only 3 five-pharmacophore-site variants were generated to match ≥ 55 out of 97 actives in 
training 3. The possibility of four-pharmacophore-site variants was also explored, from which 8 
variants were produced to match ≥ 63 out of 97 actives. The variants and the possible resulting 
hypotheses were summarized in Table 1.  

Upon completion of scoring for all the hypotheses listed in Table 1, 46 four-site hypotheses 
survived from training 1, 9 five-site survived from training 2. In training set 3, 4 five-site hypotheses 
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survived and 19 four-site hypotheses survived. The top survived hypotheses (~ 10% - ~20%) were 
used to build 3D QSAR models.

Table 1. Pharmacophore hypotheses identified by Phase 

Variant b Training set # of matching actives in 
training set

# of max 
hypotheses

AAAD Training 1 (random) ≥ 40 out of 53 282
DRRR Training 1 (random) ≥ 40 out of 53 6
ADRR Training 1 (random) ≥ 40 out of 53 65
AADR Training 1 (random) ≥ 40 out of 53 453
AAAR Training 1 (random) ≥ 40 out of 53 434
AARR Training 1 (random) ≥ 40 out of 53 358

ADHRR Training 2 (clustering) ≥ 21 out of 35 4
AAADH Training 2 (clustering) ≥ 21 out of 35 8
AAADR Training 2 (clustering) ≥ 21 out of 35 96
AAAHR Training 2 (clustering) ≥ 21 out of 35 7
AADHR Training 2 (clustering) ≥ 21 out of 35 35
AADRR Training 2 (clustering) ≥ 21 out of 35 9
AAHRR Training 2 (clustering) ≥ 21 out of 35 9
AAHRR Training 3 (all compounds) ≥ 55 out of 97 4
AADRR Training 3 (all compounds) ≥ 55 out of 97 10
AAADR Training 3 (all compounds) ≥ 55 out of 97 22
AAAD Training 3 (all compounds) ≥ 63 out of 97 42
DRRR Training 3 (all compounds) ≥ 63 out of 97 5
AAAR Training 3 (all compounds) ≥ 63 out of 97 42
ADRR Training 3 (all compounds) ≥ 63 out of 97 19
AARR Training 3 (all compounds) ≥ 63 out of 97 41
AAHR Training 3 (all compounds) ≥ 63 out of 97 13
AADH Training 3 (all compounds) ≥ 63 out of 97 1
AADR Training 3 (all compounds) ≥ 63 out of 97 77

a List of variants from 3 different training set compounds
b Variants: various combinations of common pharmacophores

Generation and test of the Pharmacophore-based 3D QSAR model. 
Four and three pharmacophore models were generated from the survived hypotheses, for training 

1 and 2, respectively. Evaluation of these models was performed by predicting activities for test 1 and 
2 sets of compounds. As the number of PLS factors increased, the statistical significance and 
predictive ability of the model was also incrementally increased. Therefore, PLS factor of 3 were used 
for the models. The statistical results were summarized in Table 2. It was found that AADR.139 and 
AAADR.20 yielded the best statistics for test 1 and test 2, respectively. The large F value and the 
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small p value indicated a statistically significant regression model and high degree of confidence. The 
small value of SD and RMSE suggested satisfactory results from the test set. The q2 value was 
indicative of the capability to predict activities in the test set. The performance of predicting activities 
of the test set could also be seen from the correlation between predicted and experimentally 
determined pIC50 values as shown in Fig 3. Both AADR.139 and AAADR.20 were moved forward to 
generate 3D QSAR models. For model AADR.139, sensitivity and specificity were observed to be 
82% and 94% against test set 1; for model AAADR.20, the sensitivity and specificity against test set 2 
reached 96% and 94%, respectively. 

Table 2. The statistical data of pharmacophore-based 3D QSAR using Phasea,b,c.

Variant SD R2 F P Stability RMSE Q2 Pearson R
4-site, training 1

ADRR.87 0.566 0.911 396 9.720 x 10-61 0.838 0.897 0.657 0.824
AADR.79 0.571 0.901 400 4.848 x 10-66 0.836 0.781 0.733 0.864
AADR.139 0.564 0.906 421 2.154 x 10-67 0.786 0.768 0.740 0.872
AADR.51 0.544 0.909 444 4.568 x 10-69 0.819 0.827 0.698 0.856

5-site, training 2
AAADR.17 0.363 0.967 734 1.779 x 10-55 0.624 1.020 0.531 0.820
AAADR.20 0.309 0.976 1,021 1.055 x 10-60 0.469 0.888 0.645 0.868
AAADR.18 0.366 0.967 721 3.426 x 10-55 0.645 1.053 0.500 0.825

5-site, training 3d

AAADR.1 0.498 0.909 652 5.215 x 10-102 0.809 -- -- --
AAADR.6 0.588 0.872 449 9.198 x 10-88 0.843 -- -- --
AAADR.4 0.591 0.871 444 2.270 x 10-87 0.881 -- -- --

4-site, training 3d

AADR.5 0.567 0.906 418 1.482 x 10-66 0.732 -- -- --
AAAR.2 0.521 0.921 508 1.410 x 10-71 0.786 -- -- --
ADRR.23 0.520 0.927 465 2.724 x 10-51 0.745 -- -- --

a Only the top 10% - 20%.hypotheses scored was moved forward for evaluation.
b Statistics obtained when PLS = 3.
c SD, standard deviation of regression; r2, correlation coefficient; F, variance ratio; stability: Stability of the 
model predictions to changes in the training set composition, max =1; P, significance level of variance ratio; 
RMSE: root-mean-square error of the test set; q2, correlation coefficient for the predicted activities; Pearson 
R, value for the correlation between predicted and observed activities for the test set; PLS, partial least square 
regression method.
d For training set 3, all 268 compounds were used to perceive hypotheses. There was no test set.  Hence the 
statistics for test set were empty.
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Fig 3. The performance of the 4 models on predicting actives of the test set compounds. A, model 
AADR.139 generated from training set 1. B, model AAADR.20 generated from training set 2. C, 
model AAADR.1 generated from training set 3. D, model AAAR.2 generated from training set 3. In 
the cases of models AAADR.1 and AAAR.2, there were no test set compounds as all 268 compounds 
were used as training, as described in details in Materials and Methods.

From training set 3, three 3D pharmacophore models were generated for five-site and four-site 
hypotheses. Unlike the previous 2 training sets, there is no test set for training 3. Nonetheless, 
AAADR.1 and AAAR.2 were the best five-site, and four-site models, respectively, as shown by the 
statistical parameters that are unrelated to the test set. It is worth noting that AAAR.2 and AADR.5 
shared the same reference compound (N-isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-
d]pyrimidine-4-carboxamide), which is the compound that matches the hypothesis with the highest 
score. N-Isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]pyrimidine-4-carboxamide contained 
all five pharmocophore sites, 3 hydrogen bond acceptors, 1 hydrogen bond donor and 1 aromatic 
residue. It is therefore interesting to perform the subsequent virtual screen with both five-site and four-
site pharmacophore models generated from the training set 3. The reference compound for each model 
was shown in Fig 4.

Fig 4. The reference ligands used for model AADR.139 (A), AAADR.20 (B), AAADR.1 (C), and 
AAAR.2 (D). The insert of Fig 4D shows that model AADR.5 shared the same reference compound (N-
isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]pyrimidine-4-carboxamide) as model AAAR. 2. 
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Hence, N-isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-d]pyrimidine-4-carboxamide contained all 
five pharmocophore sites in model AAADR.1, as described in details in Results. Hydrogen bond 
acceptor was shown in magenta vector, hydrogen donor was shown in light blue vector, and aromatic 
residues were shown in brown ring.

Virtual screening of 1,897 drugs. 
The 4 best models, built from 3 training sets containing 83 to 268 compounds, were used to 

perform virtual screening against 1,897 drugs. The 1,833 known drugs from DrugBank contained only 
2 known A2aR agonists and 8 antagonists. Therefore, an additional 67 A2aR ligands (either drugs or 
drug candidates) were downloaded from Guide to Pharmacology. After removing the 2 duplicated 
molecules (A2aR agonists: Regadenoson and Adenosine), a 1,897-compound set was obtained. The 
1,897-compound set contained 29 A2aR agonists and 46 antagonists. These 75 known A2aR ligands 
were used to evaluate the performance of the 4 models. With 6 CPUs, the screening process against 
1,897 compounds with various conformers was completed within 3 minutes. The compounds which 
yielded predicted pIC50 values equal or larger than 5.0 were labeled as hits. The number of hits and hit 
rates using each model was summarized in Table 3. 

Table 3. Virtual screen hits and hit rates obtained from 4 different pharmacophore-based 
3D QSAR models

Model AADR.139 AAADR.20 AAADR.1 AAAR.2
Complete set, 1,897 compounds

# of Hits 115 77 83 168
Hit rate, % 6.1 4.1 4.4 8.9

Subset, 75 A2aR ligands (29 agonists & 46 antagonists)a, b

Sensitivity, % 28 28 13 78
Specificity, % 89 78 45 74

False positive rate, % 11 22 55 26
False negative rate, % 72 72 87 22
a Performance statistics were calculated based on the assumption that agonists should behave 

as negatives, i.e., yielding pIC50 < 5.0 when being tested via functional antagonist assay.
b Sensitivity = TP/(TP+FN), specificity = TN/(TN+FP), false positive rate = FP/(FP + TN), 

false negative rate = FN/(TP+FN), where TP is true positive, TN is true negative, FP is false 
positive, FN is false negative.

As demonstrated from the subset containing 75 A2aR ligands, model AAAR.2 yielded > 70% 
sensitivity and specificity, a significantly better performance in comparison to the other 3 models, 
despite the assay statistics (sensitivity and specificity) may be underestimated. All subsequent 
discussions will be focused on AAAR.2. Some active antagonists, such as MRS1532, MRS1191, 
MRS1088, dyphyllines, and pentoxiphylline etc., were weak antagonists with pIC50 values around 5.0. 
These compounds were predicted to be inactives (predicted pIC50 < 5.0) by the model, causing them to 
be categorized as “false negatives” and in turn underestimating the sensitivity. On the other hand, the 
agonists were viewed as negatives in the antagonistic A2aR QSAR model. In our screening, 7 agonists 
had predicted antagonistic pIC50 ≥ 5.0. These 7 agonists were deemed as false positives in our 
analysis. However, it is not unusual for agonists to demonstrate antagonistic activities [50],  which 
was indeed observed in the in vitro assays with adenosine and regadenoson (vida infra). Accordingly, 
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the false positives might be overestimated, which may in turn result in underestimated specificity. It is 
also important to note that AAAR.2 was the only model that successfully identified 8 out of 9 drugs in 
the theophylline family. The only family member failed to be identified was fenethylline, as AAAR.2 
predicted doxofylline and pentoxifylline to have activity below the pIC50 cutoff of 5.0 (pIC50 predicted 
to be 4.2 and 3.7 respectively).

Given the structural difference between the subset and the 268 training (and testing) compounds, 
AAAR.2 was determined to be the most relevant pharmacophore-based 3D QSAR model based on its 
performance. The 3-dimensional aspects of the QSAR model AAAR.2 were further examined to help 
gain an understanding on how the structures of the ligands contribute to the A2aR antagonistic 
activities. The intersite distance between pharmacophores is shown in Fig 5. The 4 pharmacophores, 
A2, A3, A4 and R8, formed a diamond shape, with the longest distance (5.1 Å) occurring between A3 
and A4. The positive and negative coefficients that contribute to the increase or decrease in 
antagonistic activity against A2aR could be visualized by pictorial representations (Fig 6). The blue 
cubes indicated the favorable regions for a given feature, whereas the red cubes indicated unfavorable 
regions. Fig 6A highlighted the favorable and unfavorable regions for the presence of hydrogen bond 
donor. Similarly, the favorable and unfavorable regions for hydrophobic groups and electron 
withdrawing groups were shown in Figs 6B and 6C, respectively. The combined, overall effects were 
shown in Fig 6D. The reference ligand, N-isopropyl-2-((pyridin-3-ylmethyl)amino)thieno[3,2-
d]pyrimidine-4-carboxamide, was primarily covered in favorable regions, especially the core area 
composed of the 4 pharmacophores despite some unfavorable regions around the edges. The only 
major exception was around the methylpyridine moiety, whose hydrophobicity was disfavored for the 
antagonistic activity. The reference ligand had a moderate activity (pIC50 = 5.6), within a 
concentration range commonly observed in Safety profiling. Such visualization is also useful to 
examine some more active and inactive ligands to identify structural features that may be unfavorable, 
as detailed in the supplementary data. 

Fig 5. The inter-site distances between model AAAR.2. Distances are in the unit of Å. 
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Fig 6. Pictorial representations of the positive (cobalt) and negative (red) coefficients that contribute to 
A2aR antagonist activities, from hydrogen bond donor (A), hydrophobicity (B), electron withdrawing 
groups (C), and the combined effects (D).

Further validation of virtual screen results using in vitro assays. A total of 56 randomly selected 
compounds from virtual screening were subjected to cross validation using in vitro assays using three 
different assay formats. The 56 compounds includes compounds from 3 categories: 16 with predicted 
pIC50 ≥ 5.0 (virtual screen actives), 17 yielded predicted pIC50 ranging from 4.0 to 5.0, and 23 
compounds either yielded predicted pIC50 < 4.0 or were not even picked up by the screening (virtual 
screen inactives). As shown in Table 4, only 5 out of the 16 virtual screen actives, i.e., amiloride, 
theophylline, doxorubicin, S-adenosylmethionine, and pranlukast, were confirmed by at least 1 type of 
in vitro assay. Among the virtual screening negatives, both A2aR agonists, adenosine and regadenoson 
were picked up by AAAR.2, although the predicted pIC50 were 4.7 and 4.9, respectively. All other 
negatives were confirmed as negatives by in vitro assays. 
Table 4. In vitro assay results

Molecule IC50-
predicted

IC50,

cAMP, 
M

IC50,
Ca2+, M

%inhibition, 
binding*

Primary target(s) and/or 
function(s)

Amiloride 4.0E-07 N.E. N.E. 53 Amiloride-sensitive Na+ channel 
subunit 

Theophylline 5.0E-07 N.E. N.E. 68 A2aR antagonist
Triamterene 6.3E-07 N.E. N.E. N.E. Amiloride-sensitive Na+ channel
S-Adenosyl-
methionine

7.9E-07 N.E. N.E. 74 common cosubstrate for 
methyl transferase and so on

Pranlukast 1.0E-06 N.E. 8.3E-07 N.E. cysteinyl leukotriene receptor 1 
antagonist

Valganciclovir 1.3E-06 N.E. N.E. N.E. a prodrug for ganciclovir, DNA, 
transporters

Bortezomib 1.6E-06 N.E. N.E. N.E. proteasome inhibitor
Ribavirin 1.6E-06 N.E. N.E. N.E. adenosine kinase, Inosine-5'-

monophosphate dehydrogenase 
1 inhibitor

Ticagrelor 2.5E-06 N.E. N.E. N.E. P2Y, platelet aggregation 
inhibitor

Famotidine 4.0E-06 N.E. N.E. N.E. H2 receptor antagonist
Valaciclovir 4.0E-06 N.E. N.E. N.E. thymine kinase inducer, DNA 

polymerase inhibitor
Cefdinir 6.3E-06 N.E. N.E. N.E. β-lactam antibiotic
Salsalate 6.3E-06 N.E. N.E. N.E. Prostaglandin G/H synthase 

1&2
Pyridoxal 6.3E-06 N.E. N.E. N.E. Pyridoxal kinase, precursor to 

pyridoxal phosphate
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Doxorubicin 7.9E-06 N.E. 2.5E-06 N.E. DNA intercalator, DNA 
topoisomerase inhibitor

Bopindolol 7.9E-06 N.E. N.E. N.E. β blocker
Cefixime 1.3E-05 N.E. N.E. N.E. β-lactam antibiotic

Adenosine 
monophosphate

1.3E-05 N.E. 1.9E-07 65 A2aR agonist

Regadenoson 1.6E-05 N.E. 4.9E-08 97 A2aR agonist
Sofosbuvir 2.0E-05 N.E. N.E. N.E. prodrug nucleotide analog

Capecitabine 2.0E-05 N.E. N.E. N.E. Prodrug of 5-FU, Thymidylate 
synthase inhibitor

Milrinone 2.0E-05 N.E. N.E. N.E. cAMP phosphodiesterase 
inhibitor

Nebivolol 2.0E-05 N.E. N.E. N.E. β1 receptor antagonist
Reboxetine 2.0E-05 N.E. N.E. N.E. Na+-dependent noradrenaline 

transporter inhibitor
Propafenone 3.2E-05 N.E. N.E. N.E. Na+, K+  channels blocker
Felbamate 3.2E-05 N.E. N.E. N.E. NMDA receptors antagonist

Flucloxacillin 3.2E-05 N.E. N.E. N.E. β-lactam antibiotic
Sulpiride 3.2E-05 N.E. N.E. N.E. D2 antagonist
Bosentan 4.0E-05 N.E. N.E. N.E. endothelin receptor antagonist

Ipratropium 
bromide

4.0E-05 N.E. N.E. N.E. Muscarinic receptor antagonist

Gliquidone 5.0E-05 N.E. N.E. N.E. ATP-sensitive K+-channel 
inhibitor

Metoprolol 6.3E-05 N.E. N.E. N.E. β1 blocker
Glimepiride 7.9E-05 N.E. N.E. N.E. ATP-sensitive K+-channel 

receptor inhibitor
Midodrine 1.0E-04 N.E. N.E. N.E. alpha-adrenergic receptor 

agonist
Norepinephrine 1.0E-04 N.E. N.E. N.E. alpha-adrenergic receptor 

agonist
Isradipine 1.0E-04 N.E. N.E. N.E. calcium channel blockers

Pentoxifylline 2.0E-04 N.E. N.E. N.E. Phosphodiesterase inhibitor, 
adenosine receptor antagonist

Verapamil 3.2E-04 N.E. N.E. N.E. L type Ca2+ channel inhibitor
Diltiazem 7.9E-03 N.E. N.E. N.E. L type Ca2+ channel inhibitor
Cefadroxil non hit N.E. N.E. N.E. β-lactam antibiotic
Nelfinavir non hit N.E. N.E. N.E. HIV-1 protease inhibitor
Cephalexin non hit N.E. N.E. N.E. β-lactam antibiotic

Rosiglitazone non hit N.E. N.E. N.E. PPARγ agonist
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Cefoxitin non hit N.E. N.E. N.E. β-lactam antibiotic, 
carboxypeptidase inhibitor

Etravirine non hit N.E. N.E. N.E. Non-Nucleoside Reverse 
Transcriptase Inhibitor

Pirlindole non hit N.E. N.E. N.E. Non-Nucleoside Reverse 
Transcriptase Inhibitor

Desogestrel non hit N.E. N.E. N.E. synthetic progestational 
hormone

Pheniramine non hit N.E. N.E. N.E. H1 antagonist
Gabapentin non hit N.E. N.E. N.E. Voltage-gated Ca2+ channel 

inhibitor
Ticlopidine non hit N.E. N.E. N.E. P2Y antagonist
Mesalazine non hit N.E. N.E. N.E. Prostaglandin G/H synthase 

1&2 inhibitor
Flumethasone non hit N.E. N.E. N.E. GR agonist
Cabergoline non hit N.E. N.E. N.E. dopamine agonist, prolactin 

inhibitor
Lamotrigine non hit N.E. N.E. N.E. Voltage-gated Na+ channel 

inhibitor
Nitisinone non hit N.E. N.E. N.E. 4-Hydroxyphenylpyruvate 

dioxygenase inhibitor
Ertapenem non hit N.E. N.E. N.E. β-lactam antibiotic

*% of inhibition = 100 – ( . Compound binding was calculated as a % (Measured specific binding
control specific binding ∗ 100)

inhibition of the binding of a radioactively labeled ligand specific for each target.
** N.E., no effects. Results showing an inhibition or stimulation lower than 50% are considered to 
represent insignificant effects of the test compounds.

The compounds were determined as “active” when confirmed by at least 1 type of in vitro assay. 
Identifying actives using 3 different assays was to reduce any “omissions” (false negatives) caused by 
artifacts with any one form of particular assay. The sensitivity and specificity of AAAR.2 for 
predicting the random 56 drugs are summarized in Table 5. 
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DISCUSSION
Selectivity screening is an essential step to realize the vision of predicting the adverse events in 

human from molecular targets, and ultimately design away from these liability targets. With the 
increasing demand for in vitro assays as well as the expanding list of liability targets, tools such as 
ligand- and structure-based virtual screens have been evaluated to aid and optimize the profiling 
process in the realm of Predictive Safety. For targets whose structures are not available or for targets 
whose binding sites are flexible, ligand-based approach provides a powerful predictive tool, especially 
with carefully curated training and test compounds. In silico approaches in safety profiling are still at 
an early stage as questions remain in data interpretation as well as how to best incorporate these tools 
[27]. From the presented case study of screening antagonistic activity against A2aR, we evaluated how 
to best use and interpret pharmacophore-based 3D QSAR model in Safety.

Data collection for model building. 
The success of modeling requires large and diverse training sets. Many researchers suggested a 

10:1 or 4:1 ratio for the numbers of compounds in training and test sets [39,40] Although a 
significantly sized training set will help greatly in a QSAR exercise, in the reality of drug discovery 
particularly in safety, it is not always attainable to generate large quantity of in vitro data upfront. The 
notion of requiring in vitro data for large number of compounds indeed hampers the prospective 
utilization of QSAR models in the pharmaceutical industry. Besides, if a particular in vitro assay was 
readily available and new synthetic chemistry was quickly worked out, there would be practically no 
need to use in silico approaches. The most frequent question is: how many compounds are enough? 
Although it is not possible to put a fixed number, it would help to know how many compounds will be 
screened in the prospective utilization. Our study presented an extreme case using 268 training/test 
compounds to screen 1,897 compounds, demonstrating that the possibility of utilization QSAR even 
with smaller training/test set. 

We suggested a couple of mitigation solutions to use QSAR when training and test sets are 
smaller than future screening task. One is to include data from public databases, such as ChEMBL[42] 
and Guide to Pharmacology [43]. Although these external compounds may represent different 

Table 5. Performance of prediction and chemical similaritiesa, b

Model Training 1 
vs Test 1

Training 2 
vs Test 2

Training 3 vs 75 
A2aR ligands

Training 3 vs 56 
drugs b

# of clusters in training 26 55 55 55
# of actives in training 53 35 97 97
# of inactives in training 88 48 171 171
Max similarity to test set c 0.65c 0.67 0.37 0.13
Sensitivity, % 82 96 78 72
Specificity, % 94 94 74 77

a Sensitivity = TP/(TP+FN), specificity = TN/(TN+FP), false positive rate = FP/(FP + TN), false 
negative rate = FN/(TP+FN), where TP is true positive, TN is true negative, FP is false positive, FN is 
false negative.

b Based on in vitro assay results, TP =5, TN =38, FP =11, FN = 2. 
c Similarities calculated using radial binary fingerprints. The 268 training and test compounds were 
represented by 55 centeroid structures from the 55 chemical clusters. 
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chemistry compared to an in-house produced collection, incorporation of these compounds enhanced 
chemical diversity. The second is to split training and test sets in various ways. As shown in our study, 
splitting training and test sets in various ways impacted the performance with external set (Table 3). 
Changing composition of the training and test set disturbed the basis of modeling, which in turn alters 
the outcomes [40,49]. Last, generating more than one hypothesis and model from each training set 
may be beneficial. Using the same training 3, various hypotheses yielded different statistics. For 
example, when changing AAADR.4 to AAADR.1, the compounds accounted for in the training set 
increased from 87% to 91%, as shown in the R2 values (Table 2). When changing from 5-site to 4-site 
hypotheses, the coverage further increased to 93%. 

The 4-site AAAR.2 is a relevant model to mechanistically predict new 
molecules for A2aR. 

Up to 7 pharmacophore sites can be defined in Schrödinger Phase [48,51]. Typically increasing 
numbers of pharmacophore site renders additional definitions for ligand features, which may better 
distinguish actives from inactives. While this might be true with more rigid binding pocket such as 
kinases [52], it was not the case for A2aR as demonstrated in our study. With training set 3, several 5- 
and 4-site models were obtained, all of which yielded good statistics as shown in Table 3. Despite the 
significantly improved P values in 5-site model, the 4-site model AAAR.2 yielded a significantly 
improved outcome when predicting the structurally different subset of 75 A2aR ligands. As revealed 
by our training set, logP values of the active compounds ranged from 0.2 to 7.2, suggesting ligands 
with a broad diversity are able to bind to this target. Indeed promiscuity is well known for target 
classes such as GPCR and nuclear hormone receptors [50,53,54].Fewer pharmacophore sites may 
instead allow more freedom for the structurally “fluid” GPCRs. Therefore, it is important to test 
hypotheses composed of different number of pharmacophore sites, and evaluate the resulting models 
in the external set.

Model AAAR.2 was determined to be the most relevant pharmacophore model based on its 
performance against the 75 A2aR ligands and the 56 randomly selected drugs, both of which are 
structurally very different comparing to the 268 training compounds. AAAR.2 contained 4 
pharmacophore features, 3 hydrogen bond acceptors and 1 aromatic ring. The emphasis for hydrogen 
bond acceptors can be seen from the 97 actives in training set 3, among which the number of hydrogen 
bond acceptor ranged from 3 to 8. In contrast, the presence of a hydrogen bond donor was not 
necessary for antagonistic activities, as 9 out of 97 actives contained no hydrogen bond donors. An in-
depth survey for a database (SCOPE database[55]), containing proprietary compound optimization 
data, showed that average number of hydrogen bond acceptors for GPCR ligands increased from 3 to 
4 from starting material to optimized compound [55]. This was in good agreement with increasing 
hydrogen bond acceptors favoring binding to GPCRs. 

Model AAAR.2 could distinguish agonists from antagonists. Such mechanistic distinction is 
challenging, as A2aR agonists and antagonists often shared the same bicyclic adenine core [56].  
Agonists and antagonists even engaged the same set of residues, such as Phe168, Ile274 and Asn253 
as revealed by crystallographic studies [57-59]. The ribose ring structure is the key feature that 
differentiates agonists from antagonists [56]. As revealed by the co-crystal structures of A2aR and its 
agonist UK-432097, the ribose moiety was buried deeply into the binding pocket. The indole from a 
conserved Trp246 residue moved by ~1.9 Å to avoid clashing into the ribose ring. Such movement not 
only allowed additional contacts to be made with the ribose ring of the agonist, but also caused global 
movements to render the receptor’s transition into active form. Intriguingly, model AAAR.2 focused 
primarily on the adenine moiety (with exception of 1 hydrogen acceptor), hence might limit the 
identification of antagonists from agonists. Yet AAAR.2 still yielded above 70% sensitivity and 
specificity against a collection of 75 known A2aR agonists and antagonists. It is important to note that 
both sensitivity and specificity may be under-estimated. 16 out of the 46 antagonists were weak 
against A2aR, i.e., pIC50 < 5.3. These antagonists may be missed, within standard error, when the 
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cutoff value for pIC50 was set to be 5.0. Such “omissions” may induce an underestimation of 
sensitivity, which could have been higher had the pIC50 values for all the antagonists were above 6.0.  
The specificity might also be higher than 70%. In our study, agonists identified as active by AAAR.2 
were deemed as false positives, resulting in a false positive rate of ~30%. However, this might be too 
restrictive. Many agonists could also have antagonistic activities, as later demonstrated with the in 
vitro assay results for adenosine and regadenosine. Therefore the greater than 70% sensitivity and 
specificity were encouraging for this prospective application.

The promise of utilization and interpretation of pharmacophore-sbased 
3D QSAR in Safety. 

With large and diverse compound sets to generate various training sets and models, followed by 
thorough evaluation with a structurally different external set, 3D QSAR modeling could be used in 
safety, either as a pre-screen or to support detailed structural activity analysis against liability targets. 
To this end, it is important to measure the chemical similarities between query compounds and 
training/test compounds. Chemical similarity analysis is not simply to determine whether the query 
compound is suitable for the model or not. Rather it will help guide result interpretation, especially in 
safety screening.

This concept is best illustrated in Fig 7, which was divided into 4 areas including true positives, 
true negatives, false positives, and false negatives based on the results of in vitro and in silico assays 
against the subset of 75 A2aR ligands. The 5 compounds that are the most similar to training/test 
compounds (similarities ≥ 0.22) all fell into the section of true positives (Figs 7A and 7B). For the 11 
compounds whose similarity index ranged from 0.14 to 0.22 to training/test compounds, false 
positives and negatives began to appear, i.e., 2 were false positives and 2 were false negatives (Fig 
7C). When similarity index dropped below 0.14, false positives and false negatives increased (Fig 
7D). Encouragingly, 7 compounds (xanithinol, PSB603, PSB36, MRS1065, MRS1084, tonapofylline 
and sakuranetin), were also predicted positives despite their low similarity (similarity <0.1). The 
similarity was obtained from binary fingerprints, with no consideration for 3-dimensional or the 
pharmacophore features of the compounds. The success in prediction of these 7 compounds 
highlighted the advantage of 3D pharmacophore modeling over the 2D chemical features. 

Fig 7. The performance of pharmacophore-based 3D QSAR modeling results in comparison to in vitro 
activities, when the similarities of the binary fingerprint between the query compound and the 
training/test compounds are ≥ 0.29 (A), between 0.22 to 0.29 (B), between 0.14 and 0.22 (C), and < 
0.14 (D). In D, red dots indicated that similarity ranges between 0.10 to 0.14; grey dots indicated that 
similarity was below 0.10.
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It is also important to note that that true negatives appeared with primarily low similarity 
compounds. This is in agreement with the hypothesis that chemicals with similar features may share 
similar targets. As such QSAR model could generally predict negatives with higher confidence, which 
is especially valuable in safety profiling versus efficacy profiling. If molecules with undesirable 
properties can be ruled out using virtual screening approaches, significant resources can be saved 
where only “prescreened” molecules are advanced to more costly in vitro screens. Among the 27 
compounds whose similarity are under 0.1 in comparison to training/test compounds, 7 were true 
positives and 13 were true negatives. Among these low similarity compounds, 3 and 4 are false 
negatives and false positives respectively, giving 11% and 15% false negative and false positive rates. 
In safety, false positives could be later overruled with negative results obtained from the follow up in 
vitro assays. However, false negatives are more problematic. The 3 false negatives were MRS1191, 
FK453, and LUF5981. MRS1191 and FK453 were weak antagonists, with pIC50 values of 5.0 and 5.8, 
respectively. LUF5981, despite being a relatively potent antagonist with pIC50 values of 6.7, was 
reported to occupy the A2aR binding pocket in a different fashion [60,61]. Such ligand(s) with shifted 
binding position displayed the limitation of pharmacophore-based 3D QSAR model. Nonetheless, the 
false positive and negative rates were still within a tolerable range even for the standard of in vitro 
assays. 

Therefore, when deploying a pharmacophore model, although comparing chemical similarity is 
important, one should not be discouraged from using the model simply because of low similarity to 
training/test compounds, particularly due to the nature and emphasis of a safety (pre)screening. The 
model would still be valuable when similarities are low, as demonstrated from compounds that were 
least similar to training and test sets. More importantly, chemical similarity helps guide the 
interpretation of predicted data. For the utilization of a virtual screen in safety, positive prediction 
outcomes could be interpreted with confidence when similarity is high (in our case, when similarity > 
0.22). False positives and negatives should be expected as they coincide with decreasing similarity 
(e.g., from 0.22 to 0.14). When similarity is very low (e.g. < 0.1), negative predictions may be 
interpreted with confidence based on the principal “chemical with similar structures may bind to 
similar targets”. The similarity cut-off values should be established with carefully curated external set 
prior to the prospective utilization. In our case, we used the subset of 75 A2aR ligands. In vitro assay 
follow up is highly recommended in the following 2 cases. One is when the similarity is low yet 
positives are predicted, the other is when the similarity is high yet negatives are predicted. 

In summary, we presented a study to evaluate the possibility of incorporating in silico screening 
in the arena of safety. Instead of being carried out as a retrospective exercise, we focused on 
prospective utilization in safety screening. Our study was designed with several distinct features, such 
as generating multiple models from various training and test sets, and utilization of structurally 
different external set as well as a larger and more diverse set of compounds from the real world. When 
integrating pharmacophore-based 3D QSAR in safety, we recommend the following based on our 
analysis. First, large and diverse compound set should be used to generate the model. Addition of 
extra compounds and data from publication and public database will help enrich the diversity of 
training and test sets, hence increase the prospects for future utilization of the model in broadened 
chemical space. Second, multiple training and test sets should be generated, and accordingly multiple 
models (possibly containing different number of pharmacophore sites) should be evaluated. Third, 
thorough evaluation using a structurally different external set with multiple models is important to 
evaluate the performance against new chemotypes. The external set also helps establish the similarity 
cutoff values for future prospective utilization of the model. Last, the interpretation of prediction 
outcome should be viewed in combination with similarity analysis of query compound(s) and training 
compounds, which will also help to prioritize the subsequent in vitro follow-ups. With these steps this 
detailed case study demonstrated that an otherwise limited ligand-based QSAR approach may be 
nicely integrated into the in vitro safety profiling, either as a pre-screen prior to in vitro assays (for 
new chemotypes before they are even made) or to support detailed SAR against liability targets. 
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Neither is aimed at the discovery of new chemical series, rather, the value of pharmacophore-based 
3D QSAR model lies in helping to “design away” from liability targets during Drug Development

Supporting Information
An enlarged version of Fig 2, as well as an example of QSAR visualization of positive and negative 
regression coefficients for active vs inactive molecules.
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