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Abstract

A common aim in high-dimensional association studies is the identification of the

subset of investigated variables associated with a trait of interest. Using association

statistics on the same variables for a second related trait can improve power. An

important quantity in such analyses is the conditional false-discovery rate (cFDR),

the probability of non-association with the trait of interest given p-value thresholds

for both traits. The cFDR can be used for hypothesis testing and as a posterior

probability in its own right. In this paper, we propose new estimators for the cFDR

based on kernel density estimates and mixture-Gaussian models of effect sizes, the latter

also allowing estimation of a ‘local’ form of cFDR (cfdr). We also propose a general

non-parametric improvement to existing estimators based on estimating a posterior

probability previously estimated at 1. We find that new estimators have the desirable

property of smooth rejection regions, but, unexpectedly, do not improve the power of

the method, even when distributional assumptions are true. Furthermore, we find that

although the local cfdr represents a theoretically optimal decision boundary, noisiness

in its estimation means it is less powerful than corresponding cFDR estimates. We find,

however, that the non-parametric adjustment increases power for every estimator. We
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demonstrate the best method on transcriptome-wide association study datasets for

breast and ovarian cancers. The findings from this analysis are of both theoretical and

pragmatic interest, giving insight into the nature of cFDR and the behaviour of false-

discovery rates in a two-dimensional setting. Our methods allow improved control

over the behaviour of the cFDR estimator and improved power in high-dimensional

hypothesis testing.

1 Introduction

In the past decade, the progress of biological investigation has been characterised by increas-

ing size of datasets and increasing diversity and precision of phenotypes under investigation.

This suggests ‘leverage’ approaches, in which we seek to learn more about one trait by using

data from another. Specifically, given a set of p-values P from association tests for a set

of hypotheses for a trait under investigation, and corresponding values Q of some covariate

which has different distributions amongst associations and non-associations with P , we seek

to use the values of Q to strengthen our ability to find associations with P .

A range of methods for this problem have been proposed. In a Bayesian setting, Ferk-

ingstad and others (2008) determine posterior probabilities of association for each hypoth-

esis using a frequentist p-value for the ith hypothesis and a prior probability of association

modulated according to the covariate, with values ‘binned’ into categories. A frequentist

approach by Ignatiadis and others (2016) weights each hypothesis under consideration using

the covariate value for that hypothesis, with a form of the Benjamini-Hochberg procedure

used on resultant weighted observations. A third approach by Zablocki and others (2014)

parametrises the joint distribution of the covariate and p-values allowing continuous modu-

lation of the probability of association with changes in the covariate. This enables estimation

of the probability of association for a hypothesis of interest given p-values for both the trait

of interest and the covariate, a quantity which we will revisit in this work.

The method we will primarily consider in this paper is termed the conditional false-

discovery rate (cFDR). First proposed in Andreassen and others (2013), the cFDR represents

the probability of non-association with a phenotype of interest (we will denote this event

HP
0 ) given p-value thresholds p, q on observed p-values P , Q for both the trait under
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investigation and a second trait (Q):

cFDR(p, q) = Pr(HP
0 |P ≤ p,Q ≤ q) (1)

When estimated for each hypothesis at the observed values of p, q, the cFDR can be used

for hypothesis testing. The cFDR has been used successfully to lever secondary datasets in

genome-wide association studies (GWAS) (Andreassen and others, 2014; Andreasson and

others, 2014; Liley and Wallace, 2015). The cFDR is powerful in many cases and effective

in its simplicity and interpretability.

None of the above methods is clearly dominant in every case. In general, the problem

is complex: the optimal method depends on the distribution of effect sizes for the trait

under investigation, the type and distribution of covariate, and the number of variables.

Furthermore, the best method depends on the desired outcome and measure of type-1 error

rate.

In a recent work (Liley and Wallace, 2018), we established a method to control FDR

when using cFDR for association testing. While FDR control is assured, the existing method

has the shortcoming that rejection regions are often highly discontinuous and dependent on

ordering of the p-values. Additionally, estimation of the ‘cfdr’ statistic used by Zablocki

and others (2014):

cfdr(p, q) = Pr(HP
0 |P = p,Q = q) (2)

is not supported. Because our FDR controlling method is immediately adaptable to different

estimators of cFDR, there is scope to diversify the range of cFDR associated methods to

overcome these shortcomings and adapt to different problems.

In this work, we examine new estimators for cFDR, and evaluate their performance on

simulated data. We also find that although the cfdr can be used to construct optimal rejec-

tion regions, its estimation is so noisy that it may often be less effective than the cFDR in

practice. Finally, we introduce a non-parametric improvement to the existing cFDR method,

and show this leads to a substantial improvement in power over existing methods. We ap-

ply the best-performing method to datasets from transcriptome-wide association studies

(TWAS) as an example.
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2 Overview of existing estimator and FDR control

Suppose we have a set of p-value pairs (pi, qi) where p1, p2, ..., pn are p-values from associ-

ation tests in a study of interest considered to be draws from the random variable P , and

q1, q2, ..., qn are corresponding p-values from the second study, considered to be draws from

Q.

The current estimator cFDR uses a multiset of p-value pairs X, which may or may not

be the set S. We expand definition (1) as

cFDR(p, q) =
Pr(P ≤ p|HP

0 , Q ≤ q)
Pr(P ≤ p|Q ≤ q)

Pr(HP
0 |Q ≤ q) (3)

Under the assumption P ⊥⊥ Q|HP
0 , we have Pr(P ≤ p|HP

0 , Q ≤ Q) = Pr(P ≤ p|HP
0 ) = p.

The two remaining quantities (which we will focus on in this paper) are approximated as

Pr(P ≤ p|Q ≤ q) ≈ |{i : pi ≤ p, qi ≤ q, (pi, qi) ∈ X}|
|{i : qi ≤ q, (pi, qi) ∈ X}|

(4)

and

Pr(HP
0 |Q ≤ q) ≈ 1 (5)

giving the estimate

cFDR ̂cFDR1

X(p, q) = p
|{i|pi ≤ p, (pi, qi) ∈ X}|

|{i|pi ≤ p, qi ≤ q, (pi, qi) ∈ X}|
(6)

noting the dependence on X, and noting by the superscript ‘1’ the original estimator. Esti-

mate (4) is generally consistent, and estimate (5) is conservative, meaning that cFDR ̂cFDR1

S

is asymptotically conservative in that under reasonably general circumstances

lim
|S|→∞

cFDR ̂cFDR1

S(p, q)− cFDR(p, q) ≤ 0 (7)

for (p, q) ∈ (0, 1)2.

The FDR-controlling method we use here begins by dividing hypotheses into ‘folds’. We

then construct ‘L-regions’ for each observation (pi, qi) ∈ S which roughly represent the set

of points (p, q) for which cFDR ̂cFDR(p, q) ≤ cFDR ̂cFDR(pi, qi) = α. Strictly, we define

LζX(α) = {(p, q) : ∃p′ ≥ p : cFDR ̂cFDRζX+(p′,q)(p
′, q) ≤ α} (8)
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where ζ indicates the type of cFDR estimator used (so far we have only introduced one

estimator in (6) but others will be proposed in Section 3). The L-region for point pi, qi

is computed leaving out the points in the same fold as pi, qi; that is, using X = S −

(fold containing i).

The PDF f0 of P,Q|HP
0 is then estimated, using the fact that P |HP

0 ∼ U(0, 1) and

P ⊥⊥ Q|HP
0 , assuming Q|HP

0 ≈ Q|P > 1
2 and assuming a mixture-Gaussian model for

Φ−1(Q/2)|HP
0 (this assumption is discussed in a later section of this paper). For each such

region L, we then define ‘v-values’ (an analogue of p-values) as

v(L) =

∫∫
A

f0(x, y)dxdy = Pr
(
P,Q ∈ A|HP

0

)
(9)

and the Benjamini-Hochberg (Benjamini and Hochberg, 1995) method is applied to control

FDR. Because the FDR-controlling method uses only regions L rather than actual values

of cFDR ̂cFDR, the values cFDR ̂cFDR can be scaled arbitrarily and the results will not

change. Importantly, FDR control will be achieved even if the estimate cFDR ̂cFDR is

non-conservative. For technical details regarding FDR control, we refer the reader to Liley

and Wallace (2018).

When used either as a hypothesis test or as a direct estimate, cFDR ̂cFDR1

S can be

a poor approximation of the quantity Pr(P ≤ p|Q ≤ q) in regions near the P = 0 and

Q = 0 boundaries of the unit square. At these extremes, the approximation in (4) has

large discontinuities around observed pi, qi. This is demonstrated in figure 1, which shows

that cFDR ̂cFDR1

S(p, q) can vary twofold in any neighbourhood of certain pi, qi ∈ S. Such

extreme variation at a small scale is undesirable as very small fluctuations in observed data

should not have marked effects on test statistics. It is important to note that a similar

problem affects posterior estimates of FDR in the Bayesian sense (Efron and others, 2008),

and in the Benjamini-Hochberg method itself, in which the acceptance or rejection of any null

is dependent on where it falls in the order of other P-values. We propose methods involving

parametrisation or smoothing of the bivariate distribution of (P,Q), averting the problem

shown in figure 1. We also introduce an approximation of the quantity Pr(HP
0 |Q ≤ q) in

equation (5), making the estimator of cFDR closer to consistent (up to the factor of Pr(HP
0 ),

and assuming the consistency of the estimate of Pr(HP
0 |Q ≤ q)) rather than conservative.

We show this improves the power of the method.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 12, 2018. ; https://doi.org/10.1101/414326doi: bioRxiv preprint 

https://doi.org/10.1101/414326
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 New metrics for association

3.1 Alternative estimators for cFDR

We now move to consider alternative estimators for cFDR. The estimate cFDR ̂cFDR1
is

based on empirical quantities estimated directly by counting points (ie, empirical estimation

of the joint CDF of (P,Q)) as per definition (6), noting the dependence on the set S. We

consider here estimators based on approximating the joint distribution of P,Q: one usinga

kernel density estimator (KDE) and one using a bivariate mixture-normal parametrisation.

These estimators enforce continuity of cFDR ̂cFDR on the open unit square, and thus are

robust to small deviations in p-values, overcoming the effect detailed in figure 1. It is

easiest to visualise parametrisations as distributions over the unsigned Z scores (Zp, Zq) =(
−Φ−1(P/2),−Φ−1(Q/2)

)
with Φ−1(x) denoting the standard normal quantile function at

x.

To avoid distributional assumptions while maintaining a smooth form for the density of

P,Q, a second estimator of Pr(P < p|Q < q) can be derived from a two-dimensional kernel

density (KDE). We had no reason to prefer any kernel function over another, so opted to

use a normal kernel with constant variance I2. The PDF corresponding to Zp, Zq at x, y

was modelled in the usual way as

gp(x, y) =
1

n

∑
i

1

σpσq
φ

√(x− {−Φ−1(pi/2)}
σp

)2

+

(
y − {−Φ−1(qi/2)}

σq

)2
 (10)

where φ(.) is the standard normal density. Values σp and σq are determined using a standard

method based on the observations pi, qi ∈ X (Sheather and Jones, 1991).

We denote the estimator of cFDR derived from the KDE for an arbitrary point (p, q)

with Z scores (zp, zq) = (Φ−1(p/2),Φ−1(q/2)) as

cFDR ̂cFDR2

X(p, q) = Pr(P ≤ p|HP
0 )

1

Pr{P ≤ p|Q ≤ q, (P,Q have PDF gp)}

= p

∫∞
0

∫∞
zq
gp(x, y)dxdy∫∞

zp

∫∞
zq
gp(x, y)dxdy

(11)

where X in this case refers to the set of points used in fitting the kernel density.

For a third estimator, we use a parametrisation with seven parameters: (π0, π1, π2, τ1,

τ2, σ1, σ2), which parametrise a four-part bivariate mixture-Gaussian distribution over the
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(+,+) quadrant with PDF:

fp(x, y) = 4π0NΣ0
(x, y)

+ 4π1NΣ1(x, y)

+ 4π2NΣ2(x, y)

+ 4(1− π0 − π1 − π2)NΣ3
(x, y) (12)

where NΣ(x, y) is the PDF of the bivariate normal distribution centred at the origin with

variance Σ, the factor of 4 is due to to only unsigned Z-scores being used, and

Σ0 = I2 Σ1 =

τ2
1 0

0 1

 Σ2 =

1 0

0 σ2
1

 Σ3 =

τ2
2 0

0 σ2
2

 (13)

This model allows for a proportion π1 of study variables to be associated only with the trait

of interest P (with SD(ZP ) = τ1), a proportion π2 to be associated only with the second

trait Q (with SD(ZQ) = σ1), and a proportion (1−π0−π1−π2) to be associated with both

(V ar(ZP , ZQ) = Σ3). We allow different values of σ1, σ2 and τ1, τ2 to allow for potentially

different reasons for shared (both P and Q) and independent (P XOR Q) associations. We

make the not-generally-true assumption that ZP ⊥⊥ZQ in the final category in order to keep

the model simple and avoid fitting covariances to absolute Z-scores. Maximum-likelihood

estimates of parameters can be obtained using an E-M algorithm (Dempster and others,

1977). Given fitted parameters (π̂0, π̂1, π̂2, τ̂1, τ̂2, σ̂1, σ̂2), the denominator of (3) can be

written:

Pr(P ≤ p|Q ≤ q) =
Pr(P ≤ p,Q ≤ q)

Pr(Q ≤ q)

=
2
∫∞
p

∫∞
q
fp(x, y)dxdy∫∞

0

∫∞
q
fp(x, y)dxdy

(14)

We denote the estimate of cFDR obtained using this method as

cFDR ̂cFDR3

X(p, q) = p

∫∞
0

∫∞
zq
fp(x, y)dxdy∫∞

zp

∫∞
zq
fp(x, y)dxdy

(15)

whereX in this case is the set of points used in the estimation of parameters (π̂0, π̂1, π̂2, τ̂1, τ̂2, σ̂1, σ̂2).

Figure 2 shows the approximate behaviour of L-curves with each cFDR type. Notably,
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they are smoothest with cFDR ̂cFDR3
, although they are constricted to a particular shape.

Estimator cFDR ̂cFDR3
models the global distribution of P,Q, allowing simple approx-

imation of the ‘local’ false-discovery rate:

Pr(HP
0 |P = p,Q = q) (16)

which can be more useful than the cFDR (Pr(HP
0 |P ≤ p,Q ≤ q)). These quantities cannot

be readily estimated by counting points in the manner of cFDR ̂cFDR1
.

3.2 Local cfdr

An important advantage of the parametrisation approach in cFDR ̂cFDR3
is the ability to

estimate the quantity Pr(HP
0 |P = p,Q = q) (which we will denote cfdrĉfdr following the

FDR/fdr convention (Efron and others, 2008)). We will denote by HP
1 the complement of

HP
0 and f1(p, q) and f0(p, q) the density functions for P,Q|HP

1 and P,Q|HP
0 respectively.

We show here that the function cfdr(p, q), if known, can be used to generate optimal

rejection regions for HP
0 , in the sense of regions R which maximise Pr(P,Q ∈ R|HP

1 ) =∫
R
f1(p, q)dpdq for a fixed value of Pr(P,Q ∈ R|HP

0 ) =
∫
R
f0(p, q)dpdq (where HP

1 is the

general alternative hypothesis for P ). We briefly show that such regions R are regions inside

contours of F (p, q) = f1(p,q)
f0(p,q) .

Let H be the region of the unit square on one side of a contour F (p, q) = c, such that

for p, q ∈ H ⇔ F (p, q) ≥ c, and suppose Pr(P,Q ∈ H|HP
0 ) =

∫
H
f0(p, q)dpdq = C and

that f0 > 0 on the interior of the unit square. Let H ′ be some other region for which

Pr(P,Q ∈ H ′|HP
0 ) =

∫
H′ f0(p, q)dpdq = C. Now

∫
H′\H

f0(p, q)dpdq =

∫
H\H′

f0(p, q)dpdq = C −
∫
H∩H′

f0(p, q)dpdq (17)

and since F (p, q) ≤ c for (p, q) ∈ (H ′ \H) ⊆ H ′, and F (p, q) ≥ c for (p, q) ∈ (H \H ′) ⊆ H,
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we have

∫
H′
f1(p, q)dpdq =

∫
H′∩H

f1(p, q)dpdq +

∫
H′\H

f1(p, q)dpdq

≤
∫
H′∩H

f1(p, q)dpdq +

∫
H′\H

cf0(p, q)dpdq

=

∫
H∩H′

f1(p, q)dpdq +

∫
H\H′

cf0(p, q)dpdq

≤
∫
H

f1(p, q)dpdq (18)

so amongst all regions H ′ with Pr(P,Q ∈ H|HP
0 ) = C the region H maximises Pr(P,Q ∈

H|HP
1 ). This means that if H is used as a rejection region, it will have the greatest power

amongst all rejection regions corresponding to a type-1 error rate of C.

Since

1

cfdr(p, q)
=

1

Pr(HP
0 |P = p,Q = q)

=
f0(p, q)Pr(HP

0 ) + f1(p, q)Pr(HP
1 )

f0(p, q)Pr(HP
0 )

= 1 +
Pr(HP

1 )

Pr(HP
0 )
F (p, q) (19)

contours of F (p, q) are also contours of cfdr(p, q). Hence for any test statistic k(p, q) and

corresponding threshold αk for which the rejection procedure k(p, q) ≤ αk controls the type

1 error at α, the test statistic cfdr(p, q) will be the most powerful.

Generally, as p → 0, q → 0, Pr(HP
0 |P ≤ p,Q ≤ q)− Pr(HP

0 |P = p,Q = q) → 0, so the

value cFDR(p, q) is a reasonably good approximation of cfdr(p, q), and contours of the two

functions are similar. However, the argument above suggests that estimators for cfdr(p, q)

may outperform estimators for cFDR(p, q) in hypothesis testing. In model 12, null variables

(for which ZP ∼ N(0, 1)) are in the first and third parts, meaning that under the model

(writing f0 as a function of zp, zq for convenience)

f0(zp, zq) = 4
π0

π0 + π2
NΣ0

(zp, zq) + 4
π2

π0 + π2
NΣ2

(zp, zq) (20)

allowing the estimator

cfdrĉfdr(p, q) = (π1 + π2)
f0(zp, zq)

fp(zp, zq)
(21)
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3.3 Estimation of Pr(Q ≤ q|HP
0 )

The FDR controlling method detailed in Section 2 does not require that cFDR ̂cFDR(p, q)

be a conservative estimator of cFDR(p, q) = Pr(HP
0 |P ≤ p,Q ≤ q). We can thus also

estimate the quantity (5) as

Pr(HP
0 |Q ≤ q) =

Pr(Q ≤ q|HP
0 )Pr(HP

0 )

Pr(Q ≤ q)
(22)

rather than approximating it upward to 1, as done previously. This is useful as the approx-

imation upward to 1 is least accurate (and most conservative) when Pr(HP
0 |Q ≤ q) � 1,

and it is in this situation that we can best use the event Q ≤ q to help reject Pr(HP
0 ).

There is no need to estimate the quantity Pr(HP
0 ) in the hypothesis-testing setting, as it is

constant in all cFDR ̂cFDR values and serves only as a scaling factor.

Any of the three estimators cFDR ̂cFDR1
, cFDR ̂cFDR3

, cFDR ̂cFDR2
can be aug-

mented by including an estimate of the quantity Pr(HP
0 |Q < q), to improve accuracy. We

use the estimate

Pr(HP
0 |Q ≤ q) =

Pr(Q ≤ q|HP
0 )

Pr(Q ≤ q)

≈
Pr(Q ≤ q|P ≥ 1

2 )

Pr(Q ≤ q)

≈
∣∣{i : qi ≤ q, pi ≥ 1

2}
∣∣∣∣{i : pi ≥ 1

2}
∣∣ n

|{i : qi ≤ q}|
(23)

This can be used as a multiplicative factor in any of the estimators above. We denote

cFDR ̂cFDRζsX = cFDR ̂cFDRζX ∣∣{i : qi ≤ q, pi ≥ 1
2 , (pi, qi ∈ X)}

∣∣
|{i : qi ≤ q, (pi, qi ∈ X)}|

|X|∣∣{i : pi ≥ 1
2 , (pi, qi ∈ X)}

∣∣
(24)

for ζ ∈ {1, 2, 3} as the ‘adjusted’ cFDR estimate after inclusion of this factor. Estima-

tion of the density Pr(Q ≤ q|HP
0 ) is also required for FDR control; namely in estimating

the distribution of P,Q|HP
0 in order to integrate it over L. As described in our earlier

paper Liley and Wallace (2018) we use a different strategy in this instance, by assum-

ing a parametrisation of the distribution of Q|P ≥ 1
2 and estimating parameters using an

expectation-maximisation algorithm. The parametrisation is far simpler to integrate over,

so we prefer this method for integrating over regions L. If we used this parametrised es-

timate of Pr
(
Q ≤ q|P ≥ 1

2

)
in place of the empirical CDF in formula (23), then since the
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CDF-based estimator of Pr(Q ≤ q) is at least 1/n, the estimate of Pr(HP
0 |Q ≤ q) and

hence the estimate of cFDR ̂cFDRζsX (pi, qi) can be arbitrarily small for low qi, whatever

the value of pi, especially if the true distribution of Q|HP
0 is not mixture-normal. We thus

prefer the counting-points method for computing the quantity in the context of estimating

cFDR values, and the parametrisation for integrating over regions L.

In both the multiplicative factor for cFDR ̂cFDR and integration over L, we approximate

Pr(Q ≤ q|HP
0 ) = Pr (Q ≤ q|P ≥ 1/2) + ε (25)

We note that (assuming P ⊥⊥Q|HP
0 )

Pr(Q ≤ q|P ≥ 1

2
) = Pr

(
Q ≤ q|P ≥ 1

2
, HP

0

)
Pr

(
HP

0 |P ≥
1

2

)
+ Pr

(
Q ≤ q|P ≥ 1

2
, HP

1

)
Pr

(
HP

1 |P ≥
1

2

)
= κPr(Q ≤ q|HP

0 ) + (1− κ)Pr

(
Q ≤ q|P ≥ 1

2
, HP

1

)
(26)

where κ = Pr(HP
0 |P ≥ 1/2), the approximation is consistent in that κ→ 1 =⇒ ε→ 0. A

larger threshold on P than 1/2 can and should be used if sufficient points are available to

estimate the density on the RHS of equation (25).

We would expect that κ → 1 as sample sizes tend to ∞. For fixed finite sample sizes,

the sign of ε is the sign of

Pr(Q ≤ q|HP
0 )− Pr

(
Q ≤ q|P ≥ 1

2
, HP

1

)
(27)

This quantity is difficult to make any judgements on; a tendency for common effects to both

studies to be stronger than associations unique to the conditional trait would increase ε, but

a tendency for effect sizes to be correlated at these common effects would decrease ε.

4 Assessment of performance through simulations

In order to assess the performance of each method above, we simulated a series of datasets

and estimated the FDR of each method in each dataset. In each simulation, we generated a

set of values pi, qi, i ∈ 1..n from random variables P,Q. We considered an extensive range of

underlying parameters governing the distributions of Pi, Qi. We used an identical simulation
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protocol to that used in (Liley and Wallace, 2018), reproduced in appendix 1.1. In general,

each dataset contained np1 associations uniquely in the study P , nq1 association uniquely in Q,

and npq1 with both. We used various alternative distributions (normal, t (3df) and Cauchy)

for simulating distributions of p-values under the alternative. We selected parameters from

continuous distributions where possible to evaluate how power changed continuously.

For each simulation, we defined the ‘true detection rate’ (TDR) as the proportion of

potential true discoveries made:

TDR =


0 if no rejections

number of correctly rejected null hypotheses
total number of associations

if ≥ 1 rejection

(28)

so the power to reject HP
0 for a randomly-chosen true association is E(TDR). We controlled

the FDR at α = 0.1.

We examined how power/TDR varied with the value of np1 + npq1 , the total number of

variables associated in the study of interest P . This displays the behaviour of estimators over

the range of proportions of association variables from no associations at all (np1 + npq1 = 0)

to a large number of associations.

In these simulations, we assume Pr(HP
0 |Q ≤ q) was known for all q for the purposes

of integrating over L (that is, when we used the true distribution under which the data

were simulated). An analysis of the effect of approximation of Pr(HP
0 |Q ≤ q) on FDR is

made in Liley and Wallace (2018). All estimates of Pr(HP
0 |Q ≤ q) in the computation

of cFDR ̂cFDR1s
, cFDR ̂cFDR2s

, cFDR ̂cFDR3s
were made empirically throughout. We

consider the performance of cFDR ̂cFDRζ with ζ ∈ {1s, 2, 2s, 3, 3s} compared to ζ = 1.

We compared numerical and graphical analyses of data using paired Wilcoxon rank-

sum tests when comparing TDR values between different estimators. In comparing TDR

between estimators, all Wilcoxon tests had 90% power to detect a difference between

Pr(TDR with estimator A > TDR with estimator B) and Pr(TDR with estimator B >

TDR with estimator A) of 5% at p < 0.05. P-values are not shown but ‘difference’ refers to

p < 1× 10−3 and ‘no difference’ refers to p > 0.1.

We compared the power of cFDR ̂cFDR1
, cFDR ̂cFDR2

, and cFDR ̂cFDR3
(figure 3)

with each other and with the power of the Benjamini-Hochberg procedure applied to values

pi at the same FDR (which we term BH). Estimator cFDR ̂cFDR1
had the highest overall

power, followed by estimator cFDR ̂cFDR3
and method cFDR ̂cFDR2

. All method were
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more powerful than BH. When using a Gaussian alternative distribution, power was similar

between estimators cFDR ̂cFDR1
and cFDR ̂cFDR3

, which was unsurprising given the

bivariate Gaussian model used in cFDR ̂cFDR3
. We found similar results when controlling

at a more stringent FDR (α = 0.01), shown in supplementary figure 9

In all three estimators, the inclusion of the estimate of Pr(HP
0 |Q ≤ q) detailed in

Section 3.3 improved the power of the procedure substantially (figure 4)

Power was substantially higher using standard cFDR ̂cFDR3
as opposed to cfdrĉfdr,

to the extent that cfdrĉfdr was less powerful for hypothesis-testing than the Benjamini-

Hochberg method applied to p-values (figure 5). This was due to the chaoticity of contours

derived from cfdr. An example of this is shown in figure 6. FDR control was maintained

for all cFDR ̂cFDR estimators (data available in github repository in ‘Data availability’).

5 Conclusions and recommendations

Based on our theoretical and simulated findings, we recommend the use of the cFDR ̂cFDR1s

estimator for optimal power in hypothesis testing.

We recommend other methods in certain cases. If the alternative distribution of Z scores

is likely to be normal (eg, d = 1 in table 1) or known, then cFDR estimator cFDR ̂cFDR3s

(or an equivalent with the known distribution type in place of the Gaussian functions in

equation (12)) is of comparable power to cFDR ̂cFDR1s
(see figure 3, panel ‘Normal’) and

leads to smoother rejection regions and a less chaotic estimator. It also allows computation

of cfdrĉfdr although we do not recommend its use for hypothesis testing unless there is

great confidence in the approximation of the distribution of P,Q.

If a conservative estimate of the value cFDR(p, q) = Pr(HP
0 |P ≤ p,Q ≤ q) is needed,

cFDR ̂cFDR1
, cFDR ̂cFDR2

, or cFDR ̂cFDR3
should be used in place of cFDR ̂cFDR1s

,

cFDR ̂cFDR2s
, cFDR ̂cFDR3s

. The inclusion of the estimate of Pr(HP
0 |Q ≤ q), which

is based on counting points, means that the continuity of cFDR ̂cFDR(p, q) on (p, q) ∈

(0, 1)2 is sacrificed when using cFDR ̂cFDR2s
, cFDR ̂cFDR3s

in place of cFDR ̂cFDR2
,

cFDR ̂cFDR3
. Hence if continuity of the estimator in p, q is required, cFDR ̂cFDR2

or

cFDR ̂cFDR3
should be used rather than cFDR ̂cFDR2s

or cFDR ̂cFDR3s
.
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6 Demonstration of method on TWAS data

In this section, we demonstrate the performance of the cFDR method on a real-world dataset

from two TWAS. TWAS is a method to attempt discovery of gene-trait associations, as

opposed to the variant-trait associations found by genome-wide association studies (GWAS).

A TWAS firstly uses GWAS and expression-quantitative trait locus (eQTL) data to predict

mRNA expression levels in a given tissue for each individual, then compares these predicted

expression levels across a trait of interest Gusev and others (2016).

We considered TWAS datasets for breast cancer (BRCA, Michailidou and others (2017))

and ovarian cancer (OCA, Phelan and others (2017)), containing tests for varying numbers

of genes across 54 tissues. BRCA and OCA have considerable phenotypic overlap Greene

and others (1984), and we may hope that summary statistics for one disease may be useful

for leverage in association analyses of the other. We considered RNA-tissue pairs available in

both datasets, restricting our analysis only to pairs in which RNA expression was predicted

using data from the GTEx consortium, comprising a total of n = 80222 hypotheses.

Given the GWAS-scale dimensionality of testing, we chose a conservative FDR control

level α = 1 × 10−6. We used cFDR ̂cFDR1s
for cFDR estimation (and cFDR ̂cFDR1

for

contrast). We assigned folds according to genes, so expression levels for each gene were

assigned a separate fold (for 11327 folds in total). Figure 7 shows z-scores for BRCA

and OCA, and rejection regions for cFDR and p-value at the same level of FDR control

α. The analysis of BRCA conditioning on OCA enabled 38 more gene-tissue association

discoveries than when the p-value alone was used and notably nine more discoveries than

when cFDR ̂cFDR1
was used (724 for cFDR ̂cFDR1s

vs 715 for cFDR ̂cFDR1
vs 678 for p-

value). In the corresponding analysis for OCA conditioned on BRCA, both cFDR ̂cFDR1s

and cFDR ̂cFDR1
enabled four more discoveries than when using p-values alone (310 vs

306). Subjectively, rejection regions from cFDR ̂cFDR1s
appear more natural than those

from cFDR ̂cFDR1
or from p-values alone, adapting to the joint distribution of Z-scores

without requiring any prior hypothesis of joint association.

We found that the relative number of discoveries with the two methods varied consid-

erably with α (figure 8). This observation is specific to this application, and should not be

generalised to other TWAS nor to any assumptions on the behaviour of the cFDR. We also

do not endorse the universal use of any FDR threshold (including the one used above) in

TWAS, and especially note that α should not be chosen to maximise the number of dis-
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coveries after an analysis such as that in figure 8. A study-appropriate threshold should be

determined a priori by consideration of the relative cost of type 1 and 2 errors.

This section is intended to be demonstrative rather than exploratory and we do not claim

that putative cFDR-based discoveries are novel. Since this demonstration only involves a

single dataset, any judgement about the appropriateness of cFDR to a particular application

should be made using the results of the simulations above, rather than the performance on

this dataset.

7 Discussion

There are two main ideas in this work; firstly, the use of parametric or KDE-based estimators

to address the discontinuity exhibited by the empirical estimator cFDR ̂cFDR1
and secondly

the augmentation of any estimator by inclusion of an estimate of Pr(HP
0 |Q ≤ q). While they

were generally less powerful than cFDR ̂cFDR1
, parametric and KDE-based cFDR both

reduced the chaoticity of the estimator around extremal points. An important pragmatic

finding of this work was that the standard non-parametric cFDR is hard to improve on.

We showed this both in a theoretical sense, in that it resembles the optimal cfdr, and in an

empirical sense in the observation that neither of the alternative estimators were stronger.

The parametric cFDR estimator cFDR ̂cFDR3
was slightly more powerful than the non-

parametric estimator cFDR ̂cFDR1
when the underlying distributional assumption (Normal

alternative) was correct. The difference in power in this case was small, and cFDR ̂cFDR1

was considerably more powerful when the distributional assumption was false. As n→∞,

we expect that cFDR ̂cFDR1
will be more powerful than cFDR ̂cFDR3

if distributional

assumptions are false, and both will have equivalent power if they are true (since L-regions

associated with cFDR ̂cFDR1
will converge towards the ‘true’ L-regions associated with

the underlying P,Q distribution, and L-regions associated with cFDR ̂cFDR3
will converge

towards those associated with the best normal approximation to it).

The parametric cFDR estimator has several theoretical advantages. First, it invites an

extension to higher-dimensional spaces, conditioning on two traits rather than one, which

is an interesting avenue for future work. Second, it allows computation of the ‘local’ cfdr,

which defines a different ordering on hypotheses than the cFDR. This contrasts with the

one-dimensional case, where fdr estimates, FDR estimates, and p-values are generally mono-

tonic (Efron and others, 2008). Although the cfdr corresponds to a theoretically optimal
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decision boundary for rejecting HP
0 if estimated accurately, we found that the estimate was

too chaotic to be of general use in hypothesis testing with n < 104.

It is possible that other estimators of cfdr may be more stable. However, we suspect that

similar problems are likely to be encountered, as PDFs are generally harder to estimate than

CDFs, even in the univariate setting (Efron and others, 2008); heuristically, to estimate the

PDF of P,Q at a point (p, q), either only the small proportion of the data local to (p, q) can

be used, or strong parametric assumptions must be made to allow distant points to affect

the estimate. We note that cfdr performed poorly even when distributional assumptions

were correct and the underlying distribution was well-behaved (Normal) and had only seven

degrees of freedom. These artificial conditions are far simpler than those encountered in

‘real-world’ problems, and we conclude that while the cfdr may remain a useful Bayesian

quantity in assessing the posterior probability of association for an interesting variable, no

estimator of cfdr is likely to be of use in hypothesis-testing at these scales (n < 104). Other

estimators (for instance, that of Zablocki and others (2014)) may be effective at higher n.

Inclusion of an estimate of the quantity Pr(HP
0 |Q ≤ q) in the cFDR estimate improves

the power over existing methods, and the accuracy of the estimate, at the cost of asymptotic

conservatism. The assumption HP
0 ⇔ P ≥ 1

2 is not ideal, since the sign of ε in equation (25)

cannot usually be confidently determined, and the estimation is not consistent as n → ∞

(although it is if sample sizes → ∞). Estimates of Pr(Q ≤ q|HP
0 ) may thus be biased.

Alternative methods for estimating Q|HP
0 may include examining the distribution of Q

amongst P-values reaching a higher threshold on P (for instance, assuming HP
0 ⇔ P ≥ 0.99)

or amongst a set of ‘control’ variables known to be in HP
0 and typical of all variables in HP

0 .

However, in Liley and Wallace (2018), we found that the estimate tended to be adequate in

the context of integrating over regions L.

In summary, our methods add to the body of methods for co-analysis of omics data.

Estimating Pr(HP
0 |Q ≤ q) improves the power of cFDR estimators, and parametric estima-

tors enable greater flexibility in their use. We present empirical arguments that although

the cFDR is not a theoretically optimal discriminator, it may be pragmatically the best

available. These results support confidence in the robustness of the cFDR ̂cFDR1
estima-

tor generally and associated FDR-controlling procedures, even at relatively small values of

n.
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8 Software

Software is available as an R package at https://github.com/jamesliley/cfdr. All data

and a pipeline to deterministically generate all plots and results in this paper can be found

at https://github.com/jamesliley/cfdr_estimation_pipeline

9 Supplementary Material

1. Description of our protocol for simulations

2. Supplementary figure: comparison of cFDR estimators at α = 0.01
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General notes for notation

1. P, p refer to study under investigation, Q, q to study for conditioning on. P and

Q are also used to refer to these two studies as opposed to the random variables

corresponding to p-values.

2. i and j index hypotheses and variables corresponding to hypotheses, (i) generally

meaning the ith smallest

3. S refers to the set (p1, q1), (p2, q2), ..., (pn, qn)

4. k indexes folds/subdivisions

5. n is the total number of hypotheses

6. N is the number of folds for cross-validation/resampling

7. P,Q are random variables, p, q are observations

8. HP is an indicator variable for association in study P . It can be considered in a

Bayesian sense as a Bernoulli-distributed random variable, or a frequentist sense as a

null hypothesis eg HP = 0.

9. v-values refer to values v(L) used for testing in some sense. The exact definition

depends on the method used for FDR control.
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Figure 1: Dependence of cFDR ̂cFDR1
values on location of nearby points. In this example,

we denote by (p1, q1), (p2, q2) the points at the (unique) left and lower extremes of the
observed p-value distribution respectively; that is, p1 = min(pi), q2 = min(qi). We set NQ
as the number of points with q1 ≤ qi ≤ q2 (small black points). If we add a test point
(p′, q′) (shown in red) in a small neighbourhood of either (p1, q1) or (p2, q2), the estimated

cFDR ̂cFDR1

S+(p′,q′)(p
′, q′) (shown in red next to the point) differs by a factor of 2 in

different quadrants of the neighbourhood.
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Figure 2: Forms of regions LζS(α) for ζ ∈ 1, 2, 3 (CDF, KDE, and modelled estimator
respectively) for various values of α. Gray curves show rightmost border of regions, and
red circles show datapoints in S. Curves (and hence rejection regions) are smoothest when
ζ = 2, but are least responsive to local changes in data density. All regions tend to widen
with lower Q.
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Figure 3: Relative power of each cFDR type (cFDR ̂cFDR1
, cFDR ̂cFDR3

, and

cFDR ̂cFDR2
) compared to BH, plotted against np1 + npq1 and subdivided by alternative

distribution type (normal, t (3 df), Cauchy, and all combined with frequency 1/3). Param-
eters drawn from continuous distributions (see appendix 1.1. Gaussian smoothing is used
with a kernel width of 1/8 of the x-axis range.
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Figure 4: Difference between power of each cFDR type (cFDR ̂cFDR1
, cFDR ̂cFDR2

,

and cFDR ̂cFDR3
) with and without inclusion of the estimate of Pr(HP

0 |Q ≤ q) (that

is, cFDR ̂cFDR1s
, cFDR ̂cFDR2s

, and cFDR ̂cFDR3s
), all compared to BH (the power

of the Benjamini-Hochberg method applied to values pi. Dashed lines show ∆(power) for

cFDR ̂cFDR1s
, cFDR ̂cFDR2s

, and cFDR ̂cFDR3s
.
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Figure 5: Power of local cfdr estimate cfdrĉfdr compared to cFDR estimate cFDR ̂cFDR3
,

relative to the power of the Benjamini-Hochberg method applied to p-values. The local cfdr
estimate performs poorly.
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Figure 6: Contours of cfdrĉfdr
3

(‘local’ PDF-based estimator) and cFDR ̂cFDR3
(standard

CDF-based estimator) evaluated on the same data. Data were repeatedly simulated (six
times) under the true parameter set (π0, π1, π2, σ1, σ2, τ1, τ2) = (0.94, 0.02, 0.02, 3, 3, 3, 3),
with n = 105 variables. For each simulation, MLE parameters were re-estimated. Red

curves show contours of cFDR ̂cFDR3
/cFDR ̂cFDR3

passing through (ZP , ZQ) = (4, 0)
, and black curves contours derived from the true (rather than estimated) parameters.

Contours for cfdrĉfdr
3

are far more chaotic, leading to loss of power despite theoretical
optimality. Black points show a realisation of simulated ZP , ZQ.
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Figure 7: Z scores from TWAS on breast cancer (BRCA) and ovarian cancer (OCA) for a

range of genes in 53 tissue types. Red points (crosses) show rejections using cFDR ̂cFDR1s
,

blue points (diamonds) using p-value alone, controlling overall FDR at α = 1× 10−6. Red

(solid) and blue (dashed) lines indicate approximate rejection regions for cFDR ̂cFDR1s

and p-values respectively. Dashed red lines (underneath solid lines on right panel) denote

approximate rejection regions for cFDR ̂cFDR1
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Figure 8: Ratio of new discoveries using cFDR ̂cFDR1s
and new discoveries using p-value

at varying α. New gene-disease associations are shown in red, new gene-tissue-disease asso-
ciations in blue. Both trend upwards with decreasing α.
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1 Appendix

1.1 Simulation protocol

The distributions and variables we considered are shown in table 1. In general, our simula-

tions took the form of: a fixed number npq1 of variables associated in both P and Q, a fixed

number of variables np1 associated only with p, a fixed number of variables nq1 associated

only with Q and the remainder of variables associated with neither P nor Q. We will refer

to these four classes of variables as C1, C2, C3, C4. We designated that within each class of

variables, Pi and Qi were iid.

Table 1: Variables used in simulations

Variable Description Point values
Sampling distribution
for other values

n
Total number of
variables

103, 104 10U(3,4) (rounded)

npq1
Number of variables
assoc. with P , Q

0, 10, 200 U(0, 200)

np1
Number of variables
associated with P

0,10,200 U(0, 200) (rounded)

nq1
Number of variables
associated with Q

0,10,200 U(0, 200) (rounded)

sp
Scale for distribution
of Pi (see below)

3
2 , 3 U

(
3
2 , 3
)

sq
Scale for distribution
of Pj

3
2 , 3 U

(
3
2 , 3
)

d Form of distributions
Normal, t (3df),
Cauchy (eq. prob.)

Normal, t (3df),
Cauchy (eq. prob.)

We considered two types of simulations: either with all numerical parameters drawn

uniformly from a set of fixed ‘interesting’ values, or with all numerical parameters drawn

from continuous distributions. Our intent was to evaluate FDR values accurately at these

‘interesting’ points in the parameter space, and more roughly consider values in between

these points. One such ‘interesting’ area of the parameter space was the scenario in which

no variables were associated in study P (that is, np1 +npq1 = 0). In some plots (namely when

looking at how power varies with np1 + npq1 ) only simulations with parameters drawn from

continuous distributions are used.

For variables in C1, C2, we set the distribution of Pi (determined by d, sp) by first

simulating Z scores:

d=1: −Φ−1
(
Pi

2

)
1
sp
∼ N(0, 1)

1
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d=2: −Φ−1
(
Pi

2

)
1
sp
∼ t(df = 3,ncp = 0)

d=3: −Φ−1
(
Pi

2

)
1
sp
∼ Cauchy(location = 0, scale = 1)

where −Φ−1
(
Pi

2

)
can be considered a Z-score corresponding to Pi, and sp a scaling factor

for the distribution. We set the distribution of Qi in C1, C3 similarly, with sq in place of

sp. The values pi, qi for i ∈ C4 were sampled from U(0, 1).

Within each class C1−C4 we simulated independent P,Q, although P,Q are still depen-

dent when not conditioning on class. We also considered sp to be constant across C1 and

C2, sq to be constant across C1 and C3, and d to be constant in each simulation.

We analysed each simulated dataset in parallel using each of the three estimators of

cFDR ̂cFDR. We also performed a standard Benjamini-Hochberg procedure on the values

of P (without considering the values of Q) as a control. We further considered each estimator

of cFDR ̂cFDR both with and without the adjustment due to estimation of Pr(HP
0 |Q ≤ q).

To estimate the null distribution of Pr(HP
0 |Q ≤ q) in order to integrate to generate values

v(L), we considered both the true distribution and a mixture-normal distribution estimated

from the distribution of P,Q|P ≥ 1
2 as per Section 3.3.

2
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2 Supplementary figure: comparison of cFDR estima-

tors at α = 0.01
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Figure 9: Analogous to figure 3 with α = 0.01 instead of α = 0.1. Relative power of each

cFDR type (cFDR ̂cFDR1
, cFDR ̂cFDR3

, and cFDR ̂cFDR2
) compared to power of the

Benjamini-Hochberg method, using FDR control method 3b, plotted against np1 + npq1 and
subdivided by alternative distribution type (normal, t (3 df), Cauchy, and all combined
with frequency 1/3). Parameters drawn from continuous distributions (see appendix 1.1).
Gaussian smoothing is used with a kernel width of 60.
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