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 6 

The application of polygenic risk scores (PRS) has become routine across genetic 7 

research. Among a range of applications, PRS are exploited to assess shared aetiology 8 

between phenotypes, to evaluate the predictive power of genetic data for use in clinical 9 

settings, and as part of experimental studies in which, for example, experiments are 10 

performed on individuals, or their biological samples (eg. tissues, cells), at the tails of 11 

the PRS distribution and contrasted. As GWAS sample sizes increase and PRS become 12 

more powerful, they are set to play a key role in personalised medicine. However, 13 

despite the growing application and importance of PRS, there are limited guidelines for 14 

performing PRS analyses, which can lead to inconsistency between studies and 15 

misinterpretation of results. Here we provide detailed guidelines for performing 16 

polygenic risk score analyses relevant to different methods for their calculation, 17 

outlining standard quality control steps and offering recommendations for best-18 

practice. We also discuss different methods for the calculation of PRS, common 19 

misconceptions regarding the interpretation of results and future challenges. 20 

 21 

Genome-wide association studies (GWAS) have identified a large number of genetic variants, 22 

typically single nucleotide polymorphisms (SNP), associated with a wide range of complex 23 

traits [1–3]. However, the majority of these variants have a small effect and typically 24 

correspond to a small fraction of truly associated variants, meaning that they have limited 25 

predictive power [4–6]. Using a linear mixed model in the Genome-wide Complex Trait 26 

Analysis software (GCTA) [7], Yang et al (2010) demonstrated that much of the heritability of 27 

height can be explained by evaluating the effects of all SNPs simultaneously [6]. Subsequently, 28 

statistical techniques such as LD score regression (LDSC) [8,9] and the polygenic risk score 29 

(PRS) method [4,10] have also aggregated the effects of variants across the genome to 30 

estimate heritability, to infer genetic overlap between traits and to predict phenotypes based 31 

on genetic profile or that of other phenotypes [4,5,8–10]. 32 

 33 

While GCTA, LDSC and PRS can all be exploited to infer heritability and shared aetiology 34 

among complex traits, PRS is the only approach that provides an estimate of genetic 35 

propensity to a trait at the individual-level. In the standard approach [4,11–13], polygenic risk 36 

scores are calculated by computing the sum of risk alleles corresponding to a phenotype of 37 
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interest in each individual, weighted by the effect size estimate of the most powerful GWAS 38 

on the phenotype. Studies have shown that substantially greater predictive power can usually 39 

be achieved by using PRS rather than a small number of genome-wide significant SNPs 40 

[11,14,15]. As an individual-level genome-wide genetic proxy of a trait, PRS are suitable for a 41 

range of applications. For example, as well as identifying shared aetiology among traits, PRS 42 

have been used to test for genome-wide G*E and G*G interactions [15,16], to perform 43 

Mendelian Randomisation studies to infer causal relationships, and for patient stratification 44 

and sub-phenotyping [14,15,17,18]. Thus, while polygenic scores represent individual genetic 45 

predictions of phenotypes, prediction is generally not the end objective, rather these 46 

predictions are then typically used for interrogating hypotheses via association testing. 47 

 48 

Despite the popularity of PRS analyses, there are minimal guidelines [13] regarding how best 49 

to perform PRS analyses, and no existing summaries of the differences and options among 50 

the main PRS approaches. Here we provide a guide to performing polygenic risk score 51 

analysis, outlining the standard quality control steps required, options for PRS calculation and 52 

testing, and interpretation of results. We also outline some of the challenges in PRS analyses 53 

and highlight common misconceptions in the interpretation of PRS and their results. We will 54 

not perform a comparison of the power of different PRS methods nor provide an overview of 55 

PRS applications, since these are available elsewhere [13,19], and instead focus this article 56 

on the issues relevant to PRS analyses irrespective of method used or application, so that 57 

researchers have a starting point and reference guide for performing polygenic score analyses. 58 

1. Introduction to Polygenic Risk Scores 59 

We define polygenic risk scores, or polygenic scores, as a single value estimate of an 60 

individual’s propensity to a phenotype, calculated as a sum of their genome-wide genotypes 61 

weighted by corresponding genotype effect sizes – potentially scaled or shrunk – from 62 

summary statistic GWAS data. The use of summary statistic data for the genotype effect size 63 

estimates differentiates polygenic scores from phenotypic prediction approaches that exploit 64 

individual-level data only, in which genotype effect sizes are typically estimated in joint models 65 

of multiple variants and prediction performed simultaneously, such as via best linear unbiased 66 

prediction (BLUP) [20,21] and least absolute shrinkage and selection operator (LASSO) 67 

[22,23]. While we note that such methods may offer great promise in performing powerful 68 

prediction within large individual-level data sets [22], we limit our focus to polygenic scores 69 

specifically, which we believe are likely to have enduring application due to (i) the desire to 70 

test specific hypotheses on locally collected small-scale data sets, (ii) data sharing restrictions, 71 

(iii) heterogeneity across data sets, (iv) large general population data sets, such as the UK 72 
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Biobank [24], having relatively few individuals with specific diseases compared to dedicated 73 

case/control studies. 74 

 75 

Therefore, PRS analyses can be characterized by the two input data sets that they require: i) 76 

base (GWAS) data: summary statistics (e.g. betas, P-values) of genotype-phenotype 77 

associations at genetic variants (hereafter SNPs) genome-wide, and ii) target data: genotypes 78 

and phenotype(s) in individuals of the target sample. If the population-level effects of the SNPs 79 

were estimated from the GWAS without error, then the PRS could predict the phenotype of 80 

individuals in the target data with variance explained equal to the “chip-heritability” (hsnp
2) of 81 

the trait [25]. However, due to error in the effect size estimates and inevitable differences in 82 

the base and target samples, the predictive power of PRS are typically substantially lower 83 

than hsnp
2 (see Figure 4a) but tend towards hsnp

2 as GWAS sample sizes increase.  84 

 85 

Important challenges in the construction of PRS are the selection of SNPs for inclusion in the 86 

score and what, if any, shrinkage to apply to the GWAS effect size estimates (see Section 87 

3.1). If such parameters are already known, then PRS can be computed directly on the target 88 

individual(s). However, when parameters for generating an optimal PRS are unknown, then 89 

the target sample can be used for model training, allowing optimisation of model parameters. 90 

How to perform this parameter optimisation without producing overfit PRS is discussed in 91 

Section 4.4. First, we outline recommended quality control (QC) of the base and target data. 92 

In Figure 1, a flow chart summarises the fundamental features of a PRS analysis and reflects 93 

the structure of this guide.  94 

 95 

 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 
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 105 
Figure 1: The Polygenic Risk Score (PRS) analysis process. PRS can be defined by their use of base and target 106 
data, as in Section 1. Quality control of both data sets is described in Section 2, while the different approaches to 107 
calculating PRS – e.g. LD adjustment via clumping, beta shrinkage using lasso regression, P-value thresholding – 108 
is summarised in Section 3. Issues relating to exploiting PRS for association analyses to test hypotheses, including 109 
interpretation of results and avoidance of overfitting to the data, are detailed in Section 4.  110 
 111 
 112 
 113 
 114 
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2. Quality Control of Base and Target data 115 

The power and validity of PRS analyses are dependent on the quality of the base and target 116 

data. Therefore, both data sets must be quality controlled to the high standards implemented 117 

in GWAS studies, e.g. removing SNPs according to low genotyping rate, minor allele 118 

frequency or imputation ‘info score’ and individuals with low genotyping rate (see [26–28]). 119 

PLINK is a useful software for performing such quality control (QC) [29,30]. Particular care 120 

should be taken over these standard QC procedures since any errors that occur may 121 

aggregate across SNPs when PRS are computed. In addition to these standard GWAS QC 122 

measures, the following QC issues more specific to PRS analyses need special attention and 123 

should act as a checklist for PRS analyses:  124 

 125 

File transfer: Since most base GWAS data are downloaded online, and base/target data 126 

transferred internally, one should ensure that files have not been corrupted during transfer, 127 

e.g. using md5sum [31]. PRS calculation errors are often due to corrupt files. 128 

 129 

Genome Build: Ensure that the base and target data SNPs have genomic positions assigned 130 

on the same genome build [32]. LiftOver [33] is an excellent tool for standardizing genome 131 

build across different data sets.   132 

 133 

Effect allele: Some GWAS results files do not make clear which allele is the effect allele and 134 

which the non-effect allele. If the incorrect assumption is made in computing the PRS, then 135 

the effect of the PRS in the target data will be in the wrong direction, and so to avoid misleading 136 

conclusions it is critical that the effect allele from the base (GWAS) data is known. 137 

 138 

Ambiguous SNPs: If the base and target data were generated using different genotyping 139 

chips and the chromosome strand (+/-) for either is unknown, then it is not possible to match 140 

ambiguous SNPs (i.e. those with complementary alleles, either C/G or A/T) across the data 141 

sets, because it will be unknown whether the base and target data are referring to the same 142 

allele or not. While allele frequencies can be used to infer which alleles match [34], we 143 

recommend removing all ambiguous SNPs since the allele frequencies provided in base 144 

GWAS are often those from resources such as the 1000G project, and so aligning alleles 145 

according to their frequency could lead to systematic biases in PRS analyses. When there is 146 

a non-ambiguous mismatch in allele coding between the data sets, such as A/C in the base 147 

and G/T in the target data, then this can be resolved by ‘flipping’ the alleles in the target data 148 

to their complementary alleles. Most polygenic score software can perform this flipping 149 

automatically. 150 
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Duplicate SNPs: Ensure that there are no duplicated SNPs in either the base or target data 151 

since this may cause errors in PRS calculation unless the code/software used specifically 152 

checks for duplicated SNPs. 153 

 154 

Sex-check: While sex-check procedures are standard in GWAS QC, they are critical in PRS 155 

analyses because errors may generate false-positive associations that are due to sex 156 

differences in the target phenotype generated by factors other than autosomal genetics. If the 157 

aim is to only model autosomal genetics, then all X and Y chromosome SNPs should be 158 

removed from the base and target data to eliminate the possibility of confounding by sex. 159 

Proper modelling of the sex chromosomes would improve the predictive power of PRS, but a 160 

lack of consensus on how best to analyse the sex chromosomes in GWAS has meant that 161 

they have, unfortunately, not generally been considered in PRS studies to date. 162 

 163 

Sample overlap: Sample overlap between the base and target data can result in substantial 164 

inflation of the association between the PRS and trait tested in the target data [35] and so 165 

must be eliminated either, (1) directly: either removing overlapping samples from the target 166 

data, or if this removes most/all target individuals, then in the base data followed by 167 

recalculation of the base GWAS, or (2) indirectly: if, and only if, the overlapping samples 168 

correspond to the entire target sample, and the GWAS that contributed to the base data is 169 

available for use, then the overlap can be eliminated using the analytic solution described in 170 

[36]. We expect a correction in more complex scenarios of sample overlap, when these 171 

solutions are unavailable, to be an objective of future methods development. 172 

 173 

Relatedness: A high degree of relatedness among individuals between the base and target 174 

data can also generate inflation of the association between the PRS and target phenotype. 175 

Assuming that the results of the study are intended to reflect those of the general population 176 

without close relatedness between the base and target samples, then relatives should be 177 

excluded. If genetic data from the relevant base data samples can be accessed, then any 178 

closely related individuals (eg. 1st/2nd degree relatives) across base and target samples should 179 

be removed. If this is not an option, then every effort should be made to select base and target 180 

data that are very unlikely to contain highly related individuals. 181 

 182 

Heritability check: A critical factor in the accuracy and predictive power of PRS is the power 183 

of the base GWAS data [4], and so to avoid reaching misleading conclusions from the 184 

application of PRS we recommend first performing a heritability check of the base GWAS data. 185 

We suggest using a software such as LD Score regression [8] or LDAK [37] to estimate chip-186 

heritability from the GWAS summary statistics, and recommend caution in interpretation of 187 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 14, 2018. ; https://doi.org/10.1101/416545doi: bioRxiv preprint 

https://doi.org/10.1101/416545
http://creativecommons.org/licenses/by/4.0/


PRS analyses that are performed on GWAS with a low chip-heritability estimate (eg. hsnp
2 < 188 

0.05). 189 

3. The Calculation of Polygenic Risk Scores 190 

Once quality control has been performed on the base and target data, and the data files are 191 

formatted appropriately, then the next step is to calculate polygenic risk scores for all 192 

individuals in the target sample. There are several options in terms of how PRS are calculated. 193 

GWAS are performed on finite samples drawn from particular subsets of the human population, 194 

and so the SNP effect size estimates are some combination of true effect and stochastic 195 

variation – producing ‘winner’s curse’ among the top-ranking associations – and the estimated 196 

effects may not generalise well to different populations (Section 3.4). The aggregation of SNP 197 

effects across the genome is also complicated by the correlation among SNPs – ‘Linkage 198 

Disequilibrium’ (LD). Thus, key factors in the development of methods for calculating PRS are 199 

(i) the potential adjustment of GWAS estimated effect sizes via e.g. shrinkage and 200 

incorporation of their uncertainty, (ii) the tailoring of PRS to target populations, and (iii) the 201 

task of dealing with LD. We discuss these issues below, and also those relating to the units 202 

that PRS values take, the prediction of traits different from the base trait, and multi-trait PRS 203 

approaches. Each of these issues should be considered when calculating PRS – though 204 

several are automated within specific PRS software – irrespective of application or whether 205 

the PRS will be subsequently used for prediction as an end point or for association testing of 206 

hypotheses.  207 

3.1 Shrinkage of GWAS effect size estimates 208 

Given that SNP effects are estimated with uncertainty and since not all SNPs influence the 209 

trait under study, the use of unadjusted effect size estimates of all SNPs could generate poorly 210 

estimated PRS with high standard error. To address this, two broad shrinkage strategies have 211 

been adopted: i) shrinkage of the effect estimates of all SNPs via standard or tailored statistical 212 

techniques, and ii) use of P-value selection thresholds as inclusion criteria for SNPs into the 213 

score.  214 

 215 

(i) PRS methods that perform shrinkage of all SNPs [19,38] generally exploit 216 

commonly used statistical shrinkage/regularisation techniques, such as LASSO or 217 

ridge regression [19], or Bayesian approaches that perform shrinkage via prior 218 

distribution specification [38]. Under different approaches or parameter settings, 219 

varying degrees of shrinkage can be achieved: some force most effect estimates 220 
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to zero or close to zero, some mostly shrink small effects, while others shrink the 221 

largest effects most. The most appropriate shrinkage to apply is dependent on the 222 

underlying mixture of null and true effect size distributions, which are likely a 223 

complex mixture of distributions that vary by trait. Since the optimal shrinkage 224 

parameters are unknown a priori, PRS prediction is typically optimised across a 225 

range of (tuning) parameters (for overfitting issues relating to this, see Section 4.4), 226 

which in the case of LDpred, for example, includes a parameter for the fraction of 227 

causal variant [38]. 228 

 229 

(ii) In the P-value selection threshold approach, only those SNPs with a GWAS 230 
association P-value below a certain threshold (eg. P < 1x10-5) are included in the 231 

calculation of the PRS, while all other SNPs are excluded. This approach 232 

effectively shrinks all excluded SNPs to an effect size estimate of zero and 233 

performs no shrinkage on the effect size estimates of those SNPs included. Since 234 

the optimal P-value threshold is unknown a priori, PRS are calculated over a range 235 

of thresholds, association with the target trait tested for each, and the prediction 236 

optimised accordingly (see Section 4.4). This process is analogous to tuning 237 

parameter optimisation in the formal shrinkage methods. An alternative way to view 238 

this approach is as a parsimonious variable selection method, effectively 239 

performing forward selection ordered by GWAS P-value, involving block-updates 240 

of variables (SNPs), with size dependent on the increment between P-value 241 

thresholds. Thus the ‘optimal threshold’ selected is defined as such only within the 242 

context of this forward selection process; a PRS computed from another subset of 243 

the SNPs could be more predictive of the target trait, but the number of subsets of 244 

SNPs that could be selected is too large to feasibly test given that GWAS are based 245 

on millions of SNPs.  246 

3.2 Controlling for Linkage Disequilibrium 247 

The association tests in GWAS are typically performed one-SNP-at-a-time, which, combined 248 

with the strong correlation structure across the genome, makes identifying the independent 249 

genetic effects (or best proxies of these if not genotyped/imputed) extremely challenging. 250 

While the power of GWAS can be increased by conditioning on the effects of multiple SNPs 251 

simultaneously [39], this requires access to raw data on all samples, so researchers generally 252 

need to exploit standard GWAS (one-SNP-at-a-time) summary statistics to compute polygenic 253 

scores. There are two main options for approximating the PRS that would have been 254 

generated from full conditional GWAS: (i) SNPs are clumped so that the retained SNPs are 255 
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largely independent of each other and thus their effects can be summed, assuming additivity, 256 

(ii) all SNPs are included and the linkage disequilibrium (LD) between them is accounted for. 257 

Usually option (i) is chosen in the ‘standard approach’ to polygenic scoring, involving P-value 258 

thresholding, while option (ii) is generally favoured in methods that implement traditional 259 

shrinkage methods [19,38] (see Table 1). In relation to (i), some researchers, however, prefer 260 

to perform the P-value thresholding approach without clumping, meaning that the effects of 261 

correlated SNPs are summed as though they were independent. While breaking this 262 

assumption may lead to minimal losses in some scenarios [19], we recommend performing 263 

clumping [13] when non-shrunk effect sizes estimates from GWAS are used because the non-264 

uniform nature of LD across the genome is likely to generate some bias in estimates. The 265 

reason why the standard approach, though simple, appears to perform comparably to more 266 

sophisticated approaches [19,38] may be due to the clumping process capturing conditionally 267 

independent effects well; note that, (i) clumping does not merely thin SNPs by LD at random 268 

(like pruning) but preferentially selects SNPs most associated with the trait under study, (ii) 269 

clumping can retain multiple independent effects in the same genomic region if they exist (it 270 

does not simply retain only the most associated SNP in a region). A criticism of clumping, 271 

however, is that researchers typically select an arbitrarily chosen correlation threshold [35] for 272 

the removal of SNPs in LD, and so while no strategy is without arbitrary features, this may be 273 

an area for future development of the classical approach. 274 

 275 

Table 1. Comparison of different approaches for performing Polygenic Risk Score analyses 276 

 P-value 

thresholding 

w/o clumping 

Standard approach: 

Clumping + 

thresholding (C+T) 

Penalised 

Regression 

Bayesian             

Shrinkage 

Shrinkage strategy P-value 

threshold 

P-value threshold LASSO, 

Elastic Net, 

penalty 

parameters 

Prior 

distribution, 

e.g. fraction of 

causal SNPs 

Handling Linkage 

Disequilibrium 

N/A Clumping LD matrix is 

integral to 

algorithm 

Shrink effect 

sizes with 

respect to LD 

Example software PLINK PRSice [12] Lassosum [19] LDpred [38] 

 277 
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3.3 PRS units 278 

When calculating PRS, the units of the GWAS effect sizes determine the units of the PRS; 279 

e.g. if calculating a height PRS using effect sizes from a height GWAS that are reported in 280 

centimetres (cm), then the resulting PRS will also be in units of cm. PRS may then be 281 

standardised, dividing by the number of SNPs to ensure a similar scale irrespective of number 282 

of SNPs included, or standardised to a standard normal distribution. However, the latter 283 

discards information that may wish to be retained, since the absolute values of the PRS may 284 

be useful in detecting problems with the calculation of the PRS or the sample, identifying 285 

outliers, comparing or combining PRS across different samples, or even detecting the effects 286 

of natural selection. Negative selection against effect alleles could result in a PRS with a mean 287 

negative value due to effect alleles being at lower frequency than non-effect alleles on average, 288 

and the opposite for traits under positive selection. 289 

 290 

In calculating PRS on a binary (case/control) phenotype, the effect sizes used as weights are 291 

typically reported as log Odds Ratios (log(ORs)). Assuming that relative risks on a disease 292 

accumulate on a multiplicative rather than additive scale [40], then PRS should be computed 293 

as a summation of log(OR)-weighted genotypes. It is important for subsequent interpretation 294 

to know which logarithmic scale was used since the PRS will take the same units and will be 295 

needed to transform back to an OR scale. 296 

3.4 Population structure and global heterogeneity  297 

Population structure is the principal source of confounding in GWAS (post-QC), and thus risk 298 

of false-positive findings. Briefly, structure in mating patterns in a population generates 299 

structure in genetic variation, correlated most strongly with geographic location, and 300 

environmental risk factors can be similarly structured; this creates the potential for 301 

associations between many genetic variants and the tested trait that are confounded by e.g. 302 

location [41,42]. While this problem is typically addressed in GWAS via adjustment by principal 303 

components (PCs) [41] or the use of mixed models [43], population structure poses a 304 

potentially greater problem in PRS analyses, because a large number of null variants are 305 

typically included in the calculation of PRS and their estimated effects are aggregated. If allele 306 

frequencies differ systematically between the base and target data, which may derive from 307 

genetic drift or the ascertainment of genotyped variants [44], and if the distributions of 308 

environmental risk factors for the trait also differ between the two – both highly likely in most 309 

PRS studies – then there is a danger that an association between the PRS and target trait can 310 

be generated by differences at null SNPs. Confounding is potentially reintroduced even if the 311 

GWAS had controlled for population structure perfectly, because this does not account for 312 
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correlated differences in allele frequencies and risk factors between the base and target data. 313 

When the base and target samples are drawn from the same or genetically similar populations, 314 

stringent control for structure in the PRS analysis itself (e.g. including a large number of PCs) 315 

should suffice to avoid false-positive findings, but we recommend in general that extreme 316 

caution is taken given dramatic differences in PRS distributions observed between populations 317 

[44–46]. While these observations do not imply large differences in aetiology across 318 

populations – although genuine differences due to variation in the environment, culture and 319 

selection pressures are likely to contribute – they do question the reliability of PRS analyses 320 

using base and target data from different populations that do not rigorously address the issue 321 

of potential confounding from geographic stratification [45]. It is also important to be wary of 322 

the fact that highly significant results can be observed due to subtle confounding when 323 

exploiting large sample sizes. Note that we use the term ‘population’ here in a statistical sense: 324 

problems of population structure are just as relevant within-country given differences in the 325 

genetics and environment between individuals in the base and target samples. We expect the 326 

issue of the generalisability of PRS across populations to be an active area of methods 327 

development in the coming years [46,47]. 328 

3.5 Predicting Different Traits and exploiting multiple PRS 329 

While PRS are often analysed in scenarios in which the base and target phenotype are the 330 

same, many published studies involve a target phenotype different from that on which the PRS 331 

is based. These analyses fall into three main categories: (i) optimising target trait prediction 332 

using a different but similar (or ‘proxy’) base trait: if there is no large GWAS on the target trait, 333 

or it is underpowered compared to a similar trait, then prediction may be improved using a 334 

different base trait (e.g. education years to predict cognitive performance [48,49]), (ii) 335 

optimising target trait prediction by exploiting multiple PRS based on a range of different traits 336 

in a joint model, (iii) testing for evidence of shared aetiology between base and target trait [50]. 337 

Applications (i) and (ii) are straightforward in their aetiology-agnostic aim of optimising 338 

prediction, achieved by exploiting the fact that a PRS based on one trait is predictive of 339 

genetically correlated traits, and that a PRS computed from any base trait is sub-optimal due 340 

to the finite size of any GWAS. Application (iii) is inherently more complex because there are 341 

different ways of defining and assessing ‘shared aetiology’. Shared aetiology may be due to 342 

so-called horizontal pleiotropy (separate direct effects) or vertical pleiotropy (downstream 343 

effect) [51] and it is unclear what quantity should be estimated to assess evidence – genetic 344 

correlation [9], genetic contribution to phenotypic covariance (co-heritability) [52,53], or a trait-345 

specific measure (eg. where the denominator relates only to the genetic risk of one trait). 346 
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While there is active method development in these areas [54–56] at present, the majority of 347 

PRS studies use exactly the same approach to PRS analysis whether or not the base and 348 

target phenotypes differ [50,56]. However, this is rather unsatisfactory because of the non-349 

uniform genetic sharing between different traits. In PRS analysis, the effect sizes and P-values 350 

are estimated using the base phenotype, independent of the target phenotype. Thus, a SNP 351 

with high effect size and significance in the base GWAS may have no effect on the target 352 

phenotype. The standard approach could be adapted so that SNPs are prioritized for inclusion 353 

in the PRS according to joint effects on the base and target traits [57], but this has yet to be 354 

implemented in any standard software. Other more sophisticated solutions are presently being 355 

investigated [55] and other approaches will likely be developed in future, each tailored to 356 

specific scientific questions. 357 

4. Interpretation and Presentation of Results  358 

If performing individual prediction is the end objective – for example, to make clinical decisions 359 

about individual patients – then the most predictive polygenic score method (known at the 360 

time) should be applied to the most powerful base sample available on the relevant trait, in 361 

order to optimise accuracy of the individual PRS. Little interpretation or presentation of results 362 

are required in this setting, and thus Section 4 is devoted to the primary use of PRS in 363 

association testing of scientific hypotheses. Once PRS have been calculated, selecting from 364 

the options described in Section 3, typically a regression is then performed in the target sample, 365 

with the PRS as a predictor of the target phenotype, and covariates included as appropriate. 366 

4.1 Association and goodness-of-fit metrics  367 

A typical PRS study involves testing evidence for an association between a PRS and a trait 368 

or measuring the extent of the association in the entire or specific strata of the sample. The 369 

standard ways of measuring associations in epidemiology, and their related issues, apply here. 370 

The association between PRS and outcome can be measured with the standard association 371 

or goodness-of-fit metrics, such as the effect size estimate (beta or OR), phenotypic variance 372 

explained (R2), area under the curve (AUC), and P-value corresponding to a null hypothesis 373 

of no association. The PRS for many traits are such weak proxies of overall genetic burden 374 

(presently) that the phenotypic variance that they explain is often very small (R2 < 0.01), 375 

although this is not important if the aim is only to establish whether an association exists. 376 

However, present evidence on the ubiquity of pleiotropy across the genome [51] indicates that 377 

there may be shared aetiology between the vast majority of phenotypes, detectable with 378 

sufficient sample size. Thus, establishing the relative extent of associations among a range of 379 
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traits may be more worthwhile [36,58], and act as a step towards identifying the casual 380 

mechanisms underlying these genetic associations [59].  381 

 382 

While variance explained (R2) is a well-defined concept for continuous trait outcomes, only 383 

conceptual proxies of this measure (“pseudo-R2”) are available for case/control outcomes. A 384 

range of pseudo-R2 metrics are used in epidemiology [60,61], with Nagelkerke R2 perhaps the 385 

most popular. However, Nagelkerke R2 suffers from particular bias when the case/control 386 

proportion is not reflective of the case population prevalence [60], and so in the context of 387 

estimating the genetic contribution to a polygenic disease it may be preferable to estimate the 388 

phenotypic variance explained on the liability scale. Intuitively, the R2 on the liability scale here 389 

estimates the proportion of variance explained by the PRS of a hypothetical normally 390 

distributed latent variable that underlies and causes case/control status [60,62]. Heritability is 391 

typically estimated on the liability scale for case/control phenotypes [13,60,62]. Lee et al [60] 392 

developed a pseudo-R2 metric that accounts for an ascertained case/control ratio and is 393 

measured on the liability scale. We show that, under simulation, this metric indeed controls 394 

for case/control ratios that do not reflect disease prevalence, while Nagelkerke R2 does not 395 

(Figure 2). 396 

  397 

 398 
Figure 2. Results from a simulation study comparing Nagelkerke pseudo-R2 with the pseudo-R2 proposed by Lee 399 
et al [59] that incorporates adjustment for the sample case:control ratio. In the simulation, 2,000,000 samples were 400 
simulated to have a normally distributed phenotype, generated by a normally distributed predictor (eg. a PRS) 401 
explaining a varying fraction of phenotypic variance and a residual error term to model all other effects. Case/control 402 
status was then simulated under the liability threshold model according to a specified prevalence. 5,000 cases and 403 
5,000 controls were then randomly selected from the population, and the R2 of the original continuous data, 404 
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estimated by linear regression (Empirical R2), was compared to both the Nagelkerke R2 (discs) and the Lee R2 405 
(triangles) based on the equivalent case/control data by logistic regression. 406 

4.2 Graphical representations of results: bar and quantile plots 407 

When the standard approach (C+T) is used, the results of the PRS association testing are 408 

often displayed as a bar plot, where each bar corresponds to the result from testing a PRS 409 

comprising SNPs with GWAS P-value exceeding a given threshold. Typically, a small number 410 

of bars are shown, reflecting results at round-figure P-value thresholds (5e-8, 1e-5, 1e-3, 0.01, 411 

0.05, 0.1, 0.2, 0.3 etc), and if ‘high-resolution’ scoring [12] is performed then a bar representing 412 

the most predictive PRS is included. Usually the Y-axis corresponds to the phenotypic 413 

variance explained by the PRS (R2 or pseudo-R2) and the value over each bar (or its colour) 414 

provides the P-value of the association between the PRS and target trait. It is important to 415 

note that the P-value threshold of the most predictive PRS is a function of the effect size 416 

distribution, the power of the base (GWAS) and target data, the genetic architecture of the 417 

trait, and the fraction of causal variants, and so should not be merely interpreted as reflecting 418 

the fraction of causal variants. For example, if the GWAS data are relatively underpowered 419 

then the optimal threshold is more likely to be P = 1 (all SNPs) even if a small fraction of SNPs 420 

is causal (see [4] for details).  421 

 422 

While goodness-of-fit measures, such as R2, provide a sample-wide summary of the predictive 423 

power of a PRS, it can be useful to inspect how trait values vary with increasing PRS or to 424 

gauge the elevated disease risk that specific strata of the population may be at according to 425 

their PRS. This can be easily visualized using a quantile plot (Figure 3a). Quantile plots in 426 

PRS studies are usually constructed as follows [2,63]. The target sample is first separated into 427 

strata of increasing PRS. For instance, 20 equally sized quantiles, each comprising 5% of the 428 

PRS sample distribution (Figure 3a). The phenotype values of each quantile are then 429 

compared to those of the reference quantile (usually the median quantile) one-by-one, with 430 

quantile status as predictor of target phenotype (reference quantile coded 0, test quantile 431 

coded 1) in a regression. Points on the plot depict the beta or OR (Y-axis), along with bars for 432 

their standard errors, corresponding to the regression coefficients of these quantile-status 433 

predictors. If covariates are controlled for in the main analysis, then a regression can be 434 

performed with target trait as outcome and the covariates as predictors, and the residual trait 435 

on the Y-axis instead. Stratification may be performed on unequal strata of PRS (eg. Fig. 3b), 436 

in which case these are strata rather than quantile plots. Individuals with high PRS may have 437 

low trait values or vice versa, particularly if PRS explain minimal phenotypic variance, and 438 

thus the quantiles/strata are not necessarily monotonically increasing.  439 

 440 
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a 

 

    b 

 
Figure 3. Examples of quantile/strata plots. (a) shows the odds ratios (Y-axis) of a target trait across twenty equal-441 
sized strata of increasing PRS (X-axis) in relation to the 10th strata, while (b) shows a strata plot with eleven unequal 442 
strata that highlight the increased or decreased risk among individuals in the top and bottom percentiles of PRS, 443 
relative to individuals with PRS in the middle of the distribution (here from 40%-60%). 444 

 445 

4.3 PRS distribution 446 

Quantile plots corresponding to the same normally distributed phenotype in base and target, 447 

should reflect the S-shape of the probit function, and likewise for a binary trait underlain by a 448 

normally distributed liability, characterised by the liability threshold model [64]. Thus, 449 

inflections of risk at the tails of the PRS distribution [65], or at the top/bottom quantiles, should 450 

be interpreted according to this expectation. As for the PRS distribution itself, without respect 451 

to association with a target trait, the central limit theorem dictates that if the PRS is based on 452 

a sum of independent variables (here SNPs) with identical distributions, then the PRS of a 453 

sample should approximate the normal (Gaussian) distribution. Strong violations of these 454 

assumptions, such as the use of many correlated SNPs or a sample of heterogenous ancestry 455 

(thus SNPs with non-identical genotype distributions), can lead to non-normal PRS 456 

distributions. Samples of individuals from disparate worldwide populations may lead to highly 457 

non-normal PRS distributions (see Section 3.4), thus inspection of PRS distributions may be 458 

informative for problems of population stratification in the target sample not adequately 459 

controlled for.  460 

 461 

 462 
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4.4 Overfitting in PRS association testing 463 

A common concern in PRS studies that adopt the standard (C+T) approach is whether the 464 

use of the most predictive PRS – based on testing at many P-value thresholds – overfits to 465 

the target data and thus produces inflated results and false conclusions. While such caution 466 

is to be encouraged in general, potential overfitting is a normal part of prediction modelling, 467 

relevant to the other PRS approaches (Table 1), and there are well-established strategies for 468 

optimising power while avoiding overfitting. One strategy that we do not recommend is to 469 

perform no optimisation of parameters – e.g. selecting a single arbitrary P-value threshold 470 

(such as P < x10-8 or P = 1) – because this may lead to serious underfitting, which itself can 471 

lead to false conclusions. 472 

 473 

The gold-standard strategy for guarding against generating overfit prediction models and 474 

results is to perform out-of-sample prediction. First, parameters are optimised using a training 475 

sample and then the optimised model is tested in a test or validation data set to assess 476 

performance. In the PRS setting involving a base and target data, it would be a misconception 477 

to believe that out-of-sample prediction has already been performed because polygenic 478 

scoring involves two different data sets, when in fact the training is performed on the target 479 

data set, meaning that a third data set is required for out-of-sample prediction. In the absence 480 

of an independent data set, the target sample can be subdivided into training and validation 481 

data sets, and this process can be repeated with different partitions of the sample, e.g. 482 

performing 10-fold cross-validation [56,66,67], to obtain more robust model estimates. 483 

However, a true out-of-sample, and thus not overfit, assessment of performance can only be 484 

achieved via final testing on a sample entirely separate from data used in training.  485 

 486 

Without validation data or when the size of the target data makes cross-validation 487 

underpowered, an alternative is to generate empirical P-values corresponding to the optimised 488 

PRS prediction of the target trait, via permutation [12]. While the PRS itself may be overfit, if 489 

the objective of the PRS study is association testing of a hypothesis – e.g. H0: schizophrenia 490 

and rheumatoid arthritis have shared genetic aetiology – rather than for prediction per se, then 491 

generating empirical P-values offers a powerful way to achieve this while maintaining 492 

appropriate type 1 error [12]. It is also even possible to generate optimised parameters for 493 

PRS when no target data are available [19]. 494 
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4.5 Power and accuracy of PRS: target sample sizes required    495 

In one of the key PRS papers published to date, Dudbridge 2013 [4] provided estimates of the 496 

power and predictive accuracy of PRS in different scenarios of data availability and 497 

phenotypes. To complement this work, we performed PRS analyses across three traits in the 498 

UK Biobank with high (height), medium (Forced Volume Capacity; FVC) and low (hand grip 499 

strength) heritability to provide a guide to the approximate performance of PRS association 500 

testing on real data with different heritability and different validation sample sizes, when 501 

exploiting a large (100k) base GWAS (Figure 4). While this provides only a very limited 502 

indication of the performance of PRS analyses, in our experience, researchers in the field 503 

often wish to obtain some idea of whether their own (target/validation) data are likely to be 504 

sufficiently powered for future analyses or if they need to acquire more data. 505 

 506 

a 

 

b 

 
Figure 4. Examples of performance of PRS analyses on real data by validation sample size, according to (a) 507 
phenotypic variance explained (R2), (b) association P-value. UK Biobank data on height (estimated heritability h2 508 
= 0.49 [8]), Forced Volume Capacity (FVC) (estimated heritability h2 = 0.23 [8]), Hand Grip (estimated heritability 509 
h2 = 0.11 [8]), were randomly split into two sets of 100,000 individuals and used as base and target data, while the 510 
remaining sample was used as validation data of varying sample sizes, from 50 individuals to 3000 individuals. 511 
Each analysis was repeated 5 times with independently selected validation samples. While these results 512 
correspond to performance in validation data, the association P-values should reflect empirical P-values estimated 513 
from target data (as described in Section 4.4).  514 

 515 

  516 
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Conclusions 517 

As GWAS sample sizes increase, the application of Polygenic Risk Scores is likely to play a 518 

central role in the future of biomedical studies and personalised medicine. However, the 519 

efficacy of their use will depend on the continued development of methods that exploit them, 520 

their proper analysis and appropriate interpretation, and an understanding of their strengths 521 

and limitations. 522 
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