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Chronic kidney disease (CKD) affects ~10% of the global population, with considerable 
ethnic differences in prevalence and aetiology. We assembled genome-wide association 
studies (GWAS)1-3 of estimated glomerular filtration rate (eGFR), a measure of kidney 
function that defines CKD, in 312,468 individuals from four ancestry groups. We identified 
93 loci (20 novel), which were delineated to 127 distinct association signals. These signals 
were homogenous across ancestries, and were enriched for protein-coding exons, kidney-
specific histone modifications, and transcription factor binding sites for HDAC2 and EZH2. 
Fine-mapping revealed 40 high-confidence variants driving eGFR associations and 
highlighted potential causal genes with cell-type specific expression in glomerulus, and 
proximal and distal nephron. Mendelian randomisation (MR) supported causal effects of 
eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure 
(DBP) and hypertension. These results define novel molecular mechanisms and effector 
genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment 
development. 
 
We assembled GWAS in up to 312,468 individuals from three sources (Methods): (i) 19 
studies of diverse ancestry from the COGENT-Kidney Consortium, expanding the previously 
published trans-ethnic meta-analysis1 to include additional individuals of Hispanic/Latino 
descent; (ii) a published meta-analysis of 33 studies of European ancestry from the CKDGen 
Consortium2; and (iii) a published study of East Asian ancestry from the Biobank Japan 
Project3. Each GWAS was imputed up to the Phase 1 integrated 1000 Genomes Project 
reference panel4, and single nucleotide variants (SNVs) passing quality control were tested 
for association with eGFR, calculated from serum creatinine, with adjustment for age, sex 
and ethnicity, as appropriate (Methods).  
 
To discover novel loci contributing to kidney function in diverse populations, we first 
aggregated eGFR association summary statistics across studies through trans-ethnic meta-
analysis (Methods). We employed Stouffer’s method, implemented in METAL5, because 
allelic effect sizes were reported on different scales in each of the three sources 
contributing to the meta-analysis. We identified 93 loci attaining genome-wide significant 
evidence of association with eGFR (p<5x10-8), including 20 mapping outside regions 
previously implicated in kidney function (Supplementary Figure 1, Supplementary Table 1). 
The strongest novel associations (Table 1) mapped to/near MYPN (rs7475348, p=8.6x10-19), 
SHH (rs6971211, p=6.5x10-13), XYLB (rs36070911, p=2.3x10-11) and ORC4 (rs13026220, 
p=3.1x10-11). Across the 93 loci, we then delineated 127 distinct association signals (at locus-
wide significance, p<10-5) through approximate conditional analyses implemented in GCTA6 
(Methods), each arising from different underlying causal variants and/or haplotype effects 
(Supplementary Tables 1 and 2). The most complex genetic architecture was observed at 
SLC22A2 and UMOD-PDILT, where the eGFR association was delineated to four distinct 
signals at each locus (Supplementary Figure 2). Genome-wide, application of LD Score 
regression7 to a meta-analysis of only European ancestry studies revealed the observed 
scale heritability of eGFR to be 7.6%, of which 44.7%/5.4% was attributable to variation in 
the known/novel loci reported here (Methods).  
 
To assess the evidence for a genetic contribution to ethnic differences in CKD prevalence, 
we investigated differences in eGFR associations across the diverse populations contributing 
to our meta-analysis. We performed trans-ethnic meta-regression of allelic effect sizes 
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obtained from GWAS contributing to the COGENT-Kidney Consortium, implemented in MR-
MEGA8, including two axes of genetic variation that separate population groups as 
covariates to account for heterogeneity that is correlated with ancestry (Methods, 
Supplementary Figure 3). Despite substantial differences in allele frequencies at index SNVs 
for the distinct associations across ethnicities, we observed no significant evidence 
(p<0.00039, Bonferroni correction for 127 signals) of heterogeneity in allelic effects on eGFR 
that was correlated with ancestry (Supplementary Tables 2 and 3). This observation is 
consistent with a model in which causal variants for eGFR as a measure of kidney function 
are shared across global populations and arose prior to human population migration out of 
Africa. 
 
To gain insight into the molecular mechanisms that underlie the genetic contribution to 
kidney function, we investigated genomic signatures of functional and regulatory annotation 
that were enriched for eGFR associations across the 127 distinct association signals. 
Specifically, we compared the odds of eGFR association for SNVs mapping to each 
annotation with those that did not map to the annotation (Methods). We began by 
considering genic regions, as defined by the GENCODE Project9, and observed significant 
enrichment (p<0.05) of eGFR associations in protein-coding exons (p=0.0049), but not in 3’ 
or 5’ UTRs. We then interrogated chromatin immuno-precipitation sequence (ChIP-seq) 
binding sites for 161 transcription factors from the ENCODE Project10, which revealed 
significant joint enrichment of eGFR associations for HDAC2 (p=0.0088) and EZH2 (p=0.030). 
Class I histone deacetylases (including HDAC2) are required for embryonic kidney gene 
expression, growth and differentiation11, whilst EZH2 participates in histone methylation 
and transcriptional repression12. Finally, we considered ten groups of cell-type-specific 
regulatory annotations for histone modifications (H3K4me1, H3K4me3, H3K9ac and 
H3K27ac)13,14. Significant enrichment of eGFR associations was observed only for kidney-
specific annotations (p=7.4x10-14). In a joint model of these four enriched annotations, the 
odds of eGFR association for SNVs mapping to protein-coding exons, binding sites for HDAC2 
and EZH2, and kidney-specific histone modifications were increased by 3.06-, 2.13-, 1.76- 
and 4.29-fold, respectively (Supplementary Figure 4). 
 
We performed trans-ethnic fine-mapping to localise putative causal variants for distinct 
eGFR association signals that are shared across global populations by taking advantage of 
differences in the structure of linkage disequilibrium between ancestry groups15. To further 
enhance fine-mapping resolution, we incorporated an “annotation-informed” prior model 
for causality, upweighting SNVs mapping to the globally enriched genomic signatures of 
eGFR associations (Methods). Under this prior, we derived “credible sets” of variants for 
each distinct signal, which together account for 99% of the posterior probability (π) of 
driving the eGFR association (Supplementary Table 4). For 40 signals, a single SNV 
accounted for more than 50% of the posterior probability of driving the eGFR association, 
which we defined as “high-confidence” for causality (Supplementary Table 5). 
 
We sought to identify the most likely target gene(s) through which the effects of each of the 
40 high-confidence SNVs on eGFR were mediated. Only four of the SNVs were missense 
variants (Table 2), encoding CACNA1S p.Arg1539Cys (rs3850625, p=2.5x10-9, π=99.0%), CPS1 
p.Thr1406Asn (rs1047891, p=1.5x10-29, π=98.1%), GCKR p.Leu446Pro (rs1260326, 
p=2.0x10-35, π=86.1%) and CERS2 p.Glu115Ala (rs267738, p=1.7x10-10, π=55.3%). CACNA1S 
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(Calcium Voltage-Gated Channel Subunit Alpha 1 S) encodes a subunit of L-type calcium 
channel located within the glomerular afferent arteriole, is the target of anti-hypertensive 
dihydropyridine calcium channel blockers (such as amlodipine and nifedipine), and regulates 
arteriolar tone and intra-glomerular pressure16. CACNA1S missense mutations cause 
hypokalemic periodic paralysis17,18, malignant hyperthermia19 and congenital myopathy20. 
CPS1 (Carbamoyl-Phosphate Synthase 1) is involved in the urea cycle, where the enzyme 
plays an important role in removing excess ammonia from cells21. CERS2 (Ceramide 
Synthase 2) variants have been associated with albuminuria in individuals with diabetes22, 
and cers2 deficient mice exhibit changes in the structure of the kidney23. GCKR (Glucokinase 
Regulator) produces a regulatory protein that inhibits glucokinase, and the p.Leu446Pro 
substitution is a highly pleiotropic variant with reported effects on a wide range of 
phenotypes, including metabolic traits and type 2 diabetes24. 
 
The 36 remaining high-confidence SNVs mapped to non-coding regions, which we assessed 
for colocalisation with expression quantitative trait loci (eQTL) from two resources: (i) non-
cancer affected healthy kidney tissue obtained from 260 individuals from the 
TRANScriptome of renaL humAn TissuE (TRANSLATE) Study25,26 and The Cancer Genome 
Atlas (TCGA)27; and (ii) kidney biopsies obtained from 134 healthy donors from the 
TransplantLines Study28 (Methods). We observed lead eQTL variants that co-localised with 
high-confidence eGFR SNVs in the TRANSLATE Study and TGCA (Table 2, Supplementary 
Table 6) for FGF5 (rs12509595, p=4.7x10-16, π=57.1%), TBX2 (rs887258, p=2.7x10-13, 
π=62.2%), and both UMOD and GP2 for the same signal at the UMOD-PDILT locus 
(rs77924615, p=1.5x10-54, π=100.0%). FGF5 (Fibroblast Growth Factor 5) is expressed during 
kidney development, but knockout models have not shown a kidney phenotype29. FGF5 has 
been implicated in GWAS of blood pressure and hypertension30, and other fibroblast growth 
factors are increasingly recognised as contributors to blood pressure regulation through 
renal mechanisms26. TBX2 (T-Box 2) plays a role in defining the pronephric nephron in 
experimental models31. UMOD encodes uromodulin (Tamm-Horsfall protein), the most 
abundant urinary protein. The eGFR lowering allele at the high-confidence SNV is associated 
with increased UMOD expression (Supplementary Figure 5), which is consistent with 
previous investigations that demonstrated uromodulin overexpression in transgenic mice 
leads to salt-sensitive hypertension and the presence of age-dependent renal lesions32.  
 
Kidney cells are highly specialised in function based on their location in nephron segments. 
Previous investigations in mouse and human have revealed that genes at kidney trait-
related loci are expressed predominantly in a single kidney cell-type33,34. To provide insight 
into potential functional processes, we mapped the four genes identified through eQTL 
analyses to cell types from single nucleus RNA-sequencing (snRNA-seq) data obtained from 
a healthy human kidney donor (4,254 cells, with an average of 1,803 detected genes per 
cell)34. UMOD and GP2 demonstrated expression that was specific to epithelial cells 
mapping to the ascending loop of Henle (Figure 1), suggesting a role for both uromodulin 
and glycoprotein 2, a protein involved in innate immunity, in kidney physiology at the 
UMOD-PDILT locus. By mapping high-confidence SNVs to introns and UTRs (Methods), we 
identified eight additional genes with differential expression across cell-types (Figure 1, 
Table 2): LRP2, SLC34A1 and DPEP1 (specific to proximal tubule); SPTBN1 (specific to 
glomeruli endothelial cells); PIP5K1B (specific to glomeruli mesangial cells); and LARP4B, 
BCAS3, and MPPED2 (multiple cell types in the distal nephron). Taken together, these 
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findings suggest a potential role of these genes in influencing kidney structure and function 
through regulation of: (i) glomerular capillary pressure, determining intra-glomerular 
pressure and glomerular filtration; (ii) proximal tubular reabsorption, affecting 
tubuloglomerular feedback; or (iii) distal nephron handling of sodium or acid load, 
influencing kidney disease progression. Laboratory-based functional studies will be required 
to delineate the mechanistic pathways that determine kidney function in healthy and 
disease states, and potential routes to therapeutic targets for pharmacologic development.  
 
We sought to evaluate the causal effect of eGFR on clinically-relevant kidney and 
cardiovascular outcomes via two-sample MR35 (Methods, Supplementary Table 7). Analyses 
were performed separately in each of the three components of the trans-ethnic meta-
analysis because allelic effect sizes were measured on different scales in each. For each trait, 
we accounted for heterogeneity in causal effects of eGFR via radial regression36, excluding 
outlying genetic instruments that may reflect pleiotropic SNVs and violate the assumptions 
of MR (Methods). In each component, we detected a significant (p<0.0042, Bonferroni 
correction for 12 traits) causal effect of lower eGFR on higher risk of all-cause CKD, 
glomerular diseases and chronic renal failure, based on reported association summary 
statistics from the CKDGen Consortium37 and the UK Biobank (Figure 2, Supplementary 
Table 7). We also detected a significant causal effect of lower eGFR on lower risk of calculus 
of the kidney and ureter, in each component, based on reported association summary 
statistics from the UK Biobank (Figure 3, Supplementary Table 7). The lead eGFR SNV at the 
UMOD-PDILT locus (rs77924615) has been previously associated with kidney stone 
formation38 and is consistent with the role of uromodulin in the inhibition of urine calcium 
crystallisation39. However, this SNV was excluded from the MR analysis due to 
heterogeneity in effect size and was therefore not driving the causal eGFR association with 
risk of calculus of the kidney and ureter.  
 
We also detected a novel causal effect of lower eGFR (at nominal significance, p<0.05, in 
each component of the trans-ethnic meta-analysis) on higher DBP and higher risk of 
essential (primary) hypertension, but not on systolic blood pressure, based on reported 
association summary statistics from automated readings and ICD10 codes from primary care 
data available in the UK Biobank (Figure 4, Supplementary Table 7). These results are 
consistent with a role for reduced functional nephron mass on increased peripheral arterial 
resistance40 and confirm previous findings from observational studies41. Although the causal 
association with DBP could not be replicated using published meta-analysis association 
summary statistics from the International Consortium for Blood Pressure42 (Supplementary 
Table 8), we note that their blood pressure measures were corrected for body-mass index 
(in addition to age and sex), and there was significant evidence of heterogeneity in effects of 
eGFR on outcome across SNVs, indicating potential pleiotropy due to collider bias, and 
consequently invalidating MR estimates. Despite the large sample sizes available for MR 
analyses from the CardiogramplusC4D Consortium43 and MEGASTROKE Consortium44, there 
was no significant evidence of a causal association of eGFR on cardiovascular disease 
outcomes: coronary heart disease, myocardial infarction or ischemic stroke (Supplementary 
Table 7). 
 
In conclusion, we have undertaken the most comprehensive GWAS of eGFR in diverse 
populations, which has significantly enhanced knowledge of the genetic contribution to 
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kidney function. Through trans-ethnic meta-analysis, we identified 20 novel loci for eGFR 
that explain an additional 5.3% of the genome-wide observed scale heritability. The effects 
of index SNVs for distinct eGFR association signals were consistent across major ancestry 
groups and enriched for specific signatures of genomic annotation. Annotation-informed 
trans-ethnic fine-mapping localised high-confidence causal variants driving 40 distinct eGFR 
association signals, the majority of which have not been previously reported. Through a 
variety of approaches, including colocalisation with eQTLs in human kidney, and 
identification of differential expression between human kidney cell types through snRNA-
seq, these high-confidence variants implicated several putative effector genes that account 
for eGFR variation at kidney function loci. MR analyses of lead SNVs at kidney function loci 
highlighted previously unreported causal effects of lower eGFR on higher risk of primary 
glomerular diseases, lower risk of kidney stone formation, and higher DBP and risk of 
hypertension. Taken together, these results emphasize the importance of genetic studies of 
eGFR in diverse populations and their integration with cell-type specific kidney expression 
data for maximising gains in discovery and fine-mapping of kidney function loci, and offer 
the most promising route to treatment development for a disease with major public health 
impact across the globe. 
 
URLs 
 
Biobank Japan Project GWAS summary statistics: http://jenger.riken.jp/en/result 
CKDGen Consortium meta-analysis summary statistics: http://ckdgen.imbi.uni-freiburg.de/ 
METAL: https://genome.sph.umich.edu/wiki/METAL 
LD Score regression: http://ldsc.broadinstitute.org/about/ 
MR-MEGA: https://www.geenivaramu.ee/en/tools/mr-mega 
MR-BASE: http://www.mrbase.org/ 
GeneATLAS: http://geneatlas.roslin.ed.ac.uk/ 
RadialMR: https://github.com/WSpiller/RadialMR/ 
TwoSampleMR: https://github.com/MRCIEU/TwoSampleMR 
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ONLINE METHODS 
 
Ethics statement. All human research was approved by the relevant institutional review 
boards and conducted according to the Declaration of Helsinki. All participants provided 
written informed consent. 
 
COGENT-Kidney Consortium: study-level analyses. Study sample characteristics for GWAS 
from the COGENT-Kidney Consortium, which incorporates 81,829 individuals of diverse 
ancestry (32.4% Hispanic/Latino, 28.8% European, 28.8% East Asian and 10.0% African 
American) are presented in Supplementary Table 9. These GWAS include those reported 
previously1 but were expanded with the addition of further studies of Hispanic/Latino 
ancestry to increase the diversity of represented population groups. Samples were assayed 
with a range of GWAS genotyping products, and quality control was undertaken within each 
study (Supplementary Table 10). Samples were excluded because of low genome-wide call 
rate, extreme heterozygosity, sex discordance, cryptic relatedness, and outlying ethnicity. 
SNVs were excluded because of low call rate across samples and extreme deviation from 
Hardy-Weinberg equilibrium. Non-autosomal SNVs were excluded from imputation and 
association analysis. Within each study, the GWAS genotype scaffold was pre-phased45,46 
and imputed up to the Phase 1 integrated (version 3) multi-ethnic reference panel from the 
1000 Genomes Project4 using IMPUTEv246,47 or minimac46,48 (Supplementary Table 10). 
Imputed variants were retained for downstream association analyses if they attained 
IMPUTEv2 info≥0.4 or minimac r2≥0.3. 

Within each study, eGFR was calculated from serum creatinine (mg/dL), with 
adjustment for age, sex and ethnicity, using the four variable MDRD equation49-51. We 
tested association of eGFR with each SNV in a linear regression framework, under an 
additive dosage model, and with adjustment for study-specific covariates to account for 
confounding due to population structure (Supplementary Table 10). For each SNV, the 
association Z-score was derived from the allelic effect estimate and corresponding standard 
error. Z-scores and standard errors were then corrected for residual population structure via 
genomic control52 where necessary (Supplementary Table 10). 
 
CKDGen Consortium: meta-analysis. Full details of the CKDGen Consortium meta-analysis, 
which incorporates GWAS in 110,517 individuals of European ancestry, have been 
previously published2. Briefly, individuals were assayed with a range of GWAS genotyping 
products. After quality control, GWAS scaffolds were pre-phased45,46 and imputed46-48 up to 
the Phase 1 integrated (version 1 or version 3) multi-ethnic or European-specific reference 
panels from the 1000 Genomes Project4. Imputed variants were retained for downstream 
association analyses if they attained IMPUTEv2 info≥0.4 or MaCH/minimac r2≥0.4. Within 
each study, eGFR was calculated from serum creatinine (mg/dL), with adjustment for age 
and sex, using the four variable Modification of Diet in Renal Disease (MDRD) equation49-51. 
Residuals obtained after regressing ln(eGFR) on age and sex, and study-specific covariates to 
account for population structure where appropriate, were tested for association with each 
SNV in a linear regression framework, under an additive dosage model. Association 
summary statistics within each GWAS were corrected for residual population structure via 
genomic control52 where necessary and were subsequently aggregated across studies, under 
a fixed-effects model, with inverse-variance weighting of allelic effect sizes, as implemented 
in METAL5. 
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 From the available meta-analysis summary statistics for each SNV (downloaded from 
http://ckdgen.imbi.uni-freiburg.de/), we derived the association Z-score from the ratio of 
the allelic effect estimate and corresponding standard error. No further correction for 
population structure was required by genomic control52: λGC=0.977.  
 
Biobank Japan Project: study-level analysis. Full details of the Biobank Japan Project GWAS, 
which incorporates 143,658 individuals of East Asian ancestry, have been previously 
published3. Briefly, individuals were assayed with the Illumina HumanOmniExpressExome 
BeadChip or a combination of the Illumina HumanOmniExpress BeadChip and the Illumina 
HumanExome BeadChip. After quality control, the GWAS scaffold was pre-phased with 
MaCH53 and imputed up to the Phase 1 integrated (version 3) East Asian-specific reference 
panel from the 1000 Genomes Project4 with minimac46,48. Imputed variants were retained 
for downstream association analyses if they attained minimac r2≥0.7. For each individual, 
eGFR was derived from serum creatinine (mg/dL) using the Japanese coefficient-modified 
CKD Epidemiology Collaboration (CKD-EPI) equation54-56, and adjusted for age, sex, ten 
principal components of genetic ancestry, and affection status for 47 diseases. The resulting 
residuals were inverse-rank normalised and tested for association with each SNV in a linear 
regression framework, under an additive dosage model. 
 From the available GWAS summary statistics for each SNV (downloaded from 
http://jenger.riken.jp/en/result), we derived the association Z-score from the ratio of the 
allelic effect estimate and corresponding standard error, and subsequently corrected for 
residual population structure by genomic control52: λGC=1.252. 
  
Trans-ethnic meta-analysis. We aggregated eGFR association summary statistics across the 
three components: COGENT-Kidney Consortium GWAS, the Biobank Japan Project GWAS 
and the CKDGen Consortium meta-analysis. We performed fixed-effects meta-analysis, with 
sample size weighting of Z-scores (Stouffer’s method), as implemented in METAL5, because 
allelic effect estimates were on different scales in the contributing components. The 
COGENT-Kidney Consortium includes a GWAS of a subset of 23,536 individuals from those 
contributing to the Biobank Japan Project, which was therefore excluded from the trans-
ethnic meta-analysis. Consequently, a combined sample size of 312,468 individuals 
contributed to the trans-ethnic meta-analysis. SNVs reported in at least 50% of the 
combined sample size were retained for downstream interrogation. Meta-analysis 
association summary statistics were corrected for residual population structure via genomic 
control52: λGC=1.113. 

The current study represents a 2.2-fold increase in sample size over the largest 
published GWAS of kidney function3. Assuming homogeneous allelic effects on eGFR across 
populations, we have more than 80% power to detect association (p<5x10-8) with SNVs 
explaining at least 0.0127% of the trait variance under an additive genetic model. This 
corresponds to common/low-frequency SNVs with minor allele frequency (MAF) ≥5%/≥0.5% 
that decrease eGFR by ≥0.0366/≥0.113 standard deviations. 

 
Locus definition. We first selected lead SNVs attaining genome-wide significant evidence of 
association (p<5x10-8) with eGFR in the trans-ethnic meta-analysis that were separated by at 
least 500kb. Loci were defined by the flanking genomic interval mapping 500kb up- and 
downstream of lead SNVs. Where loci overlapped, they were combined as a single locus, 
and the lead SNV with minimal p-value from the meta-analysis was retained. 
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Dissection of association signals. To dissect distinct eGFR association signals at loci attaining 
genome-wide significance in the trans-ethnic meta-analysis, we used an iterative 
approximate conditional approach, implemented in GCTA6. Each COGENT-Kidney 
Consortium GWAS was first assigned to an ethnic group (Supplementary Table 9) 
represented in the 1000 Genomes Project reference panel (Phase 3, October 2014 
release)57. The Biobank Japan Project was assigned to the East Asian ethnic group, and the 
CKDGen Consortium meta-analysis was assigned to the European ethnic group. Haplotypes 
in the 1000 Genome Project panel that were specific to the assigned ethnic group were then 
used as a reference for LD between SNVs across loci for the GWAS in the approximate 
conditional analysis.  

For each locus, we first applied GCTA to the study-level association summary 
statistics and matched LD reference for each GWAS (or the CKDGen Consortium meta-
analysis). We adjusted for the “conditional set” of variants, which in the first iteration 
included only the lead SNV at the locus, and aggregated Z-scores across studies with sample 
size weighting (Stouffer’s method) under a fixed-effects model, as implemented in METAL5. 
The conditional meta-analysis summary statistics were corrected for residual population 
structure using the same genomic control adjustment52 as in the unconditional analysis 
(λGC=1.113). If no SNVs attained locus-wide significant (p<10-5) evidence of “residual 
association” with eGFR, the iterative approximate conditional analysis for the locus was 
stopped. Otherwise, the SNV with the strongest residual association signal was added to the 
conditional set. This iterative process continued, at each stage adding the SNV with the 
strongest residual association from the meta-analysis to the conditional set, until no 
remaining SNVs attained locus-wide significance. Note, that at each iteration, studies with 
missing association summary statistics for any SNV in the conditional set were excluded 
from the meta-regression analysis. 

For each locus including more than one SNV in the conditional set, we then dissected 
each distinct association signal. We again applied GCTA to the study-level association 
summary statistics and matched LD reference for each GWAS (or the CKDGen Consortium 
meta-analysis), but this time by removing each SNV, in turn, from the conditional set of 
variants, and adjusting for the remainder. The conditional meta-analysis summary statistics 
were corrected for residual population structure using the same genomic control 
adjustment52 as in the unconditional analysis (λGC=1.113). The SNV with the strongest 
residual association was defined as the “index” for the signal. 
 
Estimation of observed scale heritability. We used LD Score regression7 to assess the 
contribution of variation to the observed scale heritability of eGFR. LD Score regression 
accounts for LD between SNVs on the basis of European ancestry individuals from the 1000 
Genomes Project57. We therefore performed fixed-effects meta-analysis, with sample size 
weighting of Z-scores (Stouffer’s method), as implemented in METAL5, across European 
ancestry studies from the COGENT-Kidney Consortium and CKDGen Consortium (134,070 
individuals), and used these association summary statistics in LD Score regression. We first 
calculated the contribution of genome-wide variation to the observed scale heritability of 
eGFR. We then partitioned the genome into previously reported and novel loci attaining 
genome-wide significance in the trans-ethnic meta-analysis (Supplementary Table 1) and 
calculated the observed scale heritability of eGFR attributable to each. 
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Estimation of allelic effect sizes at index SNVs. Allelic effect estimates were obtained from 
a meta-analysis of GWAS from the COGENT-Kidney Consortium, including 81,829 individuals 
of diverse ancestry (Supplementary Table 9), because the other components applied 
different transformations to eGFR prior to association analysis. The meta-analysis was 
performed under a fixed-effects model with inverse-variance weighting of effect sizes, 
implemented in METAL5. For loci with multiple signals of association, the allelic effect of an 
index SNV for each GWAS, prior to meta-analysis, was estimated by application of GCTA to 
the study-level association summary statistics and ancestry-matched LD reference, and 
adjusting for the other index SNVs at the locus. The same approach was used to obtain 
ethnic-specific allelic effect size estimates by implementing fixed-effects meta-analysis of 
GWAS within each ancestry group. 
 
Assessment of evidence for heterogeneity in allelic effect sizes correlated with ancestry. 
We considered GWAS from the COGENT-Kidney Consortium, including 81,829 individuals of 
diverse ancestry (Supplementary Table 9), because the other components applied different 
transformations to eGFR prior to association analysis. We constructed a distance matrix of 
mean effect allele frequency differences between each pair of GWAS across a subset of 
SNVs reported in all studies. We implemented multi-dimensional scaling of the distance 
matrix to obtain two principal components that define axes of genetic variation to separate 
GWAS from the four major ancestry groups represented in the trans-ethnic meta-analysis. 
For each SNV, allelic effects on eGFR across GWAS were modelled in a linear regression 
framework, incorporating the three axes of genetic variation as covariates, and weighted by 
the inverse of the variance of the effect estimates, implemented in MR-MEGA8. Within this 
modelling framework, heterogeneity in allelic effects on eGFR between GWAS is partitioned 
into two components. The first component is correlated with ancestry and is accounted for 
in the meta-regression by the axes of genetic variation, whilst the second is the residual, 
which is not due to population genetic differences between GWAS. 
 
Enrichment of eGFR association signals in genomic annotations. Within each locus, for 
each distinct signal, we first approximated the Bayes’ factor58 in favour of eGFR association 
of each SNV on the basis of summary statistics from the trans-ethnic meta-analysis. 
Specifically, the Bayes’ factor for the 𝑗th SNV at the 𝑖th distinct association signal is 
approximated by 
 

𝛬𝑖𝑗 = exp [
𝑍𝑖𝑗
2−ln𝐾

2
], 

 

where 𝑍𝑖𝑗  is the Z-score from the trans-ethnic meta-analysis across K contributing GWAS. 

The log-odds of association of the SNV is then given by 
 

ln [
𝛬𝑖𝑗

𝑇𝑖−𝛬𝑖𝑗
], 

 
where 𝑇𝑖 = ∑ 𝛬𝑖𝑗𝑗  is the total Bayes’ factor for the 𝑖th signal across all SNVs at the locus. 

 We modelled the log-odds of association of each SNV, for each distinct signal, in a 
logistic regression framework, as a function of binary variables indicating overlap with a 
given genomic annotation. Specifically, for the 𝑗th SNV at the 𝑖th distinct association signal, 
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ln [
𝛬𝑖𝑗

𝑇𝑖−𝛬𝑖𝑗
] = 𝛼𝑖 + 𝛽𝑘𝑧𝑖𝑗𝑘, 

 
where 𝑧𝑖𝑗𝑘 = 1 indicates that the SNV maps to the 𝑘th annotation, and 𝑧𝑖𝑗𝑘 = 0 otherwise. In 

this expression, 𝛼𝑖 is a constant for the 𝑖th distinct association signal, and 𝛽𝑘 is the log-fold 
enrichment in the odds to association for the 𝑘th annotation. 

We considered three categories of functional and regulatory annotations. First, we 
considered genic regions, as defined by the GENCODE Project9, including protein-coding 
exons, and 3’ and 5’ UTRs as different annotations. Second, we considered chromatin 
immuno-precipitation sequence (ChIP-seq) binding sites for 161 transcription factors from 
the ENCODE Project10. Third, we considered ten groups of cell-type-specific regulatory 
annotations for histone modifications (H3K4me1, H3K4me3, H3K9ac, and H3K27ac) 
obtained from a variety of resources13,14, which were previously derived for partitioning 
heritability by annotation by LD score regression59. 
 Within each category, we first used forward selection to identify annotations that 
were jointly enriched at nominal significance (p<0.05). We then included all selected 
annotations across categories in a final model to obtain joint estimates of the fold-
enrichment in eGFR association signals for each.  
 
Trans-ethnic fine-mapping. Within each locus, for each distinct signal, we calculated the 
posterior probability of driving the eGFR association for each SNV under an annotation-
informed prior model, derived from the globally enriched annotations identified above, and 
the Bayes’ factor approximated from the trans-ethnic meta-analysis. Specifically, for the 𝑗th 
SNV at the 𝑖th distinct association signal, the posterior probability 𝜋𝑖𝑗 ∝ 𝛾𝑖𝑗𝛬𝑖𝑗. In this 

expression, the relative annotation informed prior is given by 
 

𝛾𝑖𝑗 = 𝑒𝑥𝑝[∑ 𝛽̂𝑘𝑘 𝑧𝑖𝑗𝑘], 

 

where the summation is over the selected enriched annotations, and 𝛽̂𝑘 is the estimated 
log-fold enrichment of the 𝑘th annotation from the final joint model, as described above.  

We derived a 99% credible set60 for the 𝑖th distinct association signal by: (i) ranking 
all SNVs according to their posterior probability 𝜋𝑖𝑗; and (ii) including ranked SNVs until their 

cumulative posterior probability of driving the association attains or exceeds 0.99. Index 
SNVs accounting for more than 50% posterior probability of driving the eGFR association at 
a given signal were defined as “high-confidence”. 
 
Colocalisation of high-confidence SNVs with eQTLs in kidney tissue: TRANSLATE Study and 
TGCA. We performed eQTL analysis using data from the TRANSLATE Study25,26 and TGCA27. 
In brief, as a source of kidney tissue, both studies used apparently normal samples from 
European ancestry individuals undergoing nephrectomy due to kidney cancer (the 
specimens were collected from cancer-unaffected pole of the organ). The data from both 
studies were processed in the same manner using procedures described below.  

Gene expression was quantified in transcripts per million (TPM) using Kallisto61. The 
quality control included: removing outlier samples62,63, checking consistency between 
declared and biological sex (using XIST and Y-chromosome genes); removing genes on non-
autosomal chromosomes; and removing genes with either interquartile range of zero or 
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those not meeting the minimum expression criterion (TPM>0.1 and read counts ≥6 in at 
least 30% of samples within each study/sequencing batch). Before cis-eQTL analysis, the 
log2-transformed TPM data were normalised using robust quantile normalisation in the R 
package aroma and then standardised using rank-based inverse normal transformation in 
GenABEL. To account for technical variation, we used probabilistic estimation of expression 
residuals (PEER)64: 30 latent factors for the TRANSLATE Study and 15 for TCGA as 
recommended for different sample sizes in the GTEx Project65,66.  

Kidney DNA samples from individuals from the TRANSLATE Study were genotyped 
using the Infinium HumanCoreExome-24 BeadChip array, and genotype calls were made 
using Genome Studio. Individuals from TCGA were genotyped using the Affymetrix Genome-
Wide Human SNP Array 6.0, and genotype calls were made using the Birdseed algorithm. 
Quality control removed variants that: had low genotyping rate (<95%); mapped to Y 
chromosome/mitochondrial DNA or had ambiguous chromosomal location; violated Hardy-
Weinberg equilibrium (HWE, p<0.001); or had MAF <5%. Quality control also removed 
individuals with: genotyping call-rate <95%; heterozygosity above/below 3 standard 
deviations from the mean; cryptic relatedness to other individuals; non-European genetic 
ancestry; and discordant sex information (inconsistency between declared and genotyped 
sex). For both studies, the resulting scaffold was imputed up to the Phase 3 multi-ethnic 
reference panel from the 1000 Genomes Project57 using the Michigan Imputation Server67. 
After imputation, we retained only SNVs, removing those with low imputation coefficient 
(R2<0.4), MAF <5%, or violating HWE (p<10-6).  

A total of 260 individuals (160 from the TRANSLATE Study and 100 from TCGA) were 
included in the analysis, involving 15,711 genes and 5,498,156 SNVs common to both 
studies. Normalised gene expression was modelled as a function of alternate allele dosage 
via linear regression, including sex, three axes of genetic variation (to account for population 
structure) and PEER latent factors as additional covariates. The regression coefficients of the 
alternate allele from the two studies were then combined in a fixed-effects meta-analysis 
under an inverse variance weighting scheme. For each gene, only those SNVs in cis (within 
1Mb of the transcription start/stop sites) were included in the analysis. A total of 2,000 
permutations were used to derive the empirical distribution of the smallest p-value for each 
gene, which then was used to adjust the observed smallest p-value for the gene. The 
correction for testing multiple genes was based on false discovery rate (FDR) applied to 
permutation-adjusted p-values (via Storey’s method as implemented in the R package 
qvalue) with a cut-off of 5%. Furthermore, the thresholds for nominal p-values were derived 
using a global permutation-adjusted p-value closest to FDR of 5% and the empirical 
distributions determined using permutations. 

We identified high-confidence SNVs from the trans-ethnic fine-mapping that were 
colocalised with lead eQTL variants (i.e. the same SNV or in strong LD, r2>0.8) at a 5% FDR, 
and reported the corresponding eGene. 
 
Colocalisation of high-confidence SNVs with eQTLs in kidney tissue: TransplantLines Study. 
We performed eQTL analysis using data from the TransplantLines Study28. The study 
includes kidneys from donors, donated after brain death or cardiac death. 
Samples were genotyped on the Illumina CytoSNP 12 v2 array and imputed up to the Phase 
1 integrated (version 3) multi-ethnic reference panel from the 1000 Genomes Project4 using 
IMPUTEv246,47. Expression and genotype data were available for 236 kidney biopsies 
obtained from 134 donors, and analyses have been described previously42. Briefly, residuals 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 18, 2018. ; https://doi.org/10.1101/420273doi: bioRxiv preprint 

https://doi.org/10.1101/420273
http://creativecommons.org/licenses/by-nc-nd/4.0/


of gene expression for each probe were obtained after adjusting for the first 50 expression 
principal components to filter out environmental variation68. A linear mixed model was used 
to test association of residual expression of each probe with the allele dosage of each SNV 
mapping within 1Mb of the transcription start/stop sites using the R package lme3. Sex, age, 
donor type, time of biopsy and three axes of genetic variation (to account for population 
structure) were included in the model as fixed effects. Random effects were then included 
for donor to account for multiple samples obtained from the same individual.  

We identified high-confidence SNVs from the trans-ethnic fine-mapping that were 
colocalised with lead eQTL variants (i.e. the same SNV or in strong LD, r2>0.8) at a 5% FDR, 
and reported the corresponding eGene. 

 
Differential expression of GWAS genes across kidney cell-types. We identified genes for 
which high-confidence SNVs mapped to introns and untranslated regions. We mapped the 
genes to cell-types from snRNA-seq data generated by 10x Chromium from a healthy human 
kidney (62-year old white male, no history of CKD and serum creatinine of 1.03mg/dl)34. The 
dataset included 4,524 cells, with an average of 1,803 detected genes per cell. We 
generated a differential expression gene (DEG) list by performing Wilcoxon rank sum test on 
each cell-type from the single nucleus dataset. A gene was defined as mapping to a specific 
kidney cell type if the expression fulfils all the following criteria: (i) present in the DEG list; 
(ii) expressed in >25% of the total cells in the specified cell-type; and (iii) log-fold change in 
expression was >0.25 in the specified cell-type when compared to all other cell-types34. 
Gene expression values for each cell were Z-score normalised. A new gene expression 
matrix with mean Z-scores for each gene was obtained by averaging the Z-scores from all 
individual cells in the same cluster. The Z-score normalized gene expression were presented 
as a heatmap using the heatmap.2 function in the R package gplots. 
 
Two-sample MR analyses. We performed a lookup of association summary statistics for 
lead SNVs at each of the eGFR loci across a range of clinically-relevant kidney and 
cardiovascular outcomes from public and proprietary data resources. These included: CKD 
(12,385 cases and 104,780 controls, published data from the CKDGen Consortium37); IgA 
nephropathy (3,211 cases and 8,735 controls, unpublished data); glomerular diseases 
(ICD10 N00-N08, 2,289 cases and 449,975 controls, extracted UK Biobank using 
GeneATLAS); chronic renal failure (ICD10 N18, 4,905 cases and 447,359 controls, extracted 
from UK Biobank using GeneATLAS); hypertensive renal disease (ICD10 I12, 1,663 cases and 
450,601 controls, extracted from UK Biobank using GeneATLAS); calculus of kidney and 
ureter (ICD10 N20, 5,216 cases and 447,048 controls, extracted from UK Biobank using 
GeneATLAS); DBP (317,756 individuals, automated reading, extracted from UK Biobank 
using MR-BASE69); systolic blood pressure (317,654 individuals, automated reading, 
extracted from UK Biobank using MR-BASE69); essential (primary) hypertension (ICD10 I10, 
84,640 cases and 367,624 controls, extracted from UK Biobank using GeneATLAS); coronary 
heart disease (60,801 cases and 123,504 controls, published data from the 
CardiogramplusC4D Consortium43); myocardial infarction (43,676 cases and 128,199 
controls, published data from the CardiogramplusC4D Consortium43); and ischemic stroke 
(10,307 cases and 19,326 controls, published data from the MEGASTROKE Consortium44).  
 We performed two-sample MR for each outcome using eGFR as the exposure and 
the extracted non-palindromic lead SNVs as instrumental variables. The lead SNVs were not 
in LD with each other, so that their effects on exposure and outcomes were uncorrelated. 
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Analyses were performed separately in each of the three components of the trans-ethnic 
meta-analysis because allelic effect sizes were measured on different scales in each: 
COGENT-Kidney Consortium (58,293 individuals after excluding those from the Biobank 
Japan Project); CDKGen Consortium (110,517 individuals); and Biobank Japan Project 
(143,658 individuals). For each trait, we first accounted for heterogeneity in causal effects of 
eGFR via radial regression36, implemented in the R package RadialMR, which identified 
outlying genetic instruments that may reflect pleiotropic SNVs. For each trait, our primary 
MR analyses were then performed after excluding outlying SNVs in any component of the 
trans-ethnic meta-analysis using inverse variance weighted regression70, implemented in the 
R package TwoSampleMR69. We also assessed the evidence for causal association between 
exposure and outcome using two additional approaches that are less sensitive to 
heterogeneity (although less powerful) and implemented in the R package TwoSample 
MR69: weighted median regression71 and MR-EGGER regression72. 

We performed an additional lookup of association summary statistics for non-
outlying lead SNVs at each of the eGFR loci for DBP (150,134 individuals, published data 
from ICBP42). We assessed the evidence for a causal association of eGFR on DBP in each 
component of the trans-ethnic meta-analysis using inverse variance weighted regression70, 
weighted median regression71 and MR-EGGER regression72, as implemented in the R 
package TwoSampleMR69.  

 
URLs 
 
aroma: http://aroma-project.org/ 
GenABEL: http://genabel.org/ 
Birdseed: https://www.broadinstitute.org/birdsuite/birdsuite 
qvalue: https://github.com/StoreyLab/qvalue 
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Figure legends 
 
Figure 1. Differential kidney single cell gene expression in nephron segments. The left and 
top right panels highlight nephron segments and glomerulus cells, respectively. The 
heatmap in the bottom right panel presents Z-score normalized average gene expression for 
each specific kidney cell cluster in human adult kidney cells: EC, endothelial cells; PT, 
proximal tubular cells; LH, loop of Henle cells; DCT, distal convoluted cells; CNT, connecting 
tubular cells; PC, principal cells; IC-A, intercalate cells type A (located in the collection duct 
at the distal nephron); IC-B, intercalate cells type B (located in the collection duct at the 
distal nephron). 
 
Figure 2. Two-sample MR of eGFR on chronic kidney disease and cause-specific kidney 
disease. Results are presented separately for each component of the trans-ethnic meta-
analysis for chronic kidney disease (top), chronic renal failure (middle) and glomerular 
diseases (bottom). Each point corresponds to a lead SNV (instrumental variable) across 94 
kidney function loci, plotted according to the MR effect size of eGFR on the outcome (Wald 
ratio). Bars correspond to the standard errors of the effect sizes. The red point and bar in 
each plot represents the MR effect size of eGFR on outcome across all SNVs under inverse 
variance weighted regression. Results for other methods are presented in Supplementary 
Table 7. 
 
Figure 3. Two-sample MR of eGFR on calculus of kidney and ureter. Results are presented 
separately for each component of the trans-ethnic meta-analysis. Each point corresponds to 
a lead SNV (instrumental variable) across 94 kidney function loci, plotted according to the 
MR effect size of eGFR on calculus of kidney and ureter (Wald ratio). Bars correspond to the 
standard errors of the effect sizes. The red point and bar in each plot represents the MR 
effect size of eGFR on calculus of kidney and ureter across all SNVs under inverse variance 
weighted regression. Results for other methods are presented in Supplementary Table 7. 
 
Figure 4. Two-sample MR of eGFR on diastolic blood pressure and essential (primary) 
hypertension. Results are presented separately for each component of the trans-ethnic 
meta-analysis for diastolic blood pressure (top) and essential (primary) hypertension 
(bottom). Each point corresponds to a lead SNV (instrumental variable) across 94 kidney 
function loci, plotted according to the MR effect size of eGFR on outcome (Wald ratio). Bars 
correspond to the standard errors of the effect sizes. The red point and bar in each plot 
represents the MR effect size of eGFR on outcome across all SNVs under inverse variance 
weighted regression. Results for other methods are presented in Supplementary Table 7. 
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Table 1. Novel loci attaining genome-wide significant evidence (p<5x10-8) of association with eGFR in trans-ethnic meta-analysis of up to 
312,468 individuals of diverse ancestry. 
 

Locus Lead SNV Chr Position 
(bp, b37) 

Alleles EAF Fixed-effects meta-analysis 

Effecta Other p-value N Betab SEb 

PMF1-BGLAP rs2842870 1 156,200,671 T C 0.632 1.2x10-8 312,468 -0.361 0.094 

NT5C1B-RDH14 rs13417750 2 18,681,365 A G 0.189 1.0x10-8 312,468 -0.439 0.108 

C2orf73 rs1527649 2 54,581,356 C T 0.234 1.5x10-9 311,225 -0.413 0.107 

ORC4 rs13026220 2 148,586,459 G A 0.366 3.1x10-11 312,468 -0.265 0.095 

NFE2L2 rs35955110 2 178,143,371 C T 0.435 3.9x10-9 312,468 -0.353 0.099 

XYLB rs36070911 3 38,498,439 G A 0.528 2.3x10-11 312,468 -0.296 0.091 

AK125311 rs856563 7 46,723,510 C T 0.750 5.1x10-10 309,287 -0.455 0.094 

SHH rs6971211 7 155,664,686 T C 0.417 6.5x10-13 309,287 -0.350 0.090 

NRG1 rs4489283 8 32,399,662 T C 0.296 1.5x10-8 311,632 -0.325 0.094 

TRIB1 rs2001945 8 126,477,978 C G 0.546 1.6x10-9 312,468 -0.264 0.091 

DCAF12 rs61237993 9 34,130,435 G A 0.666 4.0x10-8 312,465 -0.345 0.122 

MYPN rs7475348 10 69,965,177 C T 0.607 8.6x10-19 312,468 -0.366 0.095 

CYP26A1 rs4418728 10 94,839,724 T G 0.539 1.4x10-8 312,468 -0.345 0.092 

FAM53B rs4962691 10 126,424,137 T C 0.571 5.0x10-10 312,468 -0.291 0.093 

RASGRP1 rs9920185 15 39,273,575 C A 0.649 1.0x10-8 312,468 -0.332 0.094 

NFAT5 rs11641050 16 69,622,104 C T 0.697 2.6x10-8 312,468 -0.283 0.099 

JUND-LSM4 rs8108623 19 18,408,519 A C 0.695 4.4x10-8 309,634 -0.390 0.108 

ARFRP1 rs1758206 20 62,336,334 T C 0.082 2.4x10-8 163,534 -0.546 0.193 

NRIP1 rs2823139 21 16,576,783 A G 0.293 3.7x10-9 311,637 -0.197 0.093 

ATP50 rs2834317 21 35,356,706 A G 0.108 9.5x10-10 312,468 -0.475 0.126 

 
Chr: chromosome. EAF: effect allele frequency. SE: standard error. 
aEffect allele is aligned to be eGFR decreasing allele. 
bBeta/SE are obtained from fixed-effects meta-analysis, with inverse variance weighting of allelic effect sizes, of up to 81,829 individuals of 
diverse ancestry from the COGENT-Kidney Consortium, and represent absolute decrease in eGFR per effect allele.  
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Table 2. High confidence SNVs driving eGFR associations and putative causal genes through which their effects on kidney function are 
mediated. 
 
Locus SNV Chr Position 

(bp, b37) 
p-value π Putative 

causal gene 
Supporting evidence 

ANXA9 rs267738 1 150,940,625 1.7x10-10 55.3% CERS2 Encodes p.Gku115Ala (possibly damaging, deleterious)a. 

CACNA1S rs3850625 1 201,016,296 2.5x10-9 99.0% CACNA1S Encodes p.Arg1539Cys (possibly damaging, deleterious)a. 

GCKR rs1260326 2 27,730,940 2.0x10-35 86.1% GCKR Encodes p.Leu446Pro (possibly damaging, tolerated)a. 

C2orf73 rs10181201 2 54,799,174 7.4x10-8 60.9% SPTBN1 Intronic; differential expression across kidney cell types. 

LRP2 rs35472707 2 169,995,581 1.1x10-6 64.3% LRP2 Intronic; differential expression across kidney cell types. 

rs60641214 2 170,199,292 5.6x10-8 64.9% LRP2 Intronic; differential expression across kidney cell types. 

CPS1 rs1047891 2 211,540,507 1.5x10-29 98.1% CPS1 Encodes p.Thr1406Asn (benign, tolerated)a. 

PRDM8-FGF5 rs12509595 4 81,182,554 4.7x10-16 57.1% FGF5 Colocalises with lead eQTL SNV. 

RGS14-SLC34A1 rs3812036 5 176,813,404 1.0x10-32 65.0% SLC34A1 Intronic; differential expression across kidney cell types. 

PIP5K1B rs2039424 9 71,432,174 1.3x10-26 50.7% PIP5K1B Intronic; differential expression across kidney cell types. 

WDR37 rs80282103 10 899,071 2.0x10-18 100.0% LARP4B Intronic; differential expression across kidney cell types. 

MPPED2 rs7930738 11 30,605,859 4.7x10-7 51.5% MPPED2 Intronic; differential expression across kidney cell types. 

UMOD-PDILT rs77924615 16 20,392,332 1.5x10-54 100.0% UMOD Lead eQTL SNV; differential expression across kidney cell types. 

GP2 Lead eQTL SNV; differential expression across kidney cell types. 

DPEP1 rs2460449 16 89,700,747 4.2x10-9 97.8% DPEP1 Intronic; differential expression across kidney cell types. 

BCAS3 rs9895611 17 59,456,589 8.9x10-28 100.0% BCAS3 Intronic; differential expression across kidney cell types. 

rs887258 17 59,479,580 2.7x10-13 62.2% TBX2 Colocalises with lead eQTL SNV. 

 
Chr: chromosome. π: posterior probability of association. 
aPolyPhen2/SIFT predictions. 
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