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SUMMARY 

Pluripotency is highly dynamic and progresses through a continuum of pluripotent stem-cell 

states. The two states that bookend the pluripotency continuum, naïve and primed, are well 

characterized, but our understanding of the intermediate states and transitions between them 

remain incomplete. Here, we dissect the dynamics of pluripotent state transitions underlying 

pre- to post-implantation epiblast differentiation. Through comprehensive mapping of the 

proteome, phosphoproteome, transcriptome, and epigenome of mouse embryonic stem cells 

transitioning from naïve to primed pluripotency, we find that rapid, acute, and widespread 

changes to the phosphoproteome precede ordered changes to the epigenome, transcriptome, 

and proteome. Reconstruction of kinase-substrate networks reveals signaling cascades, 

dynamics, and crosstalk. Distinct waves of global proteomic changes demarcate discrete phases 

of pluripotency, characterized by cell-state-specific surface marker expression. Our data 

provide new insights into the multi-layered control of the phased progression of pluripotency 

and a foundation for modeling mechanisms underlying pre- to post-implantation epiblast 

differentiation. 

HIGHLIGHTS 

• Multi-ome maps of cells transitioning from naïve to primed pluripotency 

• Phosphoproteome dynamics precede changes to epigenome, transcriptome, and proteome 

• Kinase-substrate network reconstruction uncovers signaling dynamics and crosstalk 

• Proteins and cell surface markers that track pluripotent state transitions 

• Comparative analysis of mouse and human pluripotent states 
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INTRODUCTION 

Pluripotency describes the developmental potential of a cell to give rise to derivatives of all 

three primary germ layers. Although pluripotency is ephemeral in vivo, pluripotent stem cells 

(PSCs), derived from various stages of early embryonic development, can self-renew indefinitely 

in vitro under defined culture conditions while retaining their pluripotent status (Nichols and 

Smith, 2009). Studies of the early mouse embryo and PSCs in culture have led to the 

proposition that embryonic pluripotency is highly dynamic and proceeds through a continuum 

of pluripotent stem-cell states (De Los Angeles et al., 2015; Hackett and Surani, 2014; Nichols 

and Smith, 2009; Rossant and Tam, 2017; Shahbazi et al., 2017; Weinberger et al., 2016; Wu 

and Izpisua Belmonte, 2015). At one end of this continuum is the naïve pluripotent state 

(Nichols and Smith, 2009), sometimes also referred to as the ground state (Hackett and Surani, 

2014; Marks et al., 2012; Ying et al., 2008), representing the broadest and most unrestricted 

developmental potential that exists in the pre-implantation mouse embryo from approximately 

embryonic day 3.75 (E3.75) to E4.75 (Boroviak et al., 2014). At the other end of this continuum 

is the primed pluripotent state, representing the developmentally restricted potential that 

exists in pluripotent cells from post-implantation mouse epiblasts (E5.5-E8.25), which are 

lineage-primed for differentiation.   

Embryonic stem cells (ESCs), derived from the inner cell mass (ICM) of pre-implantation mouse 

blastocysts (Figure 1A) and maintained under defined culture conditions known as 2i+LIF (Ying 

et al., 2008), most closely resemble naïve epiblasts of the pre-implantation embryo (Boroviak et 

al., 2014; Boroviak et al., 2015). Hence, ESCs are considered to capture the naïve pluripotent 

state. Epiblast stem cells (EpiSCs), isolated from pre-gastrulation (E5.5) to late-bud (E8.25) stage 

post-implantation mouse epiblasts (Brons et al., 2007; Tesar et al., 2007) (Figure 1A), are 

developmentally comparable to the late-gastrulation stage (E7.0) embryo, irrespective of the 

original developmental stage (E5.5-E8.25) of their source tissue (Kojima et al., 2014); these cells 

are considered archetypal representative of the primed pluripotent state . Interestingly, 

conventional human ESCs (hESCs), derived from pre-implantation human blastocysts, exhibit 

molecular and morphological characteristics that are more similar to primed EpiSCs than to 
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naïve ESCs (Davidson et al., 2015; De Los Angeles et al., 2015; Hackett and Surani, 2014; 

Rossant and Tam, 2017; Weinberger et al., 2016; Wu and Izpisua Belmonte, 2015). Several 

protocols that reprogram hESCs back to the ground state have been proposed (Chan et al., 

2013; Gafni et al., 2013; Takashima et al., 2014; Theunissen et al., 2014; Ware et al., 2014), but 

they each generate “naïve” hESCs with distinct transcriptional profiles (Davidson et al., 2015; 

Huang et al., 2014) and fail to recover the naïve epiblast methylation landscape (Pastor et al., 

2016). Although these purported naïve hESCs satisfy some features of mouse criteria for the 

naïve pluripotent state, whether they can be considered equivalent to naïve mouse ESCs 

remains an open question.  

ESCs are highly competent to form high-contribution mouse chimeras with germline 

transmission, following microinjection into pre-implantation embryos. EpiSCs, however, do not 

integrate well into host blastocysts, likely because they correspond to a developmentally 

advanced stage compared to the host pre-implantation environment, and thus contribute 

poorly or not at all to blastocyst chimeras (Dejosez and Zwaka, 2012; Hackett and Surani, 2014; 

Han et al., 2010; Nichols and Smith, 2009; Weinberger et al., 2016; Wu and Izpisua Belmonte, 

2015). Conversely, when grafted into post-implantation (E7.5) embryos in whole embryo 

culture, EpiSCs but not ESCs efficiently incorporate into the host and contribute to all three 

germ layers (Huang et al., 2012). Consequently, primed EpiSCs are considered to be functionally 

and developmentally distinct from naïve epiblast and ESCs (De Los Angeles et al., 2015; 

Weinberger et al., 2016). While the naïve and primed states, which bookend the pluripotency 

continuum, are well characterized (Kojima et al., 2014; Marks et al., 2012), our understanding 

of the intermediate pluripotent states and the transitions between them remain incomplete.    

Cell signaling underlies transcriptional and/or epigenetic control of a vast majority of cell fate 

decisions during early embryonic development (Dejosez and Zwaka, 2012; Hackett and Surani, 

2014; Rossant and Tam, 2017; Weinberger et al., 2016). Yet, our understanding of the signaling 

dynamics during pluripotent state transitions and how they instruct epigenetic and/or 

transcriptional programs controlling ICM to post-implantation epiblast differentiation remains 
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poorly understood. Recent advances in mass spectrometry (MS)-based proteomics now allow 

for near-comprehensive characterization of proteomes and phosphorylation events (Aebersold 

and Mann, 2016; Altelaar et al., 2013; Humphrey et al., 2015; Riley and Coon, 2016; Robles et 

al., 2017; Sharma et al., 2014). To elucidate the signaling and molecular dynamics that underlie 

pluripotent state transitions, here we generated comprehensive high-temporal-resolution maps 

of the phosphoproteome, proteome, transcriptome, and epigenome of embryonic stem cells 

transitioning from naïve to primed pluripotency. Our data provide new insights into the multi-

layered control of the phased progression of pluripotency and a foundation for investigating 

mechanisms underlying ICM to post-implantation epiblast differentiation. 

RESULTS 

High temporal-resolution maps of the proteome, phosphoproteome, transcriptome, and 

epigenome of cells transitioning from naïve to primed pluripotency 

To elucidate the temporal dynamics of the phosphoproteome, proteome, epigenome, and 

transcriptome during the transition from naïve to primed pluripotency, we employed a 

previously validated system to induce naïve mouse ESCs to post-implantation pre-gastrulating 

epiblast-like cells (EpiLCs) (Buecker et al., 2014; Hayashi et al., 2011; Kurimoto et al., 2015; 

Shirane et al., 2016), which closely resemble the early post-implantation epiblast (E5.5-E6.5) 

than do EpiSCs (Hayashi et al., 2011). EpiLCs were induced by plating naïve ESCs, grown in 

ground state under serum-free 2i+LIF medium, onto fibronectin-coated plates in N2B27 

medium containing activin A, bFGF, and knockout serum replacement (KOSR , 1%) (Hayashi et 

al., 2011). Consistent with previous reports, within 48 h of EpiLC induction, morphological 

transformation in the form of flattened epithelial structures resembling epiblasts was evident 

(Figure S1A). RNA analysis using quantitative RT-PCR confirmed downregulation of naïve 

pluripotency/ICM-associated genes (Nanog, Klf4, Prdm14) accompanied by induction of post-

implantation epiblast-associated genes (Fgf5, Otx2, Pou3f1/Oct6) (Figure S1B) (Buecker et al., 

2014; Hayashi et al., 2011; Kalkan et al., 2017). Although no dramatic changes in transcript 

levels of these marker genes were evident after 48 h post induction, we included the 72-h time-
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point in our analyses to capture changes to the proteome that may lag changes to the 

transcriptome.  

Using advances in MS-based proteomics (Kulak et al., 2014) and our EasyPhos workflow 

(Humphrey et al., 2015), together with next-generation sequencing, we generated maps of the 

phosphoproteome, proteome, transcriptome, and epigenome of cells at various time-points 

during the 72-h ESC to EpiLC transition (Figure 1B). To capture the earliest signaling responses, 

we profiled the phosphoproteome of transitioning cells at high temporal-resolution within the 

first hour post-induction (Figure 1B). All MS experiments were performed in biological 

quadruplicates. In addition, to enhance coverage of the proteome measurements, we pooled 

the four biological replicates from each time-point and performed StageTip-based Strong 

Cation Exchange (SCX) fractionation (Wisniewski et al., 2009) of this pooled sample for the 

proteome runs (Figures 1C, S2A, and S2B). All MS data were analyzed using the MaxQuant 

computational platform (Cox and Mann, 2008; Tyanova et al., 2016).  

Our single-run EasyPhos workflow (Humphrey et al., 2015) produced excellent phosphopeptide  

coverage, quantifying over 15,000 phosphopeptides in every run (Figure S2C). This yielded a 

total of 30,726 distinct phosphopeptides from which we identified 37,619 individual 

phosphorylation sites (Figure 1d). Phosphosite localization confidence was high, with >80% 

(26,180) of the quantified phosphosites accurately localized to a single amino acid (mean 

localization probability for quantified sites: 0.96) (Figure S2D and Methods). A total of 17,866 

phosphosites and over half of the Class 1 phosphosites (14,103) were quantified across all 12 

time-points analyzed (Figure 1D; Table S1). From our proteome runs, we identified over 

160,000 distinct peptides and quantified a grand total of 10,597 proteins across all samples and 

9,250 proteins in every sample (Figure 1D). Quantification coverage at the proteome level was 

also very high, with 9,250 proteins quantified across all profiled time-points (Figure 1D; Table 

S2).  
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Using paired-end RNA-Seq, we mapped the transcriptome across eight time-points during the 

72-h time-course and detected a total of 16,734 transcripts (RPKM > 1) corresponding to 13,600 

unique genes (Figures 1D and S2E; Table S3). ChIP-Seq analyses of the chromatin, collected 

from the same eight time-points, using antibodies against common histone modifications 

(H3K4me1, H3K4me3, and H3K27ac: associated with the promoters of transcriptionally active 

genes; H3K27me3 and H3K9me2: associated with the promoters of silent genes) and RNA 

Polymerase II (RNAPII) identified several thousand transcriptionally active/poised genes 

(Figures 1D and S2F; Table S4). 

ESCs exit the naïve pluripotent state by about 36 hours post-induction 

Principal component analysis (PCA) and unsupervised hierarchical clustering of the 

transcriptome, proteome, phosphoproteome, or epigenome revealed clear time-dependent 

separation of the data (Figures 2A-C and S3), with global changes to the phosphoproteome 

evident as early as five minutes post-induction (Figure 2C), suggesting that the clustering is 

driven largely by differences in the underlying biological signal across various time-points. PCA 

analysis of our transcriptomic data, in conjunction with the recently published RNA-Seq data 

obtained from ESCs transitioning out of naive ground state pluripotency (0h, 16h, 25h-

Rex1high, and 25h-Rex1low) (Kalkan et al., 2017), revealed temporal concordance of the 

datasets from the two studies (Figure 2A), suggesting that the biological signal driving these 

temporal clusters is highly reproducible. The transcriptome at 24h post EpiLC induction 

clustered with those from 16 h and 25h-Rex1high cells (Figure 2A), with the latter previously 

shown to be in a reversible phase preceding extinction of the naïve state (Kalkan et al., 2017). 

Consistent with 25h-Rex1high cells, Rex1 (Zfp42) expression in cells at 24 h post EpiLC-induction 

remained high at the mRNA and protein level (Tables S2 and S3). In contrast, the transcriptome 

at the 36 h time-point during ESC to EpiLC transition clustered with that of the 25h-Rex1low 

cells, the primary products of exit from naïve pluripotency (Kalkan et al., 2017). Consistent with 

25h-Rex1low cells that have exited the naïve ground state, Rex1 expression was downregulated 

by ~10-fold at 36 h post EpiLC induction (Table S3). Collectively, these data suggest that, by 

about 36h post induction, cells have exited the naïve pluripotent state. 
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Phosphoproteome dynamics precede changes to the epigenome, transcriptome, and 

proteome 

To understand the sequence of molecular events and the temporal kinetics that transform 

cellular identity, we next examined the timing, scale, and magnitude of changes to the 

proteome, phosphoproteome, transcriptome and epigenome as ESCs transition through various 

phases of pluripotency. Our analyses revealed that phosphoproteome dynamics precede 

ordered waves of epigenomic, transcriptomic, and proteomic changes (Figures 2D and S4). 

Notably, about 50% of the regulated phosphosites are significantly modified within 15 min of 

EpiLC induction, and about one-third were altered as early as 5 min (Figures 2D and S4A). By 

comparison, <1% of the transcriptome or proteome undergo significant changes within the first 

hour (Figures S4B and S4C). H3K4me3 levels at gene promoters began to change an hour into 

EpiLC induction, offering the first indication of changes to the epigenome, accompanied by 

gradual and wide-spread changes to the transcriptome (Figure 2D). While the transcriptome is 

significantly altered by the sixth hour, widespread changes to the proteome were not evident 

until about 12 h post-induction (Figures 2D, S4B, and S4C), presumably due to latencies 

associated with protein synthesis and maturation. These data suggest a pioneering role for 

signaling in pluripotent state transitions. 

Widespread changes to the phosphoproteome mark ESC transition from ground state 

pluripotency   

We next examined the magnitude of changes to dynamically regulated phosphosites, 

transcripts, and proteins. Our analysis revealed that protein phosphorylation undergoes the 

greatest degree of change (3.2 median-fold), followed by mRNAs (2.2 median-fold) and proteins 

(1.8 median-fold) (Figures 2E and S4). The broader distribution of the magnitude of changes to 

the phosphosites (Figure 2E) indicates that the phosphoproteome is more dynamic than the 

proteome during this transition. Systematic elucidation of differentially regulated phosphosites, 

mRNAs, and proteins revealed that about half of the phosphoproteome is dynamically 
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regulated over the time-course, whereas only about a third of the proteome undergoes 

temporal regulation (Figure 2F). 

To understand the interplay between protein phosphorylation dynamics and protein 

abundance, we considered genes whose mRNA, protein, and/or phosphorylation levels were 

differentially regulated. Our analysis revealed that in ~28% (925/3,251) of cases, changes at the 

protein level were associated with significant changes in their phosphorylation level. Notably, 

among proteins whose abundance was altered, one out of eight (407/3,251) is associated with 

a significant change to their phosphorylation but not mRNA level (Figure 2G), suggesting a 

potential role for phosphorylation in regulating the levels and perhaps the activities of a 

substantial fraction of proteins, presumably by modulating their stability and/or degradation. 

However, about 60% (1,386/2,385) of the proteins with regulated phosphorylation sites are not 

associated with significant changes at the protein level, suggesting that 

phosphorylation/dephosphorylation of these sites may alternatively play a role in altering 

protein activity, localization, conformation, or interactions. Collectively, these data highlight 

that changes in the phosphoproteome are rapid, acute, and more widespread than changes in 

both the transcriptome and proteome, and exemplifies the central role that dynamic 

phosphorylation plays during the phased progression of pluripotency from the naïve to the 

primed state.  

De novo reconstruction of kinase-substrate networks reveals insights into signaling cascades, 

dynamics, and crosstalk  

To elucidate the set of signaling events, their timing, and order in which they occur as cells 

transition through various phases of pluripotency, we sought to identify active kinases that 

underlie signaling cascades. To this end, we used the CLUE algorithm (Yang et al., 2015) to 

partition all phosphosites into 12 optimal clusters based on their temporal profiles (Figures S5A 

and S5B). Using known kinase-substrate annotations (Hornbeck et al., 2012)., we identified four 

of these clusters to be enriched for substrates with known kinases: ERK/S6K/RSK, mTOR, p38a, 

and AKT (Figures 3A, 3B, and S5B; Table S5). An independent analysis of substrates with known 
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kinases, using our kinase perturbation analysis tool KinasePA (Yang et al., 2016b), confirmed 

activation/inactivation of these same kinases at various stages during ESC to EpiLC transition 

(Figure S5C). With the assumption that phosphosites with similar temporal dynamics are more 

likely to be substrates of the same kinase(s), we hypothesized that proteins containing the 

phosphosites within each of these four clusters are more likely to be associated with the same 

signaling pathway. Consistent with this prediction, pathway enrichment analysis of the proteins 

harboring phosphosites within each of the four clusters revealed enrichment of biological 

processes strongly associated with the respective kinases (Figure 3C). 

Temporal profiles of the phosphosites within the four clusters revealed the precise timing and 

order of phosphorylation/dephosphorylation events underlying various signaling cascades 

(Figure 3B). Notably, substrates within the ERK/S6K/RSK cluster underwent acute 

phosphorylation within the first five minutes. Interestingly, however, putative ERK substrates, 

which remained phosphorylated for about an hour after EpiLC induction, reverted to their basal 

(0h) phosphorylation levels by about 6 h (Figure 3B), suggesting that ERK signaling is inhibited 

within a few hours after EpiLC induction. Indeed, examination of the phosphorylation dynamics 

of kinases ERK1 and ERK2 revealed acute dephosphorylation beginning at about an hour after 

induction (Figure 3D). Consistent with our MS-based phosphoproteomics data, western blot 

analysis confirmed the transient activation of ERK1/2, with no major changes occurring at the 

protein or mRNA levels (Figures 3E and 3F).  

ERK signaling is known to be tightly controlled by negative feedback loops, wherein ERK1/2 

activity transcriptionally induces specific ERK1/2 pathway inhibitors, such as dual-specificity 

MAPK phosphatases (DUSPs), Sprouty (Spry) and Spred proteins, which in turn lead to inhibition 

and inactivation of ERK1/2 (Caunt and Keyse, 2013; Lake et al., 2016; Ornitz and Itoh, 2015). To 

assess whether such negative feedback loops shape ERK1/2 signaling dynamics as ESCs 

transition out of naive pluripotency, we examined the expression dynamics of established 

negative regulators of ERK1/2 signaling. Within an hour after EpiLC induction, we observed 

rapid induction of Dusp6 (an ERK1/2-specific phosphatase), Spry4, and Spred1 (Figure 3G), all 
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downstream transcriptional targets of ERK1/2 signaling (Lake et al., 2016; Lanner and Rossant, 

2010). These changes coincided with the acute dephosphorylation of ERK1/2 (Figures 3D and 

3G), suggesting that ERK1/2 signaling is conceivably under strict control of negative feedback 

loops as ESCs transition from ground state.  

Given the transient activation of ERK1/2 signaling (Figures 3B and 3D), we hypothesized that 

ERK1/2 signaling is perhaps dispensable six hours after EpiLC induction. To test this idea, we 

added an inhibitor of the MEK/ERK pathway (PD0325901) into the culture medium six hours 

after EpiLC induction and assessed expression changes of naïve and primed pluripotency factors 

at 48 h post-induction. ERK1/2 inhibition, beginning at 6 h, had no major effect on the induction 

of factors associated with primed pluripotency or suppression of naïve pluripotency factors 

(Figure 3H). However, EpiLC induction in the presence of PD0325901 severely affected both the 

induction of primed pluripotency factors and the suppression of naïve pluripotency factors 

(Figure 3H). Altogether, these data establish that while ERK signaling is required to trigger the 

exit from ground-state naïve pluripotency, it is largely dispensable after about 6 h into EpiLC 

induction.  

Besides ERK1/2, p38 is another MAPK kinase whose known and putative substrates are 

dephosphorylated within about an hour after EpiLC induction (Figure 3B). Given that ERK1/2-

induced DUSP proteins are also known to dephosphorylate the p38 family of MAPKs (Caunt and 

Keyse, 2013; Lake et al., 2016; Lanner and Rossant, 2010), we examined the temporal dynamics 

of p38a phosphorylation. Within an hour of ERK1/2 activation, p38a phosphorylation levels 

decreased by about 4-fold (Table S1), suggesting a role for ERK1/2-responsive factors in 

negatively regulating other pathways, including the p38 MAPK pathway. 

ERK1/2-induced Spry and Spred proteins suppress ERK1/2 signaling, in a negative feedback 

loop, by inhibiting complex formation between the adaptor protein Grb2 and the FGF receptor 

substrate 2 (Frs2). Intriguingly, the FGF-mediated Grb2-Frs2 signal also regulates the PI3K-AKT 

pathway as well as other MAPK pathways (p38, JNK) (Lanner and Rossant, 2010; Ornitz and 
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Itoh, 2015). Thus, it is conceivable that any Spry/Spred-mediated negative regulation of Grb2-

Frs2 complex formation also inhibits the PI3K-AKT pathway, which is distinct from the MAPK 

pathways. Indeed, the phosphorylation of known and putative Akt substrates decreased 

immediately upon ERK1/2 activation (Figures 3A and 3B), consistent with pathway cross-talk 

between ERK1/2 and PI3K-AKT (Mendoza et al., 2011). In addition, withdrawal of LIF to induce 

EpiLCs (Figure 1A) and subsequent loss of LIF-induced PI3K activation may also have contribute 

to dephosphorylation of Akt substrates (Yu and Cui, 2016). 

Activation of the ERK1/2 pathway, as observed during early stages of ESC transition from the 

ground state (Figures 3B, 3D, and 3E), can also activate the mammalian target of rapamycin 

complex 1 (mTORC1), an effector molecule downstream of Akt (Mendoza et al., 2011). Active 

ERK1/2 phosphorylates p90 ribosomal protein S6 kinase (RSK), and together they phosphorylate 

TSC2 of the TSC complex (which is at the crossroad of ERK1/2 and PI3K-AKT pathways), leading 

to the release of TSC inhibition of the mTORC1 activity (Mendoza et al., 2011). Consistent with 

this established link, we find that phosphorylation of known and putative mTOR substrates 

follows ERK1/2 activation (Figures 3B and 3D). To test whether mTORC1 activity is essential for 

ESC exit from ground state, we induced EpiLCs in the presence or absence of rapamycin, an 

inhibitor of mTOR that specifically targets mTORC1, and assessed changes in the expression of 

naïve and primed pluripotency factors at 48 h post-induction. We detected no significant 

differences (Figure 3H), indicating that mTORC1 activity is not required for exit from naïve 

pluripotency. Taken together, these data provide insights into extensive cross-talk between 

signaling pathways and their dynamics during various phases of pluripotency. 

Machine learning predicts substrates for ERK1/2, S6K/RSK, mTOR, AKT, and p38a    

Our understanding of signaling pathways that control a vast majority of cell fate decisions is 

limited because in many cases only a fraction of these pathways has been mapped, with many 

components remaining to be discovered. Hence, we sought to identify hitherto unknown 

substrates for each of the key kinases (ERK, S6K/RSK, mTOR, AKT, and p38a) that we had 

inferred to be active at various time-points during ESC exit from the ground state. We extended 
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our ensemble machine learning algorithm (Yang et al., 2016a) that integrates known kinase 

recognition motifs and temporal profiles of phosphosites to predict novel substrates for the five 

kinases of interest (see Methods). For each phosphosite and kinase pair, we generated an 

ensemble prediction score in the range 0 to 1, indicating the likelihood that the phosphosite is a 

substrate of that kinase. Tabulation of phosphosites by their prediction scores, for each kinase, 

revealed enrichment of known substrates atop the list (Figure 3I), illustrating the effectiveness 

of our approach in recovering known substrates.  

Using a score cut-off of 0.75, we predicted substrates for ERK, S6K/RSK, AKT, mTOR and p38a 

kinases (Table S6). De novo sequence analysis of these substrates identified sequence motifs 

resembling the consensus recognition motifs of the corresponding kinases (Figure 3J). Despite 

the similarity between the temporal patterns of predicted substrates for ERK and RSK/S6K 

(Figure 3K), which are known to act on the same substrate and sometimes in concert (Mendoza 

et al., 2011), the consensus sequence motifs derived from their putative substrates are quite 

different. Conversely, although the consensus motifs for predicted ERK and mTOR substrates 

(or RSK/S6K and AKT substrates) are similar, their temporal patterns are diametrically opposite. 

These findings illustrate the importance of integrating static features (such as recognition 

motifs) with dynamic attributes (such as temporal profiles of phosphosites) for successful 

prediction of novel substrates.  

Most signaling cascades culminate in the activation of downstream transcription regulators 

controlling gene expression programs. Hence, we asked whether transcription regulators, in 

general, are enriched for dynamically regulated phosphosites. Using the list of annotated 

transcription regulators (transcription factors, co-factors, and chromatin remodeling enzymes) 

(Zhang et al., 2012), we found that transcription regulators are more likely to contain 

dynamically regulated phosphosites than other proteins (odds ratio = 1.91; p = 2.1×10-15; 

Fisher’s exact test), suggesting that protein phosphorylation/dephosphorylation could be a 

general mechanism for modulating the activity of transcription regulators that mediate signal 

transduction during the pluripotency progression.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/415430doi: bioRxiv preprint 

https://doi.org/10.1101/415430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main Text 
 

14 
 

To elucidate transcription and chromatin regulators that mediate signaling cascades during the 

ESC to EpiLC transition, we filtered our list of predicted substrates for known TFs, co-factors, 

and chromatin modifying enzymes and identified several transcription regulators as putative 

substrates and possible downstream effectors of ERK, S6K/RSK, mTOR, AKT, or p38a signaling 

(Figure S5D and Table S6). Notably, ERK1/2 is predicted to phosphorylate key transcriptional 

regulators including Lin28a (RNA binding protein), Zscan4c (expressed transiently in 2-cell 

embryos and ESCs), EP300 (histone acetyltransferase), Mta3 (member of the Mi2-NuRD histone 

deacetylase complex) and JunD. Phosphorylation of predicted Lin28a phosphosite (S200) by ERK 

was recently shown to be an important link between ERK signaling, post-transcriptional gene 

regulation, and cell fate control (Tsanov et al., 2017). Predicted substrates of mTOR include 

several chromatin remodeling enzymes with known roles in ESC biology: Jarid2 and Eed 

(members of the polycomb repressive complex PRC2), Smarca4/Brg1 (the ATPase subunit of the 

esBAF chromatin remodeling complex), Ino80 (the ATPase subunit of the INO80 chromatin 

remodeling complex), and Kdm5b (histone H3K4 demethylase). S6K/RSK and AKT are predicted 

to phosphorylate histone H3K9 demethylase Kdm3b and Dnmt3b, respectively.     

Comparative analysis of changes to the transcriptome and proteome during pluripotency 

progression 

The relationship between mRNA and protein levels is indicative of the combined outcomes of 

transcription, mRNA stability, translation, and protein degradation (de Sousa Abreu et al., 

2009). To understand the downstream effects of signaling on the transcriptome and the extent 

to which changes at the transcript level during ESC to EpiLC transition translate to changes at 

the protein level, we examined the temporal dynamics of mRNA expression and protein 

abundance.  

To determine the extent to which mRNA expression captures protein abundance as ESCs 

transition out of ground-state pluripotency, we assessed the concordance between steady-

state mRNA and protein levels at various time-points during EpiLC induction. In agreement with 

previous studies, which have found a generally limited correlation between steady-state mRNA 
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and protein levels in mammalian systems (Schwanhausser et al., 2011), we found correlation 

between these layers to be rather moderate and stable across all time-points (Pearson, R = 0.48 

to 0.56) (Figure S6A). However, the correlation between changes in mRNA levels and changes in 

protein levels increased from almost non-existent to moderately high over time (Figures 4A and 

S6B), suggesting that while absolute mRNA levels may not be predictive of protein abundance, 

changes in transcript level in a perturbed system over a period of time more closely reflect 

changes in protein abundance.  

Gene Ontology (GO) analysis of the genes that were down-regulated at both protein and mRNA 

levels at 72 h vs 0 h revealed enrichment for those associated with stem cell maintenance, 

blastoderm segmentation, and embryo implantation (Figure 4B). In contrast, up-regulated 

genes were enriched for those with roles in development and methylation-dependent 

chromatin silencing (Figure 4B), consistent with significant upregulation of de novo DNA 

methyltransferases Dnmt3a/b/l (Figures 4C, 4D, and S6C). Rank-ordering of genes based on the 

extent of fold-changes at the protein and mRNA level revealed that dynamically regulated 

genes, including those associated with naïve pluripotent state (e.g., Esrrb, Tfcp2l1, Nanog, Sox2, 

Klf2/4, Tbx3, Kdm3a/b) and post-implantation epiblasts (e.g., Otx2, Dnmt3a/b, Zic2, Lin28a, 

Lef1), exhibit strong correlation (R > 0.85) between changes to the transcript and protein levels 

(Figures 4C, 4D, S6C, and S6D; Table S7). Genes whose expression are known to be relatively 

stable during ESC to EpiLC transition (e.g., Oct4 and Dnmt1) undergo minimal changes and thus 

exhibit a weak correlation (Figures 4C, 4D and S6C). Intriguingly, Prdm14, which is expressed in 

ICM (Yamaji et al., 2008) and downregulated during EpiLC transition (Hayashi et al., 2011; 

Yamaji et al., 2013), is a notable exception with substantial change at the mRNA but not protein 

level (Figure 4C; Table S7). Consistent with our RNA-Seq and MS-based proteomic data, qRT-

PCR and western blot analyses confirmed that while Prmd14 mRNA level decreases by ~1,000-

fold, its protein level remains unchanged (Figures S1A and S6E).  
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Distinct waves of global proteomic changes mark discrete phases of pluripotency 

Fuzzy c-means clustering of the temporal profiles of proteins that were down- and up-regulated 

during ESC to EpiLC transition revealed a dynamic transposition of cell identity, involving at 

least three major waves of changes (Figure 5A and Table S8). The first wave, presumably 

induced by upstream signaling events, occurs at about one hour into EpiLC induction and 

involves down-regulation of naïve pluripotency transcription factors (TFs) including Nanog and 

Tfcp2l1, both immediate downstream targets of LIF/Stat3 signaling (Niwa et al., 2009), and up-

regulation of epiblast-associated factors including Otx2, Zic2, Dnmt3l, and Lin28a. The second 

wave, at 6 to 24 h, is characterized by downregulation of TFs specific to the naïve pluripotent 

state and pre-implantation development (Esrrb, Sox2, Tbx3, Nr0b1, and Klf2/4/5), coupled with 

upregulation of Dnmt3a/b. The third wave coincides with exit from the naïve pluripotent state, 

at around 36 h, when the cells enter an irreversible phase on their way to establishing a post-

implantation EpiLC identity.  

Chromatin dynamics at the promoters of Esrrb and Otx2 exemplify changes to the epigenome 

and associated transcriptional output (Figure 5B, C), which precede changes to the proteome. 

Downregulation of Esrrb transcript and transcription-dependent histone modifications 

(H3K4me3 and H3K27ac) is evident as early as 1 h after EpiLC induction (Figure 5B). Rapid loss 

of Esrrb transcription is correlated with marked reduction in RNAPII levels at its promoter and is 

followed by gain of repressive H3K27me3 and H3K9me2 to maintain the repressed 

transcriptional state. The converse is observed for Otx2, wherein loss of H3K27me3 precedes 

RNAPII recruitment and transcription.  

H3K9me2 is known to recruit DNA methyltransferases and is a precursor to DNA methylation 

(Esteve et al., 2006; Tachibana et al., 2008). Downregulation of H3K9 demethylases (Kdm3a/b) 

(Figure S6C) coupled with global increase in H3K9me2 levels (Figure 5C) and upregulation of 

Dnmt3a/b/l (Figures 4C and S6C) suggest a finely choreographed sequence of events preceding 

eventual epigenetic silencing of naïve pluripotency factors by DNA methylation. Together, these 
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data shed light on the tightly orchestrated temporal regulation of gene expression programs 

that coordinate the transition from naïve to primed pluripotency. 

Identification of cell-surface marker proteins characteristic of various phases of pluripotency 

While transgenic reporters can be used to isolate cell populations, cell surface markers allow 

for prospective identification and tracking of cell types. Given the deep coverage of the 

quantifiable proteome, we next sought to identify cell-surface proteins characteristic of various 

phases of pluripotency as ESCs transition from the ground state. Across the profiled time 

points, we identified 78 cell-surface proteins, representing ~20% of all cell-surface proteins 

(Gray et al., 2015), whose expression was quantified with high confidence. Of these 78, 49 were 

differentially expressed at one or more profiled time points during the ESC to EpiLC transition, 

of which 34 were at least 3-fold differentially expressed between naïve ESCs (0h) and EpiLCs 

(72h) (Figure 6A). Most of these cell surface proteins exhibit concordant changes in their 

transcript levels (Figure S7A), suggesting that changes in their transcript levels accounts for 

much of the differences in their protein levels. A majority of these cell surface proteins undergo 

a dramatic transformation in their expression status at around 24-36 h post-EpiLC induction 

(Figure S7A), presumably coinciding with when the cells exit the naïve pluripotent state to 

acquire post-implantation epiblast-like identity. These data suggest that the cell-surface 

proteins captured in our proteomic data set can help discriminate pluripotent cells from pre- 

and post-implantation epiblast of early mouse embryo.  

To validate our proteomic data and to define a set of cell surface markers that can discriminate 

between naïve ESCs and EpiLCs, we performed flow cytometry analysis of candidate cell surface 

proteins for which antibodies suitable for flow cytometry were commercially available. Our 

analysis of individual markers with fluorescence-conjugated antibodies revealed a good 

separation in fluorescence signal between naïve ESCs and EpiLCs (Figures 6B and 6C). 

Consistent with our MS-based proteomic data, CD38 (Adprc1), CD105 (Eng), CD54 (Icam1), CD9, 

CD146 (Mcam), CD81, and CD205 (Ly75) expression levels are uniformly high in naïve ESCs and 

low in EpiLCs. Conversely, CD326 (Epcam), CD317 (Bst2), and CD90.2 (Thy1.2) are detected at 
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higher levels in EpiLCs compared to naïve ESCs. Furthermore, flow cytometry analysis of these 

cell surface proteins during ESC to EpiLC transition revealed that the expression dynamics of 

individual cell surface proteins faithfully track the phased progression of pluripotency, albeit 

each protein exhibiting different dynamics during the 72-h time course (Figures S7B and S7C). 

For example, high levels of CD105 and CD38 persisted until 24 h before undergoing 

downregulation, whereas downregulation of CD54 was more continuous through the time-

course. Conversely, while CD326 expression increased gradually over time, upregulation of 

CD90.2 was not evident until 24 h.  

Flow cytometry analysis of multiplexed cell state-specific antibodies showed that combinations 

of the antibodies can effectively distinguish between naïve ESCs and EpiLCs (Figures 6D and 

S7D). For example, high levels of CD105 and CD38 (or CD54), characteristic of naïve ESCs (Figure 

6D), can serve as excellent markers to identify and isolate naïve ESCs from a heterogenous 

population of pluripotent cells. And, a combination of CD105 (or CD54) and CD326, with 

discordant expression pattern during ESC to EpiLC transition (Figures S7B and S7C), can be 

useful for tracking the phased progression of pluripotency as ESCs transition from the ground 

state toward the primed state (Figure 6D). Altogether, these analyses allowed us to identify a 

robust set of cell state-specific surface proteins, such as CD38, CD105, CD54, CD205, CD10 

(Mme), CD26 (Dpp4), CD117 (Kit), and CD322 (Jam2) in naïve ESCs and CD317, CD326, CD90.2, 

and CD276 in EpiLCs (Figure 6E). 

Comparative analysis of mouse and human pluripotent states 

While some cell surface markers specific to “naïve” hESCs, such as CD77 (A4galt) and CD130 

(Il6st) (Collier et al., 2017), are also expressed in naïve mouse ESCs (Figure S7E), we found it 

intriguing that several cell surface markers specific to the naïve mouse ESCs (including CD38, 

CD105, CD205, CD10, CD26, and CD117) are not expressed in “naïve” hESCs at the mRNA 

(Figure 6E) or protein levels (Collier et al., 2017). Similarly, CD75 (St6gal1), a marker specifically 

expressed in “naïve” but not primed hESCs (Collier et al., 2017), is lowly expressed in naïve 

mouse ESCs compared to EpiLCs or EpiSCs (Figure S7E). Motivated by this lack of concordance, 
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we asked whether the purported naïve hESCs can be considered equivalent to naïve mouse 

ESCs. If not, this is of interest because they might represent a pluripotent state similar to an 

intermediate cell state between the naïve and the primed states. To address this question, we 

compared the transcriptional states of conventional hESCs, considered to be equivalent to 

mouse EpiSCs (Rossant and Tam, 2017), and hESCs reset to a putatively naïve state (Chan et al., 

2013; Takashima et al., 2014) to those of mouse pluripotent cells at various time points during 

the naïve ESC to EpiLC time-course; as points of reference, we also included data from human 

blastocyst ICM (Yan et al., 2013), E5.5 mouse post-implantation epiblast (Boroviak et al., 2015), 

mouse EpiSCs (Factor et al., 2014; Fiorenzano et al., 2016), mouse EpiSCs reset to a naïve-like 

state (Takashima et al., 2014), EpiLCs (Chen et al., 2018), and conventional mouse ESCs grown 

in media containing serum+LIF (Fiorenzano et al., 2016; Marks et al., 2012), PD03+LIF 

(Takashima et al., 2014), or serum+2i+LIF (Chen et al., 2018). 

PCA and unsupervised hierarchical clustering revealed distinct clusters of cells corresponding to 

various pluripotent states (Figures 7A and 7B). With much of the variation (35%) captured in 

the first principal component (PC1), PC1 primarily discriminates between naïve and primed 

pluripotent states. Conventional hESCs, generally considered as primed (Rossant and Tam, 

2017), clustered alongside EpiSCs, considered archetypal representative of primed pluripotency 

(Rossant and Tam, 2017; Smith, 2017). Interestingly, reset hESCs, reprogrammed to closely 

resemble mouse naïve ESCs, did not cluster anywhere near naïve mouse ESCs, although they 

clustered alongside cells from human blastocyst ICM. A closer examination of naïve 

pluripotency-associated factors in reset hESCs revealed that while the expression of some 

factors including Klf4, Klf5, Stella, Prdm14, and Zfp42 were reset/upregulated to levels 

comparable to those in naïve mouse ESCs, many key factors including Nanog, Esrrb, Nr0b1, 

Nr5a2, Tfcp2l1, and Klf2 were not upregulated to appropriate levels (Figure 7C). Conversely, the 

expression of many post-implantation epiblast-associated or lineage-specific genes including 

Dnmt3a, Dnmt3b, Lin28a, Krt18, Sox4, and mir-302b were not fully downregulated in reset 

hESCs (Figure 7D). Together, these data suggest that while chemical and/or genetic 
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manipulation of primed hESCs induce molecular features of naive pluripotency in hESCs, reset 

hESCs are not identical to naïve mouse ESCs. 

DISCUSSION 

Through integrative analysis of the proteome, phosphoproteome, transcriptome, and 

epigenome of ESCs transitioning from naïve to primed pluripotency, we have elucidated the 

sequence of molecular events that underlie the phased progression of pluripotency. Our data 

data provide new insights into the multi-layered control of developmental transformation from 

pre- to post-implantation epiblast differentiation and will serve as a rich resource for further 

investigation of the mechanisms underlying ICM to post-implantation epiblast differentiation.  

While previous studies have provided important insights into the proteomes and 

phosphoproteomes of ESCs in mouse (Christoforou et al., 2016; Li et al., 2011; Nagano et al., 

2005; Pines et al., 2011) and human (Brill et al., 2009; Rigbolt et al., 2011; Swaney et al., 2009; 

Van Hoof et al., 2009), signaling dynamics that underlie pluripotent state transitions remain 

unexplored. Deeper coverage of the proteome and the phosphoproteome, coupled with high 

temporal-resolution, allowed us to elucidate signaling dynamics that underlie pluripotent state 

transitions. Our findings that rapid, acute, and widespread changes to the phosphoproteome 

precede any changes to the epigenome, transcriptome, and proteome highlight the prominent 

role signaling plays in cell fate decisions during embryonic development.  

De novo reconstruction of kinase-substrate networks from our phosphoproteomic data allowed 

us to elucidate signaling dynamics and extensive crosstalk between signaling pathways during 

pluripotent state transitions. Consistent with previous studies showing that ERK signaling is 

required to induce ESCs to a state that is responsive to inductive cues (Kunath et al., 2007), we 

find that ERK signaling is required to trigger exit from ground-state naïve pluripotency. What 

was most revealing, however, was the acute dephosphorylation of ERK and its substrates within 

about six hours into EpiLC induction. This, together with our finding that ERK signaling is largely 
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dispensable after about six hours into EpiLC induction, suggest that the timing and duration of 

the transient ERK activation is under strict control during pluripotency progression. Indeed, a 

recent study reported that genetic depletion or chemical inhibition of RSK1, an ERK substrate 

and a negative regulator of ERK, is sufficient to increase levels of phosphorylated ERK1/2 and 

alter the kinetics of ESC differentiation (Nett et al., 2018). Conversely, while short-term 

suppression of ERK signaling helps maintain ESCs in a ICM-like naïve state in vitro, prolonged 

suppression of this pathway compromises the epigenetic and genomic stability as well as the 

developmental potential of ESCs (Choi et al., 2017).  

We also found that mTORC1 activity is not required for exit from naïve pluripotency, consistent 

with studies showing that mTORC1 activity is not required for cell-fate transition (Betschinger 

et al., 2013). However, inhibition of both mTORC1 and mTORC2 complexes has previously been 

shown to induce reversible pausing of mouse blastocyst development and ESCs in culture 

(Bulut-Karslioglu et al., 2016). Taken together, these findings suggest a requirement for 

mTORC2 but not mTORC1 for exit from naïve pluripotency.  

Our analysis of the phosphoproteome data using a machine learning approach allowed us to 

predict substrates for key kinases that are active at various phases during pluripotency 

progression. Our predictions include a number of transcription and chromatin regulators, some 

of which, we surmise, may have a potential role in mediating/modulating signaling cascades 

controlling gene expression programs. Further studies are required to validate the predicted 

substrates, and determine their role, if any, in linking external signals to epigenetic and/or 

transcriptional programs controlling cell fate transition. 

Deep coverage of the proteome, coupled with high temporal-resolution, allowed us to uncover 

distinct waves of global changes to the proteome that mark discrete phases of pluripotency. 

The initial wave of changes, likely triggered by the loss of LIF/Stat3 signaling and/or activation 

of ERK signaling, marks the onset of down-regulation of key naïve pluripotency factors Nanog 

and Tfcp2l1 along with the activation of post-implantation epiblast markers Otx2 and Zic2. This 
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is immediately followed by the second wave of changes characterized by down-regulation of 

other naïve markers (Esrrb, Sox2, Tbx3, Nr0b1, Rex1, and Klf2/4/5) and up-regulation of 

Dnmt3a/b, setting the stage for rewiring of the gene regulatory network and remodeling of the 

epigenome (Buecker et al., 2014; Kurimoto et al., 2015; Shirane et al., 2016). The final wave of 

changes, which coincides with the exit from the ground state, likely reflects the completion of 

the dismantling of the naïve pluripotency network and acquisition of post-implantation epiblast 

identity. These findings shed the first light on proteome-wide changes during the phased 

progression of pluripotency.  

Because EpiLCs more closely resemble the early post-implantation epiblast (E5.5-E6.5) than do 

EpiSCs (Hayashi et al., 2011), they have been proposed to represent the “formative” pluripotent 

state (Rossant and Tam, 2017; Smith, 2017), hypothesized to be the launching pad for 

multilineage differentiation (Smith, 2017). Although EpiLC induction from ESCs is a directional 

and progressive process that mirrors epiblast development(Hayashi et al., 2011),The formative 

state characterized by EpiLCs is transient and cannot be captured in stable self-renewing cell 

lines using current culture conditions (Hayashi et al., 2011). Our observation that Dnmt3l is 

transitorily expressed during ESC to EpiLC transition (Figure 7D), coupled with its expression in 

the epiblast (E4.5-6.5) (Smith et al., 2012) but not in EpiSCs (Veillard et al., 2014), suggests that 

it could be an excellent marker to isolate formative pluripotent stem cells from a heterogenous 

population of pluripotent cells. It will be of future interest to determine whether the formative 

phase can be captured as a stem cell state in culture, as achieved for naïve ESCs and EpiSCs. 

Cell surface proteins specific to “naïve” and primed hESCs are known (Collier et al., 2017), but 

surface markers specific to ground state, as in naïve ESCs, remain to be characterized. Our 

proteomic data allowed us to identify cell surface proteins that are specific to naïve ESCs and 

EpiLCs. Flow cytometry analysis using a cohort of antibodies confirmed that the inferred state-

specific cell surface markers accurately track pluripotent state transitions, with individual 

proteins exhibiting different temporal dynamics during the ESC to EpiLC transition. The 

identified cell surface proteins can enable isolation of specific pluripotent stem cell populations 
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during ESC differentiation and induced pluripotent stem cell (iPSC) reprogramming without 

having to rely on transgenic reporters. 

We were surprised that several cell surface proteins specific to naïve ESCs (CD38, CD105, 

CD205, CD10, CD26, and CD117) are not expressed in “naïve” hESCs (Collier et al., 2017), raising 

the question whether the purported naïve hESCs can be considered equivalent to naïve mouse 

ESCs. The naïve pluripotent state captured in mouse ESCs may be very transient or non-existent 

in human embryos (Rossant and Tam, 2017). Given the lack of a universal criteria for testing 

naïve pluripotency in a human system, unlike murine ESCs where chimera contribution to 

blastocysts is the benchmark, assigning naïve status to reset/reprogrammed hESCs is generally 

based on molecular but not functional basis (De Los Angeles et al., 2015; Hackett and Surani, 

2014). Based on the findings from our comparative analysis of the transcriptional profiles of 

mouse and human pluripotent states (Figure 7), we propose that the reprogrammed/reset 

hESCs are more similar to the formative state EpiLCs than to the ground-state naïve mouse ESCs 

and probably lie somewhere along the developmental axis between the naïve and the 

formative state.  

In summary, our studies provide a comprehensive molecular description of the phased 

progression of pluripotency. Our data, together with the complementary data describing 

sequence of molecular events inherent to reprogramming somatic cells into iPSCs (Cacchiarelli 

et al., 2015; Chronis et al., 2017; Polo et al., 2012; Schwarz et al., 2018), provide a foundation 

for investigating mechanisms that regulate pluripotent state transitions. The general framework 

we employed to gain insights into the multi-layered control of pluripotent cell fate transitions is 

a paradigm that can readily be used to investigate any differentiation process.  
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FIGURE LEGENDS 

Figure 1. High temporal-resolution profiling of the proteome, phosphoproteome, 

transcriptome, and epigenome during ESC to EpiLC transition.  

(A) Developmental events during embryogenesis in mouse embryos. ICM, inner cell mass; 

ESCs, embryonic stem cells; TE, tropectoderm; PE, primitive endoderm; EpiLC, epiblast-

like cells; EpiSCs, epiblast stem cells; PGCs, primordial stem cells. 

(B) Schematic showing EpiLC induction from ESCs grown in 2i+LIF medium. Proteome, 

phosphoproteome, transcriptome, and epigenome were profiled at indicated time-points. 

Phase contrast images correspond to representative ESC colony grown in 2i+LIF medium 

(left) and cells undergoing morphological changes at 72h post EpiLC induction (right).  

(C) Schematic of mass spectrometry (MS)-based experimental protocols used for proteome 

and phosphoproteome profiling. 

(D) Summary statistics of proteins, phosphosites, transcripts, and epigenetic marks profiled.  

See also Figure S1 and S2.  

 

Figure 2. Temporal dynamics of the proteome, phosphoproteome, and transcriptome during 

ESC to EpiLC transition 

(A-C) Principal component analysis (PCA) of the transcriptome (A), proteome (B), and 

phosphoproteome (C) during EpiLC induction. Each circle represents data from a sample 

collected at a particular time point during ESC to EpiLC transition, with lighter and darker 

shades of purple denoting earlier and later time points, respectively. Filled green squares 

represent transcriptomic data from Kalkan et al. (Kalkan et al., 2017). 

(D) Temporal dynamics of global changes in the proteome, phosphoproteome, 

transcriptome, and epigenome during ESC to EpiLC transition. Changes in the 

phosphorylation level of a given phosphosite were normalized to the changes in 

corresponding protein level.  
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(E) Density plot showing the distribution of magnitude of changes at the protein, mRNA, and 

phosphosite level. Changes in phosphosite levels were normalized as in (D). 

(F) Fraction of phosphosites, mRNAs, and proteins dynamically regulated during EpiLC 

induction, as assessed using ANOVA test. Changes in phosphosite levels were normalized 

as in (D). 

(G) Venn diagram showing overlap among genes encoding differentially regulated mRNAs, 

proteins, and/or phosphosites during ESC to EpiLC transition. Only genes with both 

protein and mRNA levels quantified were used for this analysis.  

See also Figure S3 and S4.  

 

Figure 3. Characterization of signaling dynamics during ESC to EpiLC transition and prediction 

of substrates for key kinases involved.  

(A) Clustering of phosphosites based on their temporal dynamics. Four clusters (out of the 

twelve, see Figure S6A, B) enriched for known substrates of ERK and S6K/RSK (blue), 

mTOR (green), p38a (orange), or AKT (purple) are shown. Select substrates are 

highlighted. P-values, Fisher’s exact test.  

(B) Heatmap representation of the data shown in (A). 

(C) Gene ontology (GO) analysis of phosphoproteins represented in each of the four clusters 

in (A). Top five enriched GO categories (biological processes) are shown. Select 

phosphoproteins within each group are highlighted at the top. 

(D) Temporal dynamics of relative phosphorylation levels (compared to 0h) of Erk2 

(T183/Y185) and Erk1 (T203/Y205, during ESC to EpiLC transition, as quantified using LC-

MS/MS. 

(E) Western blot analysis of total and phosphorylated Erk1/2 during ESC to EpiLC transition. 

Histone H3 is used as loading control.  

(F) Temporal dynamics of relative protein and mRNA levels (compared to 0h), as quantified 

using LC-MS/MS and RNA-Seq respectively, of Erk2 and Erk1 during ESC to EpiLC 

transition. 
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(G) Same as in (F) but showing data for Dusp6, Spry5, and Spred1, all downstream 

transcriptional targets of Erk1/2 signaling. 

(H) RT-qPCR analysis of relative expression of genes associated with naïve pluripotent state 

(right) or post-implantation epiblasts in EpiLCs (48h) compared to naïve ESCs (0h). During 

the ESC to EpiLC transition (0-48h), cells were left untreated or cultured in the presence 

of PD0325901 or Rapamycin for indicated time period. Data, normalized to Actin, 

represents mean of n = 3 biological replicates. Error bars represent SEM. *p < 0.05 

(Student’s t-test, two-sided). 

(I) Violin plots showing the distribution of ensemble prediction scores of all profiled 

phosphosites indicating the likelihood of they being a substrate of one of the five kinases 

(S6K/RSK, ERK, mTOR, p38a, AKT); kinases other than this five were grouped into the 

‘other’ category. Ensemble score for each kinase-substrate pair was generated using a 

positive-unlabelled ensemble algorithm (Yang et al., 2016a). Black crosses (‘x’) represent 

previously known substrates. 

(J) Temporal profiles of predicted substrates for ERK, S6K/RSK, AKT, mTOR, or p38a kinases. 

Mean and the standard deviation are shown as line-plot and range, respectively. 

(K) Sequence motifs enriched within predicted substrates for ERK, S6K/RSK, AKT, mTOR, or 

p38a kinases. Motifs were identified using IceLogo (Colaert et al., 2009), using 

precompiled mouse Swiss-Prot sequence composition as the reference set. Y-axis 

represents the difference in the frequency of an amino acid in the experimental vs the 

reference set. 

See also Figure S5.  

 

Figure 4. Comparative analysis of the proteome and transcriptome during ESC to EpiLC 

transition. 

(A) Temporal dynamics of correlation between changes in protein and mRNA (y-axis) over 

time in comparison to 0h (ESCs) data. Only genes with both protein and mRNA levels 

quantified were used for this analysis.  
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(B) Gene ontology (GO) analysis of genes upregulated or downregulated (at both protein and 

mRNA levels) at 72h vs 0h during ESC to EpiLC transition. Select GO categories (biological 

processes) enriched among upregulated or downregulated genes are shown.  

(C) Temporal dynamics of relative protein and mRNA levels (compared to 0h) of select genes. 

Genes associated with naïve pluripotent state (Esrrb, Tfcp2l1, and Prdm14), primed 

pluripotent state (Dnmt3a and Otx2), and those whose expression is relatively stable 

during ESC to EpiLC transition (Jarid2 and Oct4) are shown. 

(D) Correlation between changes in protein and mRNA levels (y-axis) for individual genes 

plotted against their relative rank-order (x-axis) in terms of change in gene 

(mRNA/protein) expression (72h vs. 0h) (see Methods). Genes that were substantially 

down-regulated at 72h vs. 0h have smaller ranks (positioned to the left) and those that 

were substantially up-regulated have higher ranks (right). Select transcriptional and 

chromatin regulators, associated with naïve pluripotent state (ESCs), that are 

downregulated during EpiLC induction are highlighted as filled red circles; those, 

associated with primed pluripotent state (EpiLCs), which are upregulated during EpiLC 

induction are highlighted as filled blue circles. Genes whose expression is relatively stable 

is during EpiLC differentiation are highlighted as filled yellow circles. Prdm14, whose 

protein levels are relatively stable but whose mRNA levels are dramatically 

downregulated, is highlighted as an open circle. 

See also Figure S6. 

 

Figure 5. Distinct waves of global changes in the proteome mark various phases of 

pluripotency 

(A) Temporal profiles of standardized changes in protein levels (compared to 0h). Top and 

bottom 20% of the proteins that are the most down- or up-regulated (red and blue, 

respectively), based on the rank-ordering in Figure 4D, are grouped into clusters based on 

fuzzy c-means clustering (c = 9). Top six clusters, with the most proteins, are shown. 
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Transcriptional and chromatin regulators, known/implicated to play important roles in 

ESCs and/or EpiLCs, are highlighted.  

(B) Genome browser shots of Esrrb and Otx2 showing temporal profiles of gene expression 

dynamics (RNA-Seq) and ChIP-Seq read density profiles for RNAPII and histone 

modifications H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K9me2. Gene 

annotation is shown at the bottom, with an arrow representing the direction of 

transcription from the active transcription start site. Regions containing transcriptionally 

active promoter and known enhancer are highlighted in yellow and green, respectively.  

(C) Temporal profiles of gene expression, RNAPII, and histone modification dynamics of 

genes associated with naïve (ESCs) and primed state (EpiLCs). The top and bottom 20% of 

the genes that are the most down- or up-regulated, based on the rank-ordering in Fig. 4D, 

were considered as naïve and primed state genes, respectively. Median and standard 

deviation are shown as line-plot and range, respectively. ChIP-Seq read density within the 

promoter region was used for analysis (RNAPII, H3K4me3, and H3K27ac: ±1 Kb of TSS; 

H3K4me1, H3K27me3, and H3K9me2: ±2.5 Kb of TSS). 

   

Figure 6. Cell-surface markers specific to naïve and formative/primed pluripotent states.  

(A) Scatter plot showing expression levels of cell surface proteins in naïve ESCs (x-axis) vs. 

EpiLCs (y-axis). Data for 49 surface proteins that are differentially expressed at one or 

more profiled time points during the ESC to EpiLC transition are shown. Based on their 

distance relative to the diagonal (expressed equally in both cell types), cell surface 

proteins have been categorized as naïve-specific or primed-specific (darker shades of red 

and blue, respectively). See Figure S7A for expression dynamics during ESC to EpiLC 

transition. 

(B, C) Histograms of flow cytometry analysis using fluorophore-conjugated antibodies 

showing separation in the fluorescence signal between naïve ESCs (red) and EpiLCs (blue). 

Data for cell state-specific proteins in naïve ESCs (B) and EpiLCs (C) are shown.  
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(D) Flow cytometry contour plots and dot plots of pairwise antibody combinations in ESCs 

and EpiLCs (first column) and over the ESC to EpiLC time-course (other columns).  

(E) Relative gene expression of selected cell surface proteins in mouse and human 

pluripotent cells based on RNA-Seq data from ESC to EpiLC time-course from this study 

(0h, 1h, 6h, 12h, 24h, 36h, 48h, and 72h), RNA-Seq data from mouse EpiSCs (Factor et al., 

2014), and RNA-Seq data from conventional human ESCs (hESCs) and reset “naïve” hESCs 

(Takashima et al., 2014). To facilitate direct comparison, all datasets were processed 

similarly and quantile-normalized. Fold changes relative to expression in mouse EpiSCs 

are shown. 

See also Figure S7.  

 

Figure 7. Comparative analysis of mouse and human pluripotent states.   

(A) PCA of RNA-Seq data from this study (in gray gradient; 0h, 1h, 6h, 12h, 24h, 36h, 48h, and 

72h) and previously published studies (in color) (Boroviak et al., 2015; Chan et al., 2013; 

Chen et al., 2018; Factor et al., 2014; Fiorenzano et al., 2016; Marks et al., 2012; 

Takashima et al., 2014; Yan et al., 2013). To facilitate direct comparison, all datasets were 

processed similarly and quantile-normalized. Each data point represents a biological 

replicate. mESC, mouse ESC; hESC, human ESC.  

(B) Heatmap showing unsupervised hierarchical clustering of pair-wise Pearson correlations 

between the RNA-Seq datasets used in (A).  

(C) Relative expression of genes associated with naïve pluripotency. Fold changes relative to 

expression in mouse EpiSCs are shown. 

(D) Same as in (C) but showing genes associated with formative and/or primed pluripotency. 
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Rank-order of genes based on the extent of changes at the mRNA and protein level (72h vs. 0h)
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Supplemental Figures 
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Figure S1 (related to Figure 1). Epiblast-like Cell Induction from ESCs. 

(A) Morphology of ESCs grown in 2i medium (left-most column; 48h after plating). Other panels 
show the morphological changes at 6, 12, 24 and 48 hour time-points (after plating) during 
ESC to epiblast-like cell (EpiLC) transition. Representative images are shown. 

(B) RT-qPCR analysis of gene expression (mRNA) profiles for pluripotency-associated gene 
Nanog, ICM-associated genes Klf4 and Prdm14, and epiblast genes Fgf5, Otx2, and 
Pou3f1/Oct6 (Buecker et al., 2014; Hayashi et al., 2011) during ESC to EpiLC transition. Data, 
normalized to Actin, represents mean of n = 3 biological replicates. Error bars represent 
SEM. 

B
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Figure S2 (related to Figure 1). Summary statistics of LC-MS/MS, RNA-Seq, and ChIP-Seq 
profiling of ESC to EpiLC transition. 

 (A, B) Number of peptides (A) and proteins (B) identified from single-runs and SCX fractionated 
runs at each profiled time point with/without ‘match between runs’ option in MaxQuant. 
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The union of unique identifications from all time points is represented as total number of 
peptides/proteins (gray bar). 

(C) Number of phosphopeptides identified at each profiled time point with/without using 
‘match between runs’ option in MaxQuant. The union of unique identifications from all time 
points is represented as total number of phosphosites (gray bar). 

(D) Distributions of localization confidence for identified and quantified phosphosites. Classes 1, 
2, and 3 represent phosphosites with probability scores >0.75 (high confidence), 0.5-0.75 
(medium confidence), and 0.25-0.5 (low confidence) respectively, as quantified by 
MaxQuant (Tyanova et al., 2016). Phosphorylation types (i.e. pSer, pThr and pTyr) for 
quantified Class I phosphosites are shown on the right.  

(E, F) Number of mapped RNA-Seq (E) and ChIP-Seq (F) reads at each profiled time point. 
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Figure S3 (related to Figure 2). Temporal dynamics of the proteome, phosphoproteome, 
transcriptome, and epigenome during ESC to EpiLC transition. 

(A) Principal component analysis (PCA) plot showing temporal dynamics of various histone 
modifications and RNAPII at gene promoters during ESC to EpiLC transition.  

A

RNAPII

-0.4 0 0.4

-0
.4

0
0.

2

0h

1h

6h 12h 24h
36h

48h

72h

PC1 (41.0%)

P
C

2 
(2

2.
2%

)

H3K27ac

-0.4 0 0.4-0
.3

0
0.

3

0h
1h

6h
12h

24h
36h

48h

72h

P
C

2 
(1

6.
3%

 v
ar

ia
nc

e)
PC1 (63.7%)

H3K4me3
-0

.2
0

0.
2

P
C

2 
(2

4.
2%

)

-0.2 0 0.2 0.4

0h
1h

6h

12h
24h

36h

48h

72h

PC1 (58.7%)

-0.4 0.2 0.8

-0
.2

0
0.

2

0h
1h
6h

12h

24h 36h

48h

72h

PC1 (77.2%)

P
C

2 
(9

.7
%

 v
ar

ia
nc

e)

H3K27me3

-0.4 0.1 0.6

-0
.4

0
0.

2

0h

1h
6h

12h

24h

36h

48h

72h

P
C

2 
(1

7.
2%

)

PC1 (57.5%)

H3K4me1

-0.2 0 0.2 0.4

-0
.2

0
0.

2 0h

1h

6h
12h

24h 36h

48h

72h

PC1 (35.2%)

P
C

2 
(1

6.
3%

 v
ar

ia
nc

e)

H3K9me2

DC

E

0

30m

1h
3h

6h

12h

24h

36h

48h

72h

5m

15m

B

0

6h
12

h
24

h
36

h
48

h
72

h

30
min

1h

Phosphoproteome
0.5 0 6h 0.75 0.9 1

Proteome
10.980.950.920.9

0.8 0.82 0.9 0.98 1
Transcriptome

Transcriptome 24h 2
24h 3
24h 1
24h 4
36h 2
36h 1
36h 3
36h 4

72h 1
72h 4
72h 2
72h 3
48h 3
48h 4
48h 1
48h 2

0 2
0 3
0 1
0 4

3h 3
3h 1
3h 2
3h 4

12h 1
12h 3
12h 2
12h 4
6h 1
6h 4
6h 2
6h 3

15m 2
15m 1
15m 3
15m 4
5m 1
5m 4
5m 2
5m 3

1h 3
1h 1
1h 2
1h 4
30m 1
30m 4
30m 2
30m 3

Phosphoproteome

1h 4
1h frac.
1h 1
1h 2
1h 3
30m 4
30m frac.
30m 1
30m 2
30m 3

0 1
0 4
0 frac.
0 2
0 3

12h 4
12h 2
12h 3
12h 1
12h frac.
6h 1
6h 4
6h 3
6h 2
6h frac.

72h 1
72h 2
72h 3
72h 4
72h frac.

24h 3
24h 4
24h frac.
24h 1
24h 2
36h 4
36h 1
36h frac.
36h 2
36h 3
48h 3
48h 4
48h 2
48h 1
48h frac.

Proteome

F

H3K
9m

e2
 0h

H3K
9m

e2
 6h

H3K
9m

e2
 1h

H3K
9m

e2
 24

h

H3K
9m

e2
 36

h

H3K
9m

e2
 12

h

H3K
9m

e2
 72

h

H3K
9m

e2
 48

h

H3K
27

me3
 1h

H3K
27

me3
 6h

H3K
27

me3
 0h

H3K
27

me3
 12

h

H3K
27

me3
 24

h

H3K
27

me3
 36

h

H3K
27

me3
 48

h

H3K
27

me3
 72

h

H3K
4m

e1
 72

h

H3K
4m

e1
 24

h

H3K
4m

e1
 48

h

H3K
4m

e1
 36

h

H3K
4m

e1
 0h

H3K
4m

e1
 12

h

H3K
4m

e1
 1h

H3K
4m

e1
 6h

RNA_ PolI
I 0

h

RNA_ PolI
I 7

2h

RNA_ PolI
I 1

h

RNA_ PolI
I 6

h

RNA_ PolI
I 1

2h

RNA_ PolI
I 2

4h

RNA_PolI
I 4

8h

RNA_ PolI
I 3

6h

H3K
4m

e3
 72

h

H3K
4m

e3
 48

h

H3K
4m

e3
 1h

H3K
4m

e3
 0h

H3K
4m

e3
 6h

H3K
4m

e3
 36

h

H3K
4m

e3
 12

h

H3K
4m

e3
 24

h

H3K
27

ac
 0h

H3K
27

ac
 1h

H3K
27

ac
 12

h

H3K
27

ac
 6h

H3K
27

ac
 72

h

H3K
27

ac
 24

h

H3K
27

ac
 48

h

H3K
27

ac
 36

h

−1

0

1

Pairwise correlation

Pair
wise

 co
rre

lat
ion

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/415430doi: bioRxiv preprint 

https://doi.org/10.1101/415430
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figures 
 

51 
 

(B) Heatmap representation of pairwise correlation between data (transcriptome, green; 
proteome, red; phosphoproteome, blue) from within (biological replicates) and across all 
time points. 

(C-E) Unsupervised hierarchical clustering of proteomic (C), phosphoproteomic (D), and 
transcriptomic (E) profiles from within (biological replicates) and across all time points. 
Biological replicates are denoted by suffix 1, 2, 3, or 4. Data from SCX fractionated runs are 
denoted by suffix “frac.”. 

(F) Unsupervised hierarchical clustering of pairwise correlation between various histone 
modifications and RNAPII at gene promoters (±2 Kb of TSS) across all time points. 
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Figure S4 (related to Figure 2). Number and magnitude of differentially regulated 
phosphosites, genes, and proteins during ESC to EpiLC transition. 

(A-C) Violin and volcano plots (top and bottom panels, respectively) showing the distribution 
and magnitude of fold changes for phosphosites (A), mRNA (B), and proteins (C) at each time 
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point in comparison to 0h (ESC) data. Number (and percentage) of 
phosphosites/mRNAs/proteins that are differentially regulated at each time point (in 
comparison to 0h), computed using a t-test, are shown (refer to Methods for details).  
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Figure S5 (related to Figure 3). Substrate prediction and characterization  
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(A) Estimation of the optimal number of clusters of phosphosites using CLUE (Yang et al., 2015). 
The number of clusters evaluated ranged from 2 to 30, and the optimal number of clusters, 
as determined by CLUE, was estimated to be 12 based on known kinase-substrate 
annotations in the PhosphoSitePlus database (Hornbeck et al., 2012).  

(B) Temporal profiles of standardized, average changes in phosphorylation levels of 
phosphosites (compared to 0h). Phosphosites are grouped into 12 clusters, as estimated by 
CLUE. Changes in the phosphorylation level of a given phosphosite were normalized to the 
changes in corresponding protein levels. Highlighted clusters are enriched for known 
substrates of AKT (purple), ERK and S6K/RSK (blue), mTOR (green), and p38a (orange). 

(C) Kinase perturbation plot (Yang et al., 2016b) showing inferred kinase activity (z-score; x- and 
y-axis) during early (5 and 15 min), intermediate (3 and 6 hours), and late stages (48 and 72 
hours) of ESC to EpiLC transition. Z-scores represent relative kinase activity (compared to 
0h).  

(D) Substrate predictions for ERK, S6K/RSK, AKT, mTOR, and p38a kinases. Kinase-substrate 
prediction using positive-unlabeled ensemble algorithm with multiclass classification (Yang 
et al., 2016a). Known and predicted substrates within transcriptional and chromatin 
regulators are shown in gray and black text (on the periphery). See Table S6 for the list of all 
predictions. Predictions are grouped into clusters based on multiclass prediction scores 
(refer to Methods for details). Inset: 3D scatter plots showing the ensemble prediction 
scores (probabilities; z-axis) for each profiled phosphosite with respect to a given kinase 
(ERK, S6K/RSK, AKT, mTOR, or p38a). X-axis denotes the motif score, representing the 
enrichment of sequence motif derived from known substrates. Y-axis denotes the 
dissimilarity (Euclidean distance) between the temporal profile of a given phosphosite and 
the average temporal profile of known substrates. Color gradient (red to purple) represents 
high to low ensemble prediction score. Known and select predicted substrates are 
highlighted in blue and green filled circles, respectively. 
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Figure S6 (related to Figure 4). Comparative analysis of the proteome and transcriptome 
during ESC to EpiLC transition. 
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(A) Scatter plot showing correlation between mRNA (x-axis) and protein (y-axis) levels at each 
time point.  

(B) Scatter plot showing correlation between fold-changes in protein (x-axis) and mRNA (y-axis) 
at each time point in comparison to 0h (ESCs) data.  

(C) Temporal dynamics of relative protein and mRNA levels (compared to 0h) of select genes.  

(D) Correlation between changes in mRNA or protein levels (primary and secondary y-axis, 
respectively) plotted against the relative rank-ordering of genes (x-axis) based on change in 
gene expression (72h vs. 0h), computed as the average rank of changes in protein and 
mRNA levels (see Experimental Procedures).  

(E) Western blot analysis of Prdm14 during ESC to EpiLC transition. Ran is used as loading 
control. 
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Figure S7 (related to Figure 6). Substrate prediction and characterization  

(A) Heatmaps showing temporal profiles of relative protein levels (left) and mRNA expression 
(right) of cell surface markers during the ESC to EpiLC time-course. Data for 39 markers 
within the highlighted regions in Figure 6A are shown. Cell surface proteins are ordered 
based on unsupervised hierarchical clustering. 

(B) Histograms of flow cytometry analysis using fluorophore-conjugated antibodies against 
naïve ESC-specific surface markers showing the fluorescence signal tracking the phased 
progression of pluripotency over the ESC to EpiLC time-course. 

(C) Same as in (B) but using antibodies against surface markers enriched in EpiLCs compared to 
naïve ESCs.  

(D) Flow cytometry contour plots and dot plots of pairwise antibody combinations in ESCs and 
EpiLCs (first column) and over the ESC to EpiLC time-course (other columns). 

(E) Relative gene expression of “naïve” and primed hESC-specific cell surface proteins  (Collier 
et al., 2017) in mouse and human pluripotent cells based on RNA-Seq data from ESC to 
EpiLC time-course from this study (0h, 1h, 6h, 12h, 24h, 36h, 48h, and 72h), RNA-Seq data 
from mouse EpiSCs (Factor et al., 2014), and RNA-Seq data from conventional human ESCs 
(hESCs) and reset “naïve” hESCs (Takashima et al., 2014). To facilitate direct comparison, all 
datasets were processed similarly and quantile-normalized. Fold changes relative to 
expression in mouse EpiSCs are shown. 
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STAR METHODS 

Detailed methods are provided in the online version of this paper and include the following: 

• KEY RESOURCES TABLE 
• CONTACT FOR REAGENT AND RESOURCE SHARING 
• EXPERIMENTAL MODEL AND SUBJECT DETAILS 

o Mouse ESC Culture and EpiLC Induction 
• METHOD DETAILS 

o Phosphoproteome Sample Preparation 
o Proteome Sample Preparation 
o LC-MS/MS Measurement 
o Quantitative RT-PCR 
o RNA-Seq 
o ChIP-Seq 
o Western Blot 
o Flow Cytometry 
o Phosphoproteomics Data Analysis 
o Proteomics Data Analysis 
o RNA-Seq Data Analysis 
o ChIP-Seq Data Analysis 
o Correlation Analysis of Protein and mRNA expression 
o Comparative Analysis of Multi-ome Dynamics 
o Gene Ontology Analysis 
o Kinase Inference 
o Pathway Enrichment Analysis 
o Substrate Prediction and Motif Analysis 

• QUANTIFICATION AND STATISTICAL ANALYSIS 
• DATA AND SOFTWARE AVAILABILITY  
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-CD105-APC Biolegend 120413 
Anti-CD146-PE-Cy7 Biolegend 134713 
Anti-CD205-PE Biolegend 359203 
Anti-CD317-APC Biolegend 127015 
Anti-CD326-Pac-Blue Biolegend 118225 
Anti-CD38-Pac-Blue Biolegend 102720 
Anti-CD54-PE Miltenyi Biotech 130-104-215 
Anti-CD81-PE Biolegend 104905 
Anti-CD9-PE Biolegend 124805 
Anti-CD90.2-FITC Biolegend 105305 
Anti-Erk1/2 Cell Signaling 9102 
Anti-pErk1/2 Cell Signaling 9101 
Anti-H3K4me1 Abcam ab8895 
Anti-H3K4me3 Abcam ab8580 
Anti-H3K9me2 Abcam ab1220 
Anti-H3K27ac Abcam ab4729 
Anti-H3K27me3 Millipore 07-449 
Anti-Histone H3 Abcam ab1791 
Anti-Prdm14 EMD Millipore AB4350 
Anti-Ran BD Bioscience 610341 
Anti-RNA Polymerase II 8WG16  Covance/Biolegend MMS-126R 
IRDye 800CW Goat anti-Mouse IgG LI-COR Biotechnology P/N 925-32210 
IRDye 800CW Goat anti-Rabbit IgG LI-COR Biotechnology P/N 925-32211 
IRDye 680CW Goat anti-Mouse IgG LI-COR Biotechnology P/N 925-68020 
IRDye 680CW Goat anti-Rabbit IgG LI-COR Biotechnology P/N 925-68021 
Chemicals, Peptides, and Recombinant Proteins 
2,2,2-Trifluroethanol Sigma 96924 
2-Chloroacetamide Sigma C0267 
Acetone Fisher Scientific A929 
Acetonitrile  Fisher Scientific A955-4 
Accutase Sigma A6964 
Activin A Peprotech 120-14 
Ammonium acetate  Merck 5438340100 
Ammonium bicarbonate Sigma 09830 
Ammonium hydroxide  Merck 5330030050 
B27 Supplement Invitrogen 12587-017 
bFGF Peprotech 450-33 
BSA fraction V, 7.5% Invitrogen 15260-037 
CHIR99021, Gsk3 inhibitor Selleckchem S2924 
DMEM Thermo Fisher 11965-084 
DMEM/F12 Invitrogen 21041-025 
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DNase I Worthington LS002139 
DNase I, Amplification grade Thermo Fisher 18068015 
Dynabeads (protein G) Pierce 88847 
Dynabeads (protein A) Pierce 88846 
EDTA Gibco 15575-038 
EGTA Bioworld 40520008-2 
FGFR Tyrosine Kinase Inhibitor Selleckchem S1470 
Fibronectin Millipore FC010 
Formaldehyde Sigma F8775 
Formic acid Fisher Scientific A11750 
Gelatin Sigma G1890 
Glycerol Sigma G5516 
Glycine Sigma G8898 
Guanidine hydrochloride Sigma RDD001 
GlycoBlue Ambion AM9515 
HEPES Sigma H3375 
IGEPAL CA-630 Sigma I-3021 
KCl Sigma P9541 
KSR Invitrogen 10828-028 
Laminin BD Biosciences 354232 
L-glutamine 200mM Invitrogen 25030-081 
LiCl Sigma 62476 
LIF Millipore ESG1107 
LIVE/DEAD Fixable Near-IR dye Invitrogen L34976 
LysC Wako Chemicals 129-02541 
MgCl2 Sigma M2670 
N-Lauroylsarcosine MP Biomedicals 190110 
N2 Invitrogen 17502048 
NaCl, 5M Sigma S5150 
NaHCO3 Sigma S6014 
Neurobasal Medium Invitrogen 12348-017 
NuPAGE Protein Gel Thermo Fisher NP0321BOX 
PBS Made in house  
PD0325901, MEK inhibitor S1036 Selleckchem 
PMSF Sigma P7626 
Poly L-ornithine Sigma-Aldrich P3655 
Protease Inhibitors Roche 4693159001 
Proteinase K Invitrogen 25530049 
PVDF membranes Thermo Fisher IB24002 
QIAzol Lysis Reagent  Qiagen 79306 
RNase cocktail Ambion AM2286 
SDS, 20% Fisher Scientific BP166 
Sodium Deoxycholate Sigma 30970 
SsoFast EvaGreen supermix Bio-Rad 1725201 
TCEP Thermo Fisher PG82080 
Trifluroacetic acid (TFA) Merck 8082600100 
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Tris HCL Sigma T2663, T6066 
Triton X-100 Sigma X100 
Trypsin Sigma T6567 
Critical Commercial Assays 
iScript cDNA Synthesis Kit Bio-Rad 1708891 
miRNeasy Mini Kit Qiagen 217004 
TruSeq stranded total RNA library prep gold Illumina 20020598 
Experimental Models: Cell Lines 
Mouse ESCs (E14Tg2a) ATCC CRL-1821 
Oligonucleotides 
Primers used for RT-qPCR This paper Table S9 
Publicly Available Datasets Used For Analyses 
Mouse ESCs (N2B27+2i) 0h, RNA-Seq Kalkan et al. (2017) Array Express: E-MTAB-5305 
Mouse ESCs (N2B27) 16h, RNA-Seq Kalkan et al. (2017) Array Express: E-MTAB-5305 
Mouse ESCs (N2B27) 25h-Rex1high, RNA-
Seq Kalkan et al. (2017) Array Express: E-MTAB-5305 
Mouse ESCs (N2B27), 25h-Rex1low, RNA-Seq Kalkan et al. (2017) Array Express: E-MTAB-5305 
Mouse ESCs (t2iL), RNA-Seq Takashima et al. (2014) Array Express: E-MTAB-2857 
Mouse ESCs (t2iL+Gö), RNA-Seq Takashima et al. (2014) Array Express: E-MTAB-2857 
Mouse ESCs (PD03+LIF), RNA-Seq Takashima et al. (2014) Array Express: E-MTAB-2857 
Mouse EpiSCs, RNA-Seq Factor et al. (2014) 

Fiorenzano et al. (2016) 
GEO: GSE57409 
GEO: GSE79796 

Mouse E5.5 postimplantation epiblast, RNA-
Seq 

Boroviak et al. (2015) Array Express: E-MTAB-2958 

Human ESCs (hESCs), RNA-Seq Chan et al. (2013) 
Takashima et al. (2014) 

Array Express: E-MTAB-2031 
Array Express: E-MTAB-2857 

Reset hESCs (t2iL+Gö), RNA-Seq Takashima et al. (2014) Array Express: E-MTAB-2857 
Human ESCs (hESCs, 3iL), RNA-Seq Chan et al. (2013) Array Express: E-MTAB-2031 
Human blastocyst ICM, RNA-Seq Yan et al. (2013) GEO: GSE36552 
Software and Algorithms 
R 3.3.2 R Core Team, 2016 https://www.R-project.org/ 
MaxQuant 1.5.3.29 Cox and Mann (2008) http://www.biochem.mpg.de

/5111795/maxquant 
Bowtie 0.12.8 Langmead et al. (2009) http://bowtie-

bio.sourceforge.net/index.sht
ml 

STAR 2.5.2a Dobin et al. (2013) https://github.com/alexdobi
n/STAR 

Bedtools 2.26.0 Quinlan (2014) http://bedtools.readthedocs.
io/en/latest/ 

HTSeq 0.6.1 Anders et al. (2015) http://www-
huber.embl.de/HTSeq/doc/o
verview.html 

ComBat (SVA R package 3.24.0) Johnson et al. (2007) https://www.bu.edu/jlab/wp
-
assets/ComBat/Abstract.html 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/415430doi: bioRxiv preprint 

https://doi.org/10.1101/415430
http://creativecommons.org/licenses/by-nc-nd/4.0/


STAR Methods 
 

64 
 

Limma 3.32.2 Ritchie et al. (2015) https://bioconductor.org/pac
kages/release/bioc/html/lim
ma.html 

edgeR 3.16.5 Robinson et al. (2010) https://bioconductor.org/pac
kages/release/bioc/html/edg
eR.html 

DESeq2 1.16.1 Love et al. (2014) https://bioconductor.org/pac
kages/release/bioc/html/DES
eq2.html 

Clue 1.2 Yang et al. (2015) https://CRAN.R-
project.org/package=ClueR 

directPA 1.3 Yang et al. (2014) https://CRAN.R-
project.org/package=directP
A 

Kinase-substrate Prediction Yang et al. (2016a) https://github.com/PengyiYa
ng/KSP-PUEL 

KinasePA Yang et al. (2016b) http://shiny.maths.usyd.edu.
au/KinasePA/ 

IceLogo Colaert et al. (2009) https://github.com/compomi
cs/icelogo 

 

  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 19, 2018. ; https://doi.org/10.1101/415430doi: bioRxiv preprint 

https://doi.org/10.1101/415430
http://creativecommons.org/licenses/by-nc-nd/4.0/


STAR Methods 
 

65 
 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for reagents may be directed to and will be fulfilled by the 

Lead Contact, Dr. Raja Jothi (jothi@nih.gov). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Mouse ESC Culture and EpiLC Induction 

Mouse ESCs (E14Tg2a, ATCC) were grown in serum free N2B27-based medium, supplemented 

with 2i (MEK inhibitor PD0325901, 1.0 μM and Gsk3b inhibitor CHIR99021, 3.0 μM) and LIF 

(1000u/ml) in tissue culture (TC) plates coated with poly L-ornithine and  laminin (Hayashi et al., 

2011). For EpiLC induction, ESCs, adapted for a minimum of 4 passages in 2i+LIF, were plated on 

TC dishes coated with human plasma fibronectin (5µg/ml) in N2B27 medium containing activin 

A (20 ng/ml), bFGF (12µg/ml) and KSR (1%) (Hayashi et al., 2011). 

METHOD DETAILS 

Phosphoproteome Sample Preparation  

All MS experiments were performed in biological quadruplicates. Phosphopeptides were 

enriched using the EasyPhos workflow as described previously (Humphrey et al., 2015). Briefly, 

cells were lysed in GdmCl buffer (6M Guanidine hydrochloride, 100 mM Tris pH 8.5, 10 mM 

TCEP, 40 mM 2-Chloroacetamide) and heated for 5 min at 95°C. Lysates were cooled on ice for 

15 minutes, sonicated, and acetone precipitated overnight by addition of 4X volumes of -20°C 

acetone. Precipitated protein was collected by centrifugation, and pellets washed 1X with 4 mL 

-20°C 80% (v/v) acetone. Washed pellets were air-dried for 10 min at room temperature, 

resuspended in 500 µL TFE digestion buffer (10% TFE (2,2,2-Trifluroethanol), 100 mM 

ammonium bicarbonate), and sonicated (Bioruptor (Diagenode), 4°C for 2X 5 min cycles) until a 

homogenous suspension was formed. Protein concentration was determined by BCA assay 

(Thermo Fisher Scientific). Aliquots corresponding to 1 mg protein were diluted to 500 µL in TFE 

digestion buffer for phosphopeptide enrichment, and 20 µg protein was used for proteome 
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analysis. Protein was subsequently digested by the addition of 1:100 LysC and Trypsin overnight 

at 37°C with rapid agitation (2,000 rpm).  

Proteome Sample Preparation 

As with phosphoproteome, all MS experiments were performed in biological quadruplicates. In 

addition, to enhance coverage of the proteome measurements, we pooled the four biological 

replicates from each time-point and performed StageTip-based Strong Cation Exchange (SCX) 

fractionation(Wisniewski et al., 2009) of this pooled sample for the proteome runs (Figure 1C, 

S2A, and S2B). Proteome samples were processed using an in-StageTip (iST) protocol (Kulak et 

al., 2014), and 10 µg (or 20 µg) protein material was used for single-shot or fractionated 

samples, respectively. For fractionated samples, equal quantities (5 µg per biological replicate) 

of protein were pooled prior to digestion. Precipitated protein was reconstituted in iST lysis 

buffer (6M GdmCl, 100 mM Tris pH 8.5), diluted to 10-fold in iST dilution buffer (10% 

acetonitrile, 25 mM Tris pH 8.5), and digested with 1:100 LysC (Wako Chemicals) and Trypsin at 

37°C overnight directly in StageTips containing SDB-RPS (Styrene Divinyl Benzene Reverse Phase 

Sulfonate) (3X plugs, Empore 3M) (iST-SDB-RPS) or Strong Cation Exchange (SCX) (6X plugs, 

Empore 3M) (iST-SCX), for single-shot or fractionated samples respectively. For single-shot iST-

SDB-RPS samples, StageTips were washed once with 100 µL 0.2% (v/v) Trifluroacetic acid (TFA), 

and subsequently eluted with 60 µL 5% (v/v) ammonium hydroxide, 80% (v/v) acetonitrile. For 

fractionated iST-SCX samples, peptides were eluted in 5X fractions (50 mM, 75 mM, 125 mM, 

200 mM, 300 mM) of ammonium acetate, 20% (v/v) Acetonitrile, 0.5% (v/v) formic acid, 

followed by a final elution with 5% (v/v) ammonium hydroxide/80% (v/v) acetonitrile.  

LC-MS/MS Measurement 

Peptides and phosphopeptides were loaded onto a 40 cm column with a 75 μM inner diameter, 

packed in-house with 1.9 μM C18 ReproSil particles (Dr. Maisch GmbH), and column 

temperature was maintained at 50°C using a homemade column oven. An EASY-nLC 1000 

system (Thermo Fisher Scientific) was interfaced with a Q Exactive HF benchtop Orbitrap mass 
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spectrometer (Thermo Fisher Scientific) using a NanoSpray Flex ion source (Thermo Fisher 

Scientific). For all samples, peptides were separated with a binary buffer system of 0.1% (v/v) 

formic acid (buffer A) and 60% (v/v) acetonitrile/0.1% (v/v) formic acid (buffer B), at a flow rate 

of 300 nL/min. For phosphoproteome analysis peptides were eluted with a gradient of 5% - 25% 

buffer B over 85 minutes followed by 25% - 55% buffer B over 45 minutes, and peptides were 

analysed with one full scan (300-1,600 m/z; R=60,000 at 200 m/z) at a target of 3e6 ions, 

followed by up to five data-dependent MS/MS scans with HCD (target 1e5 ions; max IT 120 ms; 

isolation window 1.6 m/z; NCE 25%; 40% underfill ratio), detected in the Orbitrap detector 

(R=15,000 at 200 m/z). Dynamic exclusion (40 s) and Apex trigger (4 to 7 s) were switched on. 

For single-run proteome analysis, peptides were eluted with a gradient of 4% -  32% buffer B 

over 180 minutes followed by 32% - 47% buffer B over 40 minutes, and for pooled SCX-

fractionated samples, peptides were eluted with a gradient of 4% - 32% buffer B over 90 

minutes followed by 32% - 47% buffer B over 20 minutes.  Peptides were analysed, with one full 

scan (300-1,600 m/z; R=60,000 at 200 m/z) at a target of 3e6 ions, followed by up to 10 (for 

single-run samples) or 15 (for fractionated samples) data-dependent MS/MS scans with HCD 

(target 1e5 ions; max IT 100 ms for single-run samples, 25 ms for fractionated samples; 

isolation window 1.6 m/z; NCE 25%; 30% underfill ratio), detected in the Orbitrap detector 

(R=15,000 at 200 m/z). Dynamic exclusion (30 s) was switched on. 

Quantitative RT-PCR 

Quantitative RT-PCR was performed as previously described (Oldfield et al., 2014). Briefly, Total 

RNAs were prepared from cells using Qiazol lysis reagent (Qiagen), and cDNAs were generated 

using the iScript kit (Bio-Rad) according to the manufacturer’s instructions. Quantitative PCRs 

were performed on the Bio-rad CFX-96 or CFX-384 Real-Time PCR System using the Bio-rad 

SsoFast EvaGreen supermix. Three or more biological replicates were performed for each 

experiment. Data are normalized to Actin expression, and plotted as mean +/- S.E.M. See 

Supplementary Table 9 for primers used in RT-qPCR analysis. 

RNA-Seq  
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Total RNA was extracted with Qiazol lysis reagent (Qiagen) treatment and purified using 

miRNeasy Kit. The samples were then treated with DNase I, Amplification grade (Invitrogen) 

and stranded libraries were prepared using the TruSeq stranded RNA kit (Illumina) with 

RiboZero depletion (Gold kit) and sequenced on Illumina HiSeq system. 

ChIP-Seq 

ChIP was performed as previously described (Oldfield et al., 2014). Briefly, mouse ESCs (1x107) 

were cross-linked with 1% formaldehyde in DMEM for 10 min, and the reaction was quenched 

by the addition of glycine at a final concentration of 125 mM for 5 min. Cells were washed twice 

with PBS, and resuspended in 1 ml of lysis buffer A (50 mM HEPES pH 7.5; 140 mM NaCl; 1 mM 

EDTA; 10% Glycerol; 0.5% IGEPAL CA-630; 0.25% Triton X-100; 1x Complete protease inhibitor 

mixture, 200 nM PMSF). After 10 min on ice, the cells were pelleted and resuspended in 1 ml of 

lysis buffer B (10 mM Tris-HCl pH 8.0; 200 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 1x protease 

inhibitors, 200 nM PMSF). After 10 min at room temperature, cells were sonicated in lysis 

buffer C (10 mM Tris-HCl pH 8.0; 100 mM NaCl; 1 mM EDTA; 0.5 mM EGTA; 0.1% sodium 

deoxycholate; 0.5% N-lauroylsarcosine; 1x protease inhibitors, 200 nM PMSF) using Diagenode 

Bioruptor for 16 cycles (30 sec ON; 50 sec OFF) to obtain ~200–500 bp fragments. Cell debris 

were pre-cleared by centrifugation at 14,000 rpm for 20 min, and 8 μg (or 20 μg) of chromatin 

was incubated with antibodies against specific Histone modifications (or RNA Pol II, 

respectively) overnight at 4 ̊C. Protein A/G-conjugated magnetic beads (Pierce Biotech) were 

added the next day for 2 hours. Subsequent washing and reverse cross-linking were performed 

as previously described (Heard et al., 2001).  

Western Blot 

Western-blots were performed as previously described (Oldfield et al., 2014). Briefly, Cell 

pellets, lysed in RIPA buffer (25 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% IGEPAL, 1% Sodium 

deoxycholate) with protease inhibitors, were sonicated using Bioruptor (Diagenode) for three 

cycles (30 sec ON; 50 sec OFF). The lysate was boiled with SDS-PAGE sample buffer, loaded onto 
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NuPAGE gel, and transferred to 0.22 μM PVDF membranes. The membranes were pre-wet in 

100% methanol and rinsed with ultrapure water before being washed for 5 min in 1x PBS. The 

membranes were then blocked with Odyssey blocking buffer for 1 h at room temperature with 

gentle shaking. Each membrane was treated with appropriate primary and secondary (IRDye) 

antibodies. The membranes were then washed in PBS (0.1% Tween 20), rinsed with PBS and 

scanned and quantified on an Odyssey imaging system. 

Flow Cytometry 

Cells were dissociated into single cells with Accutase, washed and passed through 40 μm cell 

strainers. Cells were washed with PBS and stained with LIVE/DEAD Fixable Near-IR dye 

(Invitrogen) to stain dead cells (1 x 106 to 2 x 106 cells per reaction). Cells were washed 2X with 

flow buffer (2% FBS in PBS, 1Mm EDTA, 25ug/ml Dnase I). Conjugated antibodies were mixed with 

50 μL flow buffer and applied to 50 μL of cells. Cells were incubated for 30 minutes at 4°C in the 

dark and washed 2X with buffer (2% FBS in PBS) and centrifuged at 300xg for 5 minutes. Data 

was analyzed using FlowJo V10 software or FACSDiva (BD Biosciences).  

Phosphoproteomics Data Analysis 

Raw MS files from phosphoproteomics experiments were processed using MaxQuant (version 

1.5.3.29) (Cox and Mann, 2008) for phosphosite identification using mouse UniProt (August 

2015 release). In total, 37,619 phosphorylation sites were identified, which are classified into 

Class I (27,381), II (6,265) and III (3,973) based on MaxQuant reported confidence of localization 

scores (Figure S2A, left panel). Phosphorylation level of each site was quantified using LFQ 

intensity from MS and logarithm (base 2) transformed. Denoting the 12 profiled time points as 

𝑡𝑡𝑖𝑖 (𝑖𝑖 = 0, 5m, 15m, 30m, 1h, 3h, 6h, 12h, 24h, 48h, 72h) and the number of times a 

phosphorylation sites (𝑝𝑝) quantified at a given time point as 𝑞𝑞𝑝𝑝(𝑡𝑡𝑖𝑖). Phosphorylation sites from 

Class I were filtered to require at least 4 valid values in any one of the 12 time-points (i.e. 

∃ 𝑖𝑖 such that 𝑞𝑞𝑝𝑝(𝑡𝑡𝑖𝑖) = 4). Subsequently, only phosphorylation sites with at least 12 out of 48 

quantified values (12 time-points, four replicates) were retained (i.e. ∑ 𝑞𝑞𝑝𝑝(𝑡𝑡𝑖𝑖)𝑖𝑖 ≥ 12) for 
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further analysis. This resulted in 17,866 phosphorylation sites passing the above stringent 

filtering criteria. This filtered data was then median-normalized with respect to each of the 12 

time-points and remaining missing quantifications within these data were subsequently 

imputed using a two-step procedure. In the first step, for each phosphorylation site with two or 

more quantified values out of the four biological replicates in each time point (i.e. ∃ 𝑖𝑖 such that 

𝑞𝑞𝑝𝑝(𝑡𝑡𝑖𝑖) ≥ 2), we calculated the mean (𝑚𝑚𝑡𝑡𝑖𝑖
𝑝𝑝 ) and standard deviation (𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑝𝑝 ) for that 𝑝𝑝 at 𝑡𝑡𝑖𝑖 using 

quantified replicates and imputed missing data for 𝑝𝑝 at 𝑡𝑡𝑖𝑖 using a Gaussian model 

parameterised by 𝑚𝑚𝑡𝑡𝑖𝑖
𝑝𝑝and 𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑝𝑝 . In the second step, we imputed the remaining missing values 

using the heuristic random-tail method described previously (Robles et al., 2017). Specifically, 

for each time point 𝑡𝑡𝑖𝑖 the grand mean (𝑚𝑚𝑡𝑡𝑖𝑖
. ) and grand standard deviation (𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

. ) across all 

phosphorylation sites were calculated and a Gaussian model were utilised to impute missing 

data in each 𝑡𝑡𝑖𝑖 by down-shifting 𝑚𝑚𝑡𝑡𝑖𝑖
. by 1.6 and with a standard deviation of 𝑠𝑠𝑑𝑑𝑡𝑡𝑖𝑖

. × 0.6. 

Phosphoproteomics data were subsequently corrected for batch effects using ComBat (Johnson 

et al., 2007), and finally data was normalized by the total proteome. 

Proteomics Data Analysis  

Like the phosphoproteome data, raw MS files from total proteome experiments were 

processed using MaxQuant (1.5.3.29) for protein identification using mouse UniProt database 

(August 2015 release). After filtering to remove common protein contaminants and reverse 

matches, we identified a total of 10,597 proteins. Protein abundance was quantified using LFQ 

intensity and log (base 2) transformed. Since the fractionated samples have fewer missing 

values (Figures S2B and S2C), we took advantage of the more complete quantitation from 

fractionated samples to guide the imputation of missing values in the single-run samples. 

Denoting the 9 profiled time points in proteomics experiment as 𝑡𝑡𝑖𝑖 (𝑖𝑖 = 0, 30m, 1h, 3h, 6h, 12h, 

24h, 48h, 72h) and a protein (𝑃𝑃) that is quantified at a given time point in the fractionated 

sample as 𝑠𝑠𝑃𝑃(𝑡𝑡𝑖𝑖), protein identifications from fractionated samples were filtered to require at 

least 5 valid values out of the 9 time-points (i.e. ∑ 𝑠𝑠𝑃𝑃(𝑡𝑡𝑖𝑖)𝑖𝑖 ≥ 5). Then, for fractionated samples 

we calculated the means (𝑚𝑚𝑡𝑡𝑖𝑖
𝑆𝑆 ) and the standard deviations 𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑆𝑆  at each time point 𝑡𝑡𝑖𝑖 and 
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imputed the missing values in the fractionated samples at each time point by downshifting 𝑚𝑚𝑡𝑡𝑖𝑖
𝑆𝑆  

by 1.8 and with a standard deviation of 𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖
𝑆𝑆 × 0.3 as in Beck et al., 2015. After filtering and 

imputing data specifically for fractionated samples, we first calibrated the single-run samples 

with respect to fractionated samples at each time point and then imputed missing values by 

using the means 𝑚𝑚𝑡𝑡𝑖𝑖
𝑆𝑆  and standard deviations 𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖

𝑆𝑆 × 0.3 calculated from fractionated samples. 

Then, batch effect correction was applied using ComBat (Johnson et al. 2007 Biostatistics) for 

subsequent analysis. Fuzzy c-means clustering (c = 9) was used to partition the proteins that are 

the most down-regulated or up-regulated into clusters based on their temporal expression 

profiles (Figure 5A). Resulting clusters were ranked by the cluster size (number of proteins) 

from large to small, and the top six clusters, with the most proteins, are shown (Figure 5A).  

 

RNA-Seq Data Analysis 

Pair-end 51 bp reads were mapped to the mouse (mm9) genome using STAR (version 2.5.2a) 

(Dobin et al., 2013), allowing up to three mismatches, retaining only reads that align to unique 

locations, and permitting a maximum intron length of 100,000. For visualization on the UCSC 

Genome Browser and generation of screenshots, mapped reads were normalized to reads per 

million (RPM) and plotted as histograms using Bedtools version 2.26.0 (Quinlan, 2014). For gene 

expression analysis, mapped reads were subsequently used to quantify Ensembl/Refseq 

transcript and gene models (Flicek et al., 2012) using HTSeq version 0.6.1 (Anders et al., 2015). 

Raw read counts per gene were normalized using the DESeq2 R package version 1.16.1 (Love et 

al., 2014), batch effect corrected by ComBat, and transformed using a regularized log function 

implemented in DESeq2. Gene length was extracted from BioMart Database (Durinck et al., 

2005), and edgeR package version 3.18.1 (Robinson et al., 2010) was used to calculate RPKM for 

each gene. RNA-Seq data from Kalkan et al. (2017) were processed similarly (as described 

above) and normalized together with RNA-Seq data generated for this study using DESeq2 to 

facilitate principal component analysis (PCA) (Figure 2A). For comparison of RNA-Seq data from 

mouse and human cells (Figures 6E, 7C, and 7D), RPKM data for genes were log2 transformed 
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(after adding 1) and quantile normalized. For PCA and unsupervised hierarchical clustering of 

RNA-Seq data from mouse and human cells, only genes with the same gene symbol in mouse 

and human transcriptomes were considered. After filtering out low-expression genes (mean 

expression (log2 RPKM) across the eight ESC to EpiLC time-points > 1.5, empirically derived 

from distribution of means), coefficient of variation for each gene was calculated as a measure 

of variability in gene expression, and the top 1000 genes with the highest variability in 

expression were used (Figures 7A and 7B).   

ChIP-Seq Data Analysis 

Single-end 51 bp reads were mapped to the mouse (mm9) genome using Bowtie version 0.12.8 

(Langmead et al., 2009), allowing up to two mismatches, retaining only reads that align to 

unique locations. For visualization on the UCSC Genome Browser and generation of 

screenshots, mapped reads were normalized to reads per million (RPM) and plotted as 

histograms using Bedtools version 2.26.0 (Quinlan, 2014). Enrichment of individual histone 

modifications (except for H3K9me2) or RNAPII at gene promoters (Figure 1C) was called based 

on normalized ChIP-Seq read density within the promoter region (±2 Kb of TSS) compared to 

input read density with the same region (>3-fold and FDR<0.01). For H3K9me2, given its 

broader footprint, ChIP-Seq read density within gene body instead of the promoter was used. 

For PCA unsupervised hierarchical clustering of histone modifications and RNAPII data (Figures 

S3A and S3F), ChIP-Seq signal for were quantile normalized to account for differences in signal-

to-noise ratios. 

Correlation Analysis of Protein and mRNA expression 

Global correlation between protein and mRNA expression for each time-point (Figure S6A) was 

calculated using Pearson correlation coefficient using only genes that were quantified at both 

the mRNA (log10 RPKM) and the protein level (log10 LFQ intensity). Global correlation between 

protein and mRNA fold-changes (compared to 0h data) for each time-point was calculated 

similarly (Figure S6B) and fitted using a local polynomial regression (Loess) model (Figure 4A). 
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The correlation between mRNA and protein expression across the time-course, for individual 

genes, was calculated using Pearson correlation coefficient (Figures 4C, 4D, and S6D). To 

determine the relevance of each gene to ESCs and EpiLCs, we first rank-ordered the genes 

based on their mRNA (or protein) fold-changes in EpiLC (72h) vs ESC (0h) and then obtained the 

final rank-ordering of the genes (Figures 4D and S6C) based on the average of their two ranks 

(mRNA/protein expression-based). 

Comparative Analysis of Multi-ome Dynamics 

Differentially regulated mRNAs, proteins and phosphosites at one or more time points 

(compared to 0h data) were determined using ANOVA test with multiple testing correction 

(FDR<0.01) (Figure S4). Volcano plots were used to visualize dynamic regulation by plotting the 

log2 fold change against –log10 of the permutation FDR adjusted p-value of the t-test on each 

mRNA, protein and phosphosite, respectively, at each time point. A scatter parameter of 0.1 

(Tusher et al., 2001) which takes into account the log2 fold change and the statistical 

significance was used to identify dynamically regulated mRNAs, proteins, and phosphosites, 

respectively, at each time point. Percentage of dynamically regulated mRNAs, proteins, 

phosphosites and enriched H3K4me3 and H3K27me3 were calculated for each time point and 

scaled to the maximum percentage on transcriptome, proteome, phosphoproteome and 

epigenome layers. A local polynomial regression (Loess) was fitted to the scaled percentage 

calculated for each time point (Figure 2D). Magnitude of change for each mRNA, protein and 

phosphosite (Figure 2E) was determined by taking the highest absolute fold-change observed at 

all time points (compared to 0 h data): max�abs(𝑥𝑥𝑖𝑖/𝑥𝑥0)� , 𝑖𝑖 = 1 …𝑛𝑛, where 𝑥𝑥𝑖𝑖  (and 𝑥𝑥0) denotes 

the normalized value quantified at the 𝑖𝑖th (or 0 h) time-point for each mRNA, protein, or 

phosphosite.  

Gene Ontology Analysis 

Gene Ontology (GO) analysis of differentially expressed genes (72h vs 0h; Figure 4B) was 

performed using only genes that were up- or down-regulated at both the mRNA and protein 
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levels. To identify such genes, we integrated the proteomics and transcriptomics data using a 

previously published strategy (Yang et al., 2014) to group genes into eight classes based on the 

following criteria: (I) up-regulated at both the mRNA and protein levels, (II) up-regulated at the 

mRNA level but unchanged at the protein level, (III) up-regulated at the mRNA level but down-

regulated at the protein level, (IV) unchanged at the mRNA level but down-regulated at the 

protein level, (V) down-regulated at both the mRNA and protein levels, (VI) down-regulated at 

the mRNA level but unchanged at the protein level, (VII) down-regulated at the mRNA level but 

up-regulated at the protein level, and (VII) unchanged at the mRNA level but up-regulated at 

the protein level. Class I (up-regulated) and class V (down-regulated) genes were analyzed for 

enriched GO categories (Figure 4B) using GO annotations (Gene Ontology, 2015). 

Kinase Activity Inference 

To infer kinases active during ESC to EpiLC transition, we used CLUE (Yang et al., 2015), a fuzzy 

c-means clustering algorithm, to partition all phosphosites into 12 optimal clusters based on 

their temporal profiles (Figures S5A and S5B), and identified, for each cluster, kinases whose 

known substrates are enriched within that cluster. Known kinase-substrate relationships 

annotated in the PhosphoSitePlus database (Hornbeck et al., 2012) were used as a reference, 

and Fisher’s exact test was used to assess statistical significance of over-representation. Four 

out of the 12 clusters were found to be enriched for substrates with known kinases 

ERK/S6K/RSK, mTOR, p38a, and AKT (Figures 3A and 3B). An independent kinase perturbation 

analysis (Figure S5C) was performed using KinasePA (Yang et al., 2016b) to infer kinases 

active/regulated at various time-points during ESC to EpiLC induction, based on known kinase-

substrate relationships annotated in PhosphoSitePlus database (Hornbeck et al., 2012).  

Pathway Enrichment Analysis 

Pathway enrichment analysis (Figure 3C) was performed using the list of genes that encode for 

proteins containing the phosphosites from each of the inferred cluster. Pathway enrichment 

within a set of genes was evaluated by comparing that set of genes against genes within known 
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pathways, as annotated in the Reactome database (https://reactome.org). Fisher’s exact test 

was used to assess statistical significance of over-representation. 

Substrate Prediction and Motif Analysis 

Substrate prediction for ERK, mTOR, AKT, RSK/S6K and p38a was performed using an extended 

multiclass prediction version of the positive-unlabeled ensemble learning (Yang et al., 2016a). 

Briefly, the ensemble learning algorithm obtains the positive training instances by extracting 

known kinase-substrates from PhosphoSitePlus database and combines them with negative 

training instances obtained by randomly sampling from the rest of all identified 

phosphorylation sites using a positive-unlabeled learning technique. Throughout the training 

and prediction steps, the ensemble model integrates both the dynamic features extracted from 

time-resolved phosphoproteomics temporal profiles and the kinase recognition motif compiled 

from known substrates of each kinase and subsequently performs a multiclass classification to 

predict novel substrates for each kinase. Prediction results from the model were visualized as 

three-dimensional scatter plots with rainbow gradient colors from red to purple indicating most 

to least probable substrates of each kinase (Figure S5D, inset). Prediction results were also 

clustered to show their proximity to other predicted substrates of the same or a different 

kinase (Figure S5D). Consensus sequence motifs enriched within predicted substrates (Figure 

3J) were identified using IceLogo (Colaert et al., 2009), using precompiled mouse Swiss-Prot 

sequence composition as the reference set. 

QUANTIFICATION AND STATISTICAL ANALYSIS 

See Methods Details for details of quantification and statistical analysis. 

DATA AVAILABILITY 

Mass spectrometry data generated for this study have been deposited to the ProteomeXchange 

Consortium (http://proteomecentral.proteomexchange.org/cgi/GetDataset), via the PRIDE 
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(Deutsch et al., 2017) partner repository and will be available for access upon publication. RNA-

Seq and ChIP-Seq data generated for this study have been deposited in the GEO repository 

under the accession number GSE117896 and will available for access upon publication. 
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