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Abstract 
RNA-binding proteins (RBPs) regulate post-transcriptional gene expression by recognizing short and degenerate 

sequence elements in their target transcripts.  Despite the expanding list of RBPs with in vivo binding sites 

mapped genomewide using crosslinking and immunoprecipitation (CLIP), defining precise RBP binding 

specificity remains challenging.  We previously demonstrated that the exact protein-RNA crosslink sites can be 

mapped using CLIP data at single-nucleotide resolution and observed that crosslinking frequently occurs at 

specific positions in RBP motifs.  Here we have developed a computational method, named mCross, to jointly 

model RBP binding specificity while precisely registering the crosslinking position in motif sites.  We applied 

mCross to 112 RBPs using ENCODE eCLIP data and validated the reliability of the resulting motifs by genome-

wide analysis of allelic binding sites also detected by CLIP.  We found that the prototypical SR protein SRSF1 

recognizes GGA clusters to regulate splicing in a much larger repertoire of transcripts than previously 

appreciated.  
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Introduction 
RNA-binding proteins (RBPs) are central for post-transcriptional regulation of gene expression by interacting 

with specific sequence or structural elements embedded in their target transcripts (Licatalosi and Darnell, 2010).  

Precise characterization of RBP binding specificity is crucial to identify protein-RNA interaction sites important 

for gene expression regulation, and understand how such interactions are affected by genetic variation, 

particularly in the context of human disease(Lunde et al., 2007).  The latter is underscored by the observation 

that 90% of human disease- or trait-associated single nucleotide polymorphisms (SNPs) identified by genome-

wide association studies (GWAS) are located in the noncoding regions of the genome (Hindorff et al., 2009), 

including exons and introns, and are enriched in expression or splicing quantitative trait loci (eQTLs or sQTLs) 

(Li et al., 2016).  However, mechanistic insights into whether and how these GWAS SNPs directly affect gene 

expression and splicing are currently limited. 

 

Multiple approaches have been used to determine RBP binding sites and define RBP binding specificity.  In 

vitro RNA selection is an iterative procedure to purify sequences with high-affinity binding to an RBP of interest, 

starting from a large library of random oligos (Wilson and Szostak, 1999).  Recently, several high-throughput 

assays, such as RNAcompete (Ray et al., 2009; Ray et al., 2013), RNA Bind-and-Seq (RBNS) (Dominguez et al., 

2018; Lambert et al., 2014), and RNA-MaP (Buenrostro et al., 2014), were also developed to define RBP 

specificity in vitro and these assays have been applied to hundreds of RBPs.   

 

UV cross-linking and immunopreciptiation (CLIP) of protein-RNA complexes, followed by high-throughput 

sequencing of isolated RNA fragments (HITS-CLIP), is a biochemical assay to map in vivo protein-RNA 

interactions on a genome-wide scale (Ule et al., 2003, Ule et al., 2005, Licatalosi et al., 2008).  Since its initial 

development, CLIP and multiple variant protocols have been applied to an expanding list of RBPs in various 

species and cellular contexts (Darnell, 2010, Licatalosi and Darnell, 2010).  In particular, a modified version of 

CLIP, named eCLIP, was adopted by the Encyclopedia of DNA Elements (ENCODE) consortium to map the 

binding sites of over 100 RBPs in two human cell lines, HepG2 and K562, making it the largest CLIP dataset 

generated thus far (Van Nostrand et al., 2017; Van Nostrand et al., 2016).   

 

Both in vitro binding assays (such as RNAcompete) and CLIP generate a list of sequences expected to be bound 

by an RBP.  A common pattern shared by these sequences, or motif, needs to be inferred de novo by statistical 

modeling to define the sequence specificity of the RBP and predict novel binding sites.  A similar task is present 

for studies of DNA-binding proteins that regulate transcription, which was historically the initial focus of 

genomic analysis using large scale datasets.  Therefore, current methods used for de novo RBP motif discovery 

(e.g., MEME and HOMER) were originally developed for analysis of DNA-binding proteins (Bailey and Elkan, 

1994; Heinz et al., 2010).  However, there exist important differences between DNA-binding proteins and RBPs.  
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As compared to DNA-binding proteins, most RBPs recognize very short (~3-7 nt) and degenerate sequence 

motifs, which in general have limited information content (Chen and Manley, 2009; Lunde et al., 2007; Singh 

and Valcarcel, 2005).  For example, the high-affinity binding motif of the neuron-specific splicing factor Nova is 

the tetramer YCAY (Y=C/U) (Jensen et al., 2000). Other examples include recognition of YGCY elements by 

Mbnl (Du et al., 2010; Goers et al., 2010), UCUY by Ptbp1 (Perez et al., 1997) and Ptbp2 (Licatalosi et al., 

2012), and U-tracts by Hu (Gao et al., 1994; Levine et al., 1993) (reviewed by (Chen and Manley, 2009)).  Due 

to the apparently lower specificity of RBPs, the performance of the current computational tools for de novo 

motif discovery varies when applied to RBPs.  Consequently, despite the availability of CLIP or high-throughput 

in vitro binding data, the specificity of many RBPs remains to be defined.  This challenge is reflected in 

situations in which distinct motifs have been reported for the same RBPs from different datasets (e.g., for FMRP 

(Ascano et al., 2012; Darnell et al., 2005; Darnell et al., 2001; Darnell et al., 2011)).  In addition, multiple RBPs 

were reported to have similar motifs and yet they have very distinct binding maps in the transcriptome (e.g., for 

TIA1, hnRNP C and other RBPs recognizing U-rich or AU-rich elements (Konig et al., 2010; Wang et al., 

2010)).  

 

The degeneracy of RBP binding motifs argues for the importance of mapping RBP-binding sites with high 

resolution to improve the accuracy of motif discovery.  Previously, we developed computational approaches to 

map the extract protein-RNA crosslink sites through analysis of crosslink-induced mutation sites (CIMS) or 

truncation sites (CITS) using CLIP data (Weyn-Vanhentenryck et al., 2014; Zhang and Darnell, 2011).  CIMS 

and CITS are signatures of protein-RNA crosslinking introduced by interference of reverse transcription by the 

covalently linked amino acid-RNA adducts, and they provide a means of mapping protein-RNA interactions at 

single-nucleotide resolution.  Furthermore, our previous analysis revealed that UV crosslinking frequently 

occurs at specific positions in the RBP binding motifs, most likely reflecting critical RNA residuals for direct 

protein-RNA contacts (e.g., G2 and G6 in UGCAUG that is recognized by RBFOX) (Moore et al., 2014; Weyn-

Vanhentenryck et al., 2014).  Here we report that these crosslink sites can be used to precisely register RBP 

binding sites, at single-nucleotide resolution, to improve the accuracy of de novo RBP motif discovery.  We 

demonstrate the effectiveness of this strategy by developing a statistical model and algorithm named mCross and 

applying it to 112 RBPs using ENCODE eCLIP data.  The reliability of the resulting motifs defined by mCross 

was validated by analysis of allelic protein-RNA interaction sites caused by heterozygous SNPs on a genome-

wide scale.  Based on motifs defined by mCross, we unexpectedly found that SRSF1, a prototypical SR protein, 

predominantly recognizes clusters of GGA half sites, instead of the canonical GGAGGA motif, which allows it 

to regulate splicing of a much larger repertoire of transcripts than previously appreciated. Finally, we have 

developed a searchable, interactive web interface (http://zhanglab.c2b2.columbia.edu/index.php/MCross) to 

allow the research community to have easy access to this resource. 
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Results 
Joint modeling of RBP binding specificity and precise crosslinking positions 

Most of the de novo motif discovery tools currently available use a standard model of a position-specific weight 

matrix (PWM) (Stormo, 2000) to characterize the specificity of DNA- or RNA-binding proteins (note that the 

consensus can be viewed as a special case of a PWM).  mCross takes advantage of the precise protein-RNA 

crosslink sites inferred from CIMS and CITS analysis and the observation that crosslinking frequently occurs at 

specific positions within the motif (Figure 1A,B).  Therefore, it augments the standard PWM model by jointly 

modeling RBP sequence specificity and the precise protein-RNA crosslink sites that help register motif sites in 

longer input sequences at single-nucleotide resolution (Figure 1C).  This model allows us to dramatically limit 

the search space.  Optimal model parameters are determined by maximizing the likelihood function (see STAR 

Methods). 

 

For initial assessment on the reliability of mCross, we applied it to several tissue-specific RBPs, including Rbfox 

(Weyn-Vanhentenryck et al., 2014), Nova(Zhang et al., 2010), Ptbp2 (Licatalosi et al., 2012), Mbnl2 (Charizanis 

et al., 2012), and Lin28a(Cho et al., 2012), whose binding specificity varies in a wide range but has been 

thoroughly characterized using CLIP and other experimental approaches.  In each case, mCross recovered the 

well-defined motif as well as the predominant crosslink sites within the motif simultaneously (Figure 1C,D).  

For example, Rbfox binds the (U)GCAUG element with a certain level of degeneracy at the first position, U1, 

and the predominant crosslink sites are G2 and G6. Ptbp2 binds to UCUCU-like elements with predominant 

crosslink sites at the cytosines.  Importantly, all motifs of the same RBP, as discovered by mCross, are highly 

similar to each other, minimizing the ambiguity in determining the bona fide specificity (Figure S1).  These 

results also confirmed that photocrosslinking can occur at different nucleotides, although a uridine-bias was 

assumed in general.   

 

To further evaluate the effectiveness of mCross, we applied it to Argonaute (Ago) CLIP data of the mouse brain 

(Chi et al., 2009) to recover microRNA binding sites that are reverse complementary to the seed sequences.  

Since Ago mRNA CLIP tags could capture binding sites of all microRNAs expressed in the brain, the data 

represent a mixture of multiple motifs.  mCross successfully identified motifs that can be grouped into 10 

clusters, including canonical seed matches of six miRNAs that are abundantly expressed in the brain and the 

miR-124 seed matches with a bulge (Figure S2) (Chi et al., 2012).  In general, Ago preferably crosslinks to 

target mRNA transcripts at positions flanking seed matches, but in some cases it appears that uridines inside the 

seed matches are also prone to crosslinking.  This example suggests that mCross is capable of deconvoluting 

different modes of binding in more complex datasets. 

 

Defining motifs of 112 unique RBPs using ENCODE eCLIP data 
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Having demonstrated the promise of mCross, we extended our analysis to eCLIP data from ENCODE (Van 

Nostrand et al., 2016).  These include 70 RBPs in HepG2 cells, 89 RBPs in K562 cells, and 1 RBP in adrenal 

gland, with each RBP assayed by two replicate experiments (in total, 160 experiments×2=320 independent CLIP 

libraries, representing 112 unique RBPs; as of Dec 30, 2016).  The replicates allow for evaluation of 

reproducibility (see below).  All CLIP data were processed using our established CTK package (Shah et al., 

2017) to call CLIP tag cluster peaks and infer potential crosslink sites using CIMS and CITS analysis (Figure S3 

and Table S1).  

 

Since the majority of RBPs assayed by eCLIP were previously poorly characterized, we developed quantitative 

metrics to evaluate if an RBP likely has robust binding specificity.  First, we estimated the number of 7-mers 

that are asymmetrically enriched in CLIP tag clusters, as compared to the number of 7-mers that are depleted.  

Second, we developed a ‘disconcordance’ score (D-score) to measure whether top 7-mers are consistently 

enriched in the two biological replicates, with a low D-score indicating high concordance between the replicates 

(see STAR Methods).   For example, RBFOX2 showed a very low D-score between the two replicates 

(D<0.00067), and most of the significantly enriched 7-mers contained the (U)GCAUG motif that is known to 

bind the protein (Figure 2A).   

 

Top 7-mers in 88/160 (55%) CLIP experiments showed D-score <0.05 (indicating that the top 20 7-mers in 

replicate A have an average ranking of 0.05×47/2=~400 in replicate B and vice versa; Figure 2B).  For RBPs 

with low D-scores between the two replicates in the same cell lines, they also have low D-scores when CLIP 

data from different cell lines were compared, indicating the same binding specificity in different cell types 

(Figure S4).  In addition, RBPs with low D-scores in general have a larger number of significantly enriched 7-

mers (Spearman ρ=-0.7, p<4.7e-25; Figure 2C).  These observations together suggest that RBPs with low D-

scores are more likely to have robust and reproducible binding specificity.  While some RBPs with large D-

scores between replicates could be due to technical issues, they might also tend to lack recognizable sequence 

specificity.  In line with this notion, we found that a significantly higher portion of RBPs with D<0.05 have a 

RRM (36/88=41% vs. 27%; p=0.028; Fisher’s exact test), or K homology (KH) domain (14/88=16% vs. 

1/72=1.4%; p=0.0018; Fisher’s exact test), compared to RBPs with D>0.05.  This is presumably because these 

RNA-binding domains (RBDs) are well known to recognize specific sequences.  Furthermore, a significantly 

higher portion of RBPs with D>0.05 do not have any annotated RBD (47/72=65% vs. 37/88=42%; p=0.0042; 

Fisher’s exact test).  

 

We used the D-score metric to compare top 7-mers enriched in CLIP tag cluster peaks and those enriched in 

CITS or CIMS derived from different types of mutations to assess reliability of inferred crosslink sites.  Among 

the 88 CLIP experiments with D<0.05 between replicates, 38 showed consistent 7-mer enrichment (D<0.05) 

compared to CITS, while few showed consistent 7-mer enrichment in CIMS.  Based on these and other 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/428615doi: bioRxiv preprint 

https://doi.org/10.1101/428615
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

7 

observations, we concluded that CIMS does not appear to provide reliable inference of crosslink sites in this 

dataset, and we focused on crosslink sites inferred by CITS for de novo motif discovery using mCross.    

 

mCross was applied to CITS identified in the 160 CLIP experiments (with two replicates combined) and was 

able to discover one or more motifs for 144 experiments (the other 16 experiments do not show significantly 

enriched 7-mers, indicating lack of binding specificity).  Overall, RBPs with low D-score between replicates 

tend to have more unambiguous motifs after similar ones were clustered together (Spearman rank correlation 

ρ=0.54, p=2.5e-12; Figure 3 and Table S2). An interactive, searchable web interface was also developed to 

facilitate access to this resource by the research community 

(http://zhanglab.c2b2.columbia.edu/index.php/MCross). 

 

Validating RBP motifs by allelic protein-RNA interactions 

A major challenge for de novo motif discovery is that an algorithm typically finds multiple motifs, leaving the 

user to decide which one is most reliable, if any.  Mutagenesis, together with measurement of binding affinity or 

reporter assays, is the standard approach for experimental validation, but such validation is typically limited to a 

small set of selected binding sites, resulting in uncertainty in generalizability.  We argued that protein-RNA 

interaction sites overlapping with SNPs represent a large number of natural perturbation experiments.  In 

particular, the binding affinity of the two alleles at heterozygous SNPs can be directly compared by the allelic 

imbalance of CLIP tags (Figure 4A).  We therefore performed allelic interaction (AI) analysis using 

heterozygous SNPs called from whole genome sequencing and eCLIP data (Figure S5 and Table S3; see STAR 

Methods for detail).  In total, we identified 39,528 potential AI sites from HepG2 (an average of 565 sites per 

RBP) and 29,463 sites from K562 cells (an average of 331 sites per RBP; Table S4). 

 

If the allelic imbalance detected in CLIP data is due to differential binding of the implicated RBP in the 

reference and alternative alleles, and the motif model accurately characterized the binding specificity of the RBP, 

one would expect that the allele with more CLIP tags would have a high motif score, and the other allele with 

fewer CLIP tags would have a reduced motif score.  We denote these AI sites “consistent” sites (and otherwise 

inconsistent AI sites).  For example, for the AI sites of RBFOX2 and QKI with more CLIP tags supporting the 

alternative allele (“red points”), the motif score is in general higher for the alternative allele, while for the AI 

sites with few CLIP tags supporting the alternative allele (“blue points”), the motif score is in general higher in 

the reference allele (Figure 4B).  As expected, the trend is clear only for SNPs overlapping with a high-scoring 

motif site.  For each RBP motif, we can thus obtain a subset of AI sites overlapping with high motif scores on 

either the reference or the alternative allele and also large motif score differences between the two alleles.  The 

proportion of consistent AI sites was estimated as a measure of the accuracy of the motif model.   
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We initially used a representative PWM (the first PWM discovered by mCross) for each RBP to compare with 

AI sites to avoid any bias, as selection of the PWM is independent of AI site analysis.  For a majority of RBPs, 

consistent AI sites are in excess as compared to inconsistent AI sites, while a much smaller number of RBPs 

show the opposite pattern (90 vs. 39 RBPs; Figure 4C).  Using a more stringent threshold (p<0.05; Binomial 

test), 26 RBPs have significantly more consistent AI sites compared with inconsistent AI sites (denoted AI-

consistent PWMs) and only 2 RBPs show the opposite pattern (Figure 4C).  For the remaining RBPs, which 

individually have an insufficient number of AI sites for statistical analysis, the overall proportion of consistent 

AI sites is also significantly higher than 0.5 when they were analyzed in aggregate (p<0.004, Binomial test).  

Therefore, the concordance between the allelic imbalance of CLIP tags and changes in motif scores provides an 

unbiased validation that the motifs defined by mCross reliably reflect RBP binding specificity.  Furthermore, 

these AI sites also provide a list of genetic variations in the human populations that directly affect protein-RNA 

interactions with potential impact on downstream post-transcriptional gene expression regulation and 

phenotypes.   

 

Comparison of mCross with other methods by allelic interaction sites 

We next used AI site analysis to evaluate PWMs derived by other methods to provide an unbiased comparison of 

these methods and mCross.  First, we compared mCross with MEME, a widely used program for de novo motif 

discovery (Bailey and Elkan, 1994).   As MEME discovered multiple motifs for each RBP, we used the top 

motif for each RBP for comparison.  Among the 159 PWMs derived from HepG2 and K562 data by MEME, 24 

are AI-consistent PWMs and 5 are AI-inconsistent PWMs (p<0.05; Binomial test), as compared to 26 AI-

consistent PWMs and 2 AI-inconsistent PWMs derived by mCross using the same criteria (Figure 4D).  If AI-

consistent PWMs are more reliable, we expect them to have low top 7-mer D-scores between CLIP replicates.  

Indeed, for the 14 RBPs with AI-consistent PWMs identified by both mCross and MEME, all have D<0.05.  

Similarly, 11/12 RBPs with AI-consistent PWMs only identified by mCross have D<0.05.  On the other hand, 

4/10 RBPs with AI-consistent PWMs only identified by MEME have D>0.05.  Therefore, motifs derived by 

mCross showed better concordance with AI sites than MEME, suggesting they characterize RBP binding 

specificity more accurately.   

 

We also compared 18 RBPs with both eCLIP and RNAcompete data (Ray et al., 2013).  Among them, 6 RBPs 

have AI-consistent PWMs derived from RNAcompete, and 10 RBPs have AI-consistent PWMs derived by 

mCross.  For the four RBPs with AI-consistent PWMs only by mCross (HNRNPA1, TARDBP, TIA1, and 

U2AF2), all have well characterized binding specificity.   

 

Given the effectiveness of AI sites for comparison of different PWMs of the same RBPs, we selected the optimal 

motifs for each RBP based on their consistency with AI sites (Table S5).  This analysis allowed us to obtain a 
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final list of 16 RBPs in HepG2 and 13 RBPs in K562 with AI-consistent PWMs (FDR<0.1; Figure 5) and a 

subset of AI sites filtered by these PWMs that most likely affect protein-RNA interactions directly (Table S4).   

 

SRSF1 recognizes GGA clusters to activate exon inclusion 

Overall, for well characterized RBPs, the motifs defined by mCross agree very well with the previously defined 

motifs (Figures 3 and 5).  There are also interesting exceptions.  For example, we found a (U)GAU motif for 

LIN28, which is distinct from the previously characterized GGAG motif.  mCross also determined that SRSF1 

binds a (U)GGA motif, which is the half site of the canonical GGAGGA motif.  The functional significance of 

the LIN28 motif was described in our recent study (Ustianenko et al., 2018).  Here we focus on the importance 

of the GGA motif for SRSF1-dependent alternative splicing.   

 

SRSF1 is the founding member of the SR protein family, which is important for regulation of both constitutive 

and alternative splicing.  mCross identified a UGGA motif for SRSF1 with predominant crosslinking in the U1 

position.  The GGA motif represents a half site of the previously defined SRSF1-binding consensus GGAGGA 

from SELEX and CLIP data (Sanford et al., 2009; Tacke and Manley, 1995) (Figure 6A).  The first nucleotide of 

the UGGA motif likely reflects crosslinking bias, as SNPs at this position do not affect binding, while the other 

three positions are important (Figure S6A).  Interestingly, a previous structural study suggested that the second 

RRM of SRSF1 directly contacts a GGA half site (Figure 6B) (Clery et al., 2013), which agrees well with the 

motif discovered by mCross. 

 

Since the GGA motif alone has very limited information content, we reasoned that sufficient targeting specificity 

for SRSF1 has to be achieved by binding to a cluster of GGA elements near each other.  Mechanistically, GGA 

clusters can be bound by multimerization of multiple SRSF1 proteins with each RRM contacting one GGA motif 

site (Liu et al., 1998).  To test this hypothesis, we first searched a bipartite GGA-Nx-GGA motif with a spacer.  

Indeed, we found AI sites overlapping GGAN[1-2]GGA also showed an excess of consistent sites, similar to the 

pattern found for the canonical motif GGAGGA (Figure 6C).  We therefore predicted GGA clusters using 

mCarts, which integrates the number of GGA elements, their spacing, conservation, and accessibility as 

determined by predicted RNA-secondary structures (Weyn-Vanhentenryck and Zhang, 2016; Zhang et al., 2013) 

(Figure S6B). GGA clusters predicted using the models trained by HepG2 and K562 CLIP data are highly 

similar to each other qualitatively and quantitatively (Figure S6C,D).  Therefore, GGA clusters trained on 

HepG2 CLIP data were used for detailed analysis described in this study. 

 

The predicted GGA clusters with higher motif scores have a higher overlap with CLIP tag clusters (up to over 

40%, as compared to 18% overlap observed from individual GGA elements; Figure 6D).  This is true after 

excluding clusters containing GGAGGA, suggesting SRSF1 binds to GGA clusters without requiring GGAGGA 

on a genome-wide scale. 
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To test whether the predicted GGA clusters are sufficient to regulate alternative splicing, we identified cassette 

exons showing altered splicing upon SRSF1 knockdown, using RNA-seq data generated by ENCODE (Van 

Nostrand et al., 2017).  As a positive control, we first generated an RNA map that predicts the impact of SRSF1 

binding position on splicing using CLIP tags and predicted GGAGGA motif sites.  As expected, substantial 

enrichment of SRSF1 binding was observed in alternative exons with SRSF1-dependent inclusion, and depletion 

of SRSF1 binding was observed in cassette exons with SRSF1-dependent skipping (Figure S7A,B), which is 

consistent with the known role of SRSF1 in activating exon inclusion by binding to exon splicing enhancers 

(ESEs).  Importantly, the same pattern was obtained using predicted GGA clusters, even after excluding GGA 

clusters overlapping with GGAGGA (Figure 6E,F).  These results suggest that the predicted GGA clusters 

without GGAGGA are functional in activating exon inclusion.  

 

We next evaluated how accurate GGA cluster motif score predicts individual SRSF1 target exons.  To this end, 

we scored every exon by using the strongest GGA cluster in the alternative exon.  Exons ranked by conserved 

GGAGGA using branch length score (BLS) and CLIP tag cluster scores were used for comparison.  Among 

exons with SRSF1-dependent inclusion in both HepG2 and K562 cells (ΔΨ>0.1, and FDR<0.05), 54% (200/373) 

have predicted GGA clusters, as compared to 21% among all cassette exons.  The majority of SRSF1-dependent 

exons harboring GGA clusters (137/200=69%) do not have GGAGGA.  We ranked the exons by their score and 

calculated the sensitivity and positive prediction value (PPV) of predicting SRSF1-activated exons captured at 

each rank.  This allowed us to compare the performance of GGA clusters and GGAGGA in determining SRSF1-

dependent splicing regulation.  We found that the GGA clusters are more predictive than conserved GGAGGA 

motif sites, as reflected in increase in both sensitivity and PPV (Figure 6G,H).  Importantly, the performance of 

the GGA clusters is similar to, if not higher than, that of CLIP cluster scores and has more scored exons, 

indicating that the GGA clusters are both reliable and able to complement the CLIP data.  Excluding GGA 

clusters overlapping with GGAGGA remains predictive of SRSF1-dependent exons, despite a minor reduction in 

performance.   

 

We also reasoned that SRSF-dependent exons identified through knockdown experiments might represent an 

underestimation of the contribution of SRSF1 in splicing regulation due to compensation by other SR proteins or 

other mechanisms.  To address this issue, we examined whether GGA clusters are predictive of exon inclusion 

level.  Indeed, exons with high inclusion are much more enriched in predicted GGA clusters, even after 

exclusion of GGAGGA.  In HepG2 cells, 30.2% cassette exons with inclusion level Ψ≥0.9 have predicted GGA 

clusters, as compared to 8.8% for cassette exons with Ψ ≤0.1, suggesting a conservative estimate that over 20% 

cassette exons with high inclusion are regulated by SRSF1.  About 80% of these GGA clusters do not overlap 

with GGAGGA and similar results were obtained when more stringent thresholds on the motif score were used 
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(Figure S7C,D).  Altogether, our analysis suggests that SRSF1 has a much larger repertoire of transcripts that it 

can recognize to regulate their splicing. 

 

As particular examples, we found that SRSF1 regulates a cassette exon in both HNRPD (ΔΨ=0.34, FDR=1.9e-

198) and HNRPDL (ΔΨ=0.64, FDR=1.9e-159; Figure 7A,B) (these changes are in K562 cells; consistent 

changes in HepG2 cells, although somewhat smaller in magnitude).  In both cases, GGA clusters were predicted 

in the alternative exon, supported by robust CLIP tag clusters. There are two GGA clusters in HNRNPDL, 

without any GGAGGA sites, suggesting the importance of GGA half sites for SRSF1 binding and splicing 

regulation.  The GGA cluster in HNRPD has a GGAGGA motif with four additional GGA sites separated by 

variable number of nucleotides.  Interestingly, in each case the alternative exon encodes an intrinsically 

disordered peptide enriched in a glycine and tyrosine (GY) dipeptide motif that mediates multivalent hnRNP 

assemblies with global impact on downstream splicing regulation (Gueroussov et al., 2017).  Our results suggest 

that SRSF1 serves as an important upstream modulator of this mechanism.   

 

Discussion 
The intrinsic flexibility of RBPs in recognizing their RNA regulatory sequences imposes a big challenge in 

accurate characterization and predictive modeling of their specificity, even when a large number of binding 

footprints are mapped by CLIP.  To address this problem, we developed a new statistical model for de novo 

motif discovery using CLIP data named mCross.  mCross builds on the critical observation that protein-RNA 

crosslinking in CLIP experiments frequently occurs at specific positions within the motif, which can be mapped 

at single nucleotide resolution.  These crosslink sites provide precise registers of motif sites in input sequences, 

and thus dramatically reduce the search space during de novo motif discovery.  We note that the proximity of 

RBP motif sites to crosslinking events was previously used in another algorithm Zagros to facilitate motif 

discovery using a different statistical model (Bahrami-Samani et al., 2015).  The Zagros model does not 

distinguish crosslink propensity at different positions in the motif.  In addition, crosslinking events were defined 

in individual CLIP tags, which are noisy due to technical issues.  When PAR-CLIP data were used, crosslink 

sites at 4SU might not reflect direct-protein contact in the native conditions.  Therefore, to our knowledge, 

mCross is the first model to jointly model RBP sequence specificity and the precise protein-RNA crosslink sites 

at specific motif positions at single-nucleotide resolution. 

 

We applied mCross to the largest CLIP datasets generated thus far by ENCODE to define motifs of 112 unique 

RBPs.  Importantly, we developed multiple quantitative measures to assess the reliability of the results.  We 

performed genome-wide AI site analysis using CLIP to detect SNPs affect protein-RNA interactions, as these AI 

sites provide a large number of naturally occurring perturbation experiments in vivo that can be used to validate 

the accuracy of discovered motifs.  Our analysis suggests mCross performs favorably compared to other state-of-
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the-art methods.  In addition, when multiple, distinct motifs were discovered for the same RBP, in which 

ambiguity frequently arises, AI analysis also provides a means of selecting the most reliable motif.  On the other 

hand, AI sites filtered by PWMs also provide a subset of high-confidence SNPs that directly affect protein-RNA 

interactions, with potential functional implications in human populations. 

 

We expect the resulting motifs, complemented by an interactive, searchable web interface, will be a useful 

resource for the research community to make new discoveries.  In a recent study, we showed the importance of a 

novel LIN28 (U)GAU motif discovered by mCross in differential binding by LIN28 and suppression of two 

subclasses of let-7 microRNAs that are major downstream targets of LIN28 (ref.(Ustianenko et al., 2018)).  In 

this case, crosslinking of LIN28 to the last uridine in the motif was also experimentally validated(Ransey et al., 

2017).  In this study, we found SRSF1 binds a cluster of GGA half sites as the predominant mode of binding 

besides the previously characterized GGAGGA element, and this flexibility leads to a much larger repertoire of 

target transcripts that were not previously appreciated.  These case studies exemplify how improved definition of 

RBP binding specificity can lead to mechanistic insights into RNA regulation.   
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Figure Legends 

Figure 1: Overview of mCross to jointly model RBP binding specificity and frequency of crosslink sites at 

different motif positions. Related to Figures S1 and S2. 

(A) Schematic of identifying reproducible protein-RNA crosslink sites by analysis of crosslinking-induced 

mutation sites (CIMS) and truncation sites (CITS). 

(B) Enrichment of top 7-mers in sequences around Rbfox crosslink sites.  Crosslink sites were identified by 

CIMS analysis of deletions, and the frequency of each 7-mer starting at different positions relative to the 

crosslink site is shown in the heatmap.  Representative 7-mers showing the highest position-specific enrichment 

are indicated and the corresponding crosslinked nucleotide is highlighted in red. 

(C) The likelihood function that jointly models RBP sequence specificity and crosslinking positions are shown at 

the top.  The Rbfox binding motif and the crosslinking probability in each position of the motif identified by 

mCross de novo are shown at the bottom. 

(D) Additional examples of RBP motifs and crosslinking positions as discovered by mCross. 

 

Figure 2: Quantitative measures used to characterize RBPs sequence specificity and reproducibility 

between replicate CLIP experiments. Related to Figures S3 and S4. 

(A) Illustration of top 7-mer disconcordance and asymmetric enrichment, using RBFOX2 eCLIP in HepG2 cells 

for an example.  A z-score was calculated for each 7-mer based on its enrichment in CLIP tag cluster peaks for 

each replicate.  7-mers asymmetrically enriched in peaks are indicated using the blue box and 7-mers containing 

(U)GCAUG are highlighted in red. 

(B) RBPs are ranked based on the top 7-mer D-scores between peaks of the two replicates, between peaks and 

CITS, and between peaks and CIMS (deletions, substitutions and insertions analyzed separately).   

(C) Number of asymmetrically enriched top 7-mers for each RBP (q<0.05), shown in the same order as in (B). 

 

Figure 3:  RBPs motifs and crosslink sites inferred by mCross.   

Results are shown for 38 experiments representing 27 distinct RBPs with D<0.05 between peaks of the two 

replicates and between peaks and CITS.  Logos are only shown for the 27 distinct RBPs.  For RBPs with 

multiple clusters of motifs, the representative motif with the highest likelihood score from the top cluster is 

shown. 

 

Figure 4: Evaluation of RBP motifs by allelic interactions. Related to Figure S5. 

(A) Schematic of a heterozygous SNP affecting Rbfox binding and the resulting allelic imbalance in eCLIP data. 

(B) SNPs showing allelic imbalance in RBFOX2 and QKI CLIP and the relationship between the allelic bias and 

motif score of the reference and alternative alleles.   
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(C) The number of consistent and inconsistent AI sites for each RBP (top).  A representative PWM is used for 

this analysis for each RBP. The excess of consistent over inconsistent AI sites is shown at the bottom and RBPs 

are color-coded based on the extent of excess using a Binomial test.  

(D) The list of AI-consistent PWMs identified by mCross and MEME using one representative PWM for each 

RBP by each method.  The overlap of the two methods is shown.  RBPs with D>0.05 between replicates are 

highlighted in red. 

 

Figure 5: The list of optimal AI-consistent PWMs discovered by mCross. 

Only RBPs with AI-consistent PWMs at FDR<0.1 are shown. 

 

Figure 6: SRSF1 recognizes a GGA motif in vivo sufficient for regulation of alternative splicing. Related to 

Figures S6 and S7. 

(A) SRSF1 binding motif identified by mCross (GGA) and by RNAcompete (GGAGGA).   

(B) NMR structure of SRSF1 RRM2-RNA complex (PDB accession: 2m8d).  The GGA half site directly 

contacting the RRM is highlighted in green. 

(C) Allelic interaction analysis using bipartite GGA-N[0,2]-GGA motif.  Binomial test was used to test whether 

the excess of consistent AI sites over inconsistent AI sites is significant (* p<0.05). 

(D) Overlap of predicted GGA clusters with SRSF1 eCLIP tag clusters at different ranks of motif scores.  GGA 

clusters without overlapping with GGAGGA and conserved GGAGGA sites ranked by BLS were used for 

comparison. Only motif sites in the CDS region were used for this analysis. 

(E, F) RNA map showing GGA clusters enriched in cassette exons with SRSF1-dependent inclusion, but 

depleted in alternative exons with SRSF1-dependent skipping.  Results were obtained for all GGA clusters (E) 

or GGA clusters without overlapping with GGAGGA (F). 

(G, H) Prediction of SRSF1-activated cassette exons using GGA clusters.  Conserved GGAGGA sites and CLIP 

tag clusters are used for comparison.  The sensitivity (G) or positive prediction value (H) with respect to varying 

number of predicted exons by each method are shown.   

 

Figure 7: SRSF1 regulates a cassette exon in HNRPD and HNRPDL through GGA clusters. 

(A) HNRPD.  

(B) HNRPDL. 

In each case, the cassette exon encodes an intrinsically disordered peptide enriched in glycine-tyrosine (GY) 

motif mediating multivalent hnRNP assemblies.  RNA-seq data with and without SRSF1 knockdown and SRSF1 

eCLIP data in K562 cells are shown. 
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Materials and Methods 

CLIP data processing 

We obtained CLIP data for Rbfox1-3 (Weyn-Vanhentenryck et al., 2014), Nova (Zhang et al., 2010), Ptbp2 

(Licatalosi et al., 2012), Mbnl2 (Charizanis et al., 2012), and Lin28A (Cho et al., 2012) from separate studies.  

We previously analyzed Rbfox, Ptbp2 and Mbnl2 CLIP data part of the original studies using the CIMS package 

(Moore et al., 2014), a predecessor of CLIP Tool Kit (CTK) (Shah et al., 2017).  Lin28A CLIP data was 

analyzed by the same pipeline (Moore et al., 2014).  For each dataset, unique CLIP tags and mutations in unique 

tags, originally derived based on mapping to mm9, were liftOver to mm10.  For CIMS analysis of deletions, we 

only included single-nucleotide deletions (and excluded deletions of two or more consecutive nucleotides). 

 

eCLIP data of 70 RBPs in HepG2, 89 RBPs in K562, and 1 RBP in adrenal gland were downloaded from the 

ENCODE website (https://www.encodeproject.org; as of Dec 30, 2016) (Van Nostrand et al., 2017; Van 

Nostrand et al., 2016).  In total, this dataset is composed of 112 unique RBPs, with 47 RBPs assayed in both 

HepG2 and K562 cells (Table S1).  All mock control (input) data were also downloaded.  The raw reads were 

processed to obtain unique CLIP tags mapped to hg19 using CTK (Shah et al., 2017), as described previously 

(Ustianenko et al., 2018).  Only read2 (the read starting from 5ʹ end of the RNA tag) was used for analysis 

described in this paper. For each RBP, unique tags from the two replicates were combined for all analyses, 

except for evaluating reproducibility between the two replicates (see below).  Significant CLIP tag clusters were 

called by requiring P<0.001 after Bonferroni multiple-test correction.  Crosslinking-induced truncation sites 

(CITS) were called by requiring FDR<0.001.  Crosslinking induced mutation sites (CIMS) were also examined 

but not reported in this paper because they appear to have low signal-to-noise ratio. 

 

7-mer enrichment analysis 

To provide seeds for de novo motif discovery using mCross, we performed 7-mer enrichment analysis using 

significant peaks with peak height (PH)≥10 tags.  Peaks were extended for 50 nt on either side relative to the 

center of the peak to extract the foreground sequences.  Background sequences were extracted from the flanking 

regions of the same size (-550, -450) and (450, 550) relative to the peak center.  Sequences with more than 20% 

of nucleotides overlapping with repeat masked regions were discarded.  7-mers were counted in repeat-masked 

foreground and background sequences, and the enrichment of each 7-mer in the foreground relative to the 

background was evaluated using a binomial test.  A z-score (and a p-value) was derived for each 7-mer, and 

denoted raw z-score. 

 

The raw z-scores were then normalized because we noticed a general enrichment of certain 7-mers (such as G-

rich elements) in many experiments. To minimize potential experimental biases and non-specific protein-RNA 

interactions, we normalized the raw z-score of each 7-mer by subtracting median across all experiments 
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followed by scaling using the median absolute deviation (MAD), a robust estimate of the standard deviation.  

The resulting score was denoted the normalized z-score, and was used to rank and identify top 7-mers. 

 

We developed an asymmetric enrichment score for each top 7-mer to evaluate their statistical significance, as an 

assessment whether an RBP has binding specificity.  We argue that if there is no 7-mer that is significantly more 

enriched in the foreground than the background, the distribution of the normalized z-scores should be symmetric.  

On the other hand, if an RBP shows high affinity to (a relatively small subset of) specific 7-mers, it should show 

a heavy tail on the right side of the distribution.  We therefore derived a false discovery rate (FDR) based on the 

symmetry of the null distribution.   

                                                                             𝑞 𝑥 = ! !!!!
! !!!

                                                                          (1) 

for each z=x(>0).  W(.) denotes the number of 7-mers satisfying the specified criterion. 

 

The mCross model and the optimization algorithm 

Most of the current de novo motif discovery tools (such as MEME (Bailey and Elkan, 1994) and HOMER 

(Heinz et al., 2010)) use a standard model of a position-specific weight matrix (PWM) to characterize the 

specificity of DNA- or RNA-binding proteins.  Given a set of sequences bound by a specific RBP containing K 

binding sites of width W, the likelihood ratio of observing the data based on the motif model versus the 

background model can be written as follows: 

                                                            ! !"# !"#$%
! !"# !"#$%&'()*

= !!"(!,!)
!!!(!,!)

!
!!!

!
!!!  ,                                                      (2)  

where 𝑝!"(!,!) and 𝑝!!(!,!) are the probability of observing base b= 𝐵(𝑘, 𝑖) in position i of site k according to the 

motif and background models, respectively.   

 

After log transformation and simple rearrangements, 

                                            𝐿 = log !!" !,!
!!! !,!

!
!!!

!
!!! = 𝐾 𝑝!" log

!!"
!!!

!
!!!

!
!!! .                                        (3) 

 

The mCross model augments the standard PWM model by jointly modeling the RBP sequence specificity and 

the precise protein-RNA crosslink sites at specific motif positions at single-nucleotide resolution.  Denote 𝑞!,! 

and 𝑞! the probability of protein-RNA crosslinking at position i of the motif site k according to the motif and 

background models, respectively, the likelihood ratio of observing K sites of size W can be written as: 

                                                        ! !"# !"#$%
! !"# !"#$%&'()*

= !!"(!,!)
!!!(!,!)

!!,!
!!

!
!!!

!
!!! .                                                 (4) 

After rearrangement, the log likelihood ratio can be written as follows: 

                                                  𝐿 = 𝐾 𝑝!" log
!!"
!!!

!
!!!

!
!!! + 𝐾 𝑞!log

!!
!!

!
!!! .                                            (5) 

This model can be extended to allow crosslinking in specific positions outside the core motif: 
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                                                 𝐿 = 𝐾 𝑝!" log
!!"
!!!

!
!!!

!
!!! + 𝐾 𝑞!log

!!
!!

!
!!! ,                                            (6) 

where 𝑠 = 1,2,⋯ ,𝑉 indicates positions in the core motif or immediate flanking sequences (e.g., 2-nt extension 

on both sides of the core motif). 

 

To search for parameters 𝑝!"and 𝑞! that optimize the objective function (we assume the background probabilities 

𝑝!! = 0.25 and 𝑞! = 1/𝑉 in this study), mCross currently uses a seed-based search strategy(Sahin and Sur, 

2015).  In brief, a ranked list of top 7-mers is obtained based on their normalized z-score and asymmetric 

enrichment score (q<0.05; we limit to the top 10 if there are more than 10 7-mers with q<0.05).  RBPs without 

asymmetrically enriched 7-mers were not analyzed. 

 

To initiate motif search, we first grouped top 7-mers with ≤2 mismatches without allowing shifts; each 7-mer 

group initiates one motif.  Specifically, each 7-mer in a group is extended with the degenerate nucleotide ‘N’ for 

2 nt on each side and then used as a seed to search for exact or inexact matches (≤m mismatches; m=1 for this 

study) around crosslink sites derived from CIMS or CITS analyses.  These matches provide the list of all 

candidate RBP binding sites.  Initially, all candidate sites are included to derive the motif model and calculate 

the log likelihood ratio L.  An iterative procedure is then used to exclude or include each candidate site based on 

whether the adjustment improves the likelihood. The algorithm stops upon convergence or reaching the 

maximum iterations.   

 

The objective function in eq. (6) in general favors degenerate motifs when more than one site is allowed in each 

input sequence. To reward more specific motifs, we introduced modifications to eq. (6) to generate results 

presented in this paper:  

                                               𝐿 = 𝑓(𝐾) 𝑝!" log
!!"
!!!

!
!!!

!
!!! + 𝑓(𝐾) 𝑞!log

!!
!!

!
!!! ,                                   (7) 

where 𝑓 𝐾 = 𝐾. 

Among the 160 eCLIP experiments (with replicates combined), mCross discovered at least one motif for 144 

experiments.  

 

Motif clustering 

For each RBP, we clustered similar motifs reported by mCross using Stamp (Mahony and Benos, 2007). PWMs 

were trimmed from both sides to remove positions with low information content ≤0.2, where information 

content was defined as in (Schneider et al., 1986).   Pearson correlation coefficient was adopted to measure the 

distance of each compared pair of PWMs. Local Smith-Waterman ungapped alignment and unweighted pair 

group method with arithmetic mean (UPGMA) were used to perform alignment and grow the cluster tree.  The 

number of clusters was determined by minimizing the Calinski-Harabasz (CH) index provided by Stamp. If there 

is no global optimized cutoff using CH index, the clustering trees were cut at height 0.05. 
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Reproducibility of RBP sequence specificity 

We developed rank-based measure of disconcordance of top 7-mer enrichment between the two replicates.  To 

this end, we derived normalized z-score to rank 7-mers for each individual replicate.  For the top T of a total of 

N=47=16,384 7-mer (T=20 for this study) with ranksum c= 𝑇(𝑇 + 1) 2 in replicate A, we obtained their rank 

sum in  replicate B: 

                                                                                𝜌! = 𝑟!!
! ,                                                                              (8) 

where 𝑟!(𝑡 = 1,… ,𝑇) is the rank of each top 7-mer.   

 

Vice versa, for the top T 7-mer in replicate B, we obtained their rank sum 𝜌! in replicate A.  The disconcordance 

of the two replicates is measured by a score D. 

                                                                       𝐷 = !!!!!!!!
!!"

~ !!!!!
!!"

.                                                                  (9) 

 

We can similarly compare whether top 7-mers identified at CLIP tag cluster peaks are also ranked high in 

sequences near crosslink sites.  Denote the rank sum of the top 7-mers in sequences of crosslink sites  𝜌. 

                                                                                    𝐷 = !
!"

                                                                               (10) 

 

In this work, we consider an RBP with D<0.05 between the two replicates as having reproducible sequence 

specificity.  We also used D-score to compare top 7-mers in peaks and CITS, and to compare CLIP and 

RNAcompete data (Ray et al., 2013). 

 

SNP calling in HepG2 and K562 cells using eCLIP and whole genome sequencing data 

If a protein-RNA interaction site is affected by genetic variation at a heterozygous SNP site, i.e., allelic 

interaction (AI), the two alleles will have different numbers of supporting CLIP tags.  We used global analysis of 

AI sites to validate RBP motifs discovered by mCross. 

 

To identify AI sites in CLIP data, we first called heterozygous SNPs in HepG2 and K562 cells using eCLIP 

(including mock) and whole genome sequencing (WGS) data.  For each sample (either CLIP or mock), the 

genomic mapping information of the unique tags was extracted, stored in a sam file, and converted to bam using 

SAMtools (Li et al., 2009). The bam files of all samples (including both CLIP and mock data) of the same cell 

line were merged together for HepG2 and K562, respectively.  The variant-calling procedure was implemented 

following GATK (v3.8)’s best practice recommendations for RNA-seq data with minor modifications (McKenna 

et al., 2010).  In particular, no “MarkDuplicate” step was carried out as PCR duplicates have already been 

removed using a method optimized for CLIP data and the resulting unique tags were used as input.  Per-base 

sequencing error was estimated by “BaseRecalibrator”.  Then, we separately called variants for each cell line 
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with “HaplotypeCaller” (with stand_call_conf set to 20 to ensure high sensitivity).  Limited by the lack of 

truth/training sets required by the Variant Quality Score Recalibration (VQSR) step for eCLIP data, we adopted 

hard filters for variant filtration.  Only bi-allelic SNPs with QualByDepth (QD) > 5 and depth (DP)>10 were 

kept. SNPs overlapping with RNA editing sites, as annotated in DARNED(Kiran and Baranov, 2010), were 

excluded.  

 

To complement and improve genotype calls derived from eCLIP data, we performed variant calling using WGS 

data of HepG2 and K562 cells (Table S3), respectively, following the GATK “best practices” protocol for DNA-

seq data.  Briefly, for each cell line, WGS reads from different platforms were aligned to hg19 using BWA (Li 

and Durbin, 2010) and were merged together.  We performed “MarkDuplicates” to remove PCR duplicates and 

used “BaseRecalibrator” to ensure the base quality.  The variant calling step was carried out by 

“HaplotypeCaller” (with stand_call_conf set to 30).  For variant filtering, we excluded variants on annotated 

RNA editing sites in DARNED (Kiran and Baranov, 2010) and applied the VQSR step to ensure that 99% of 

Hapmap SNPs in our data were included in the final call set.  Only WGS SNPs covered by ≥10 eCLIP reads 

were used for genotype correction.  We defined three subsets of SNPs to be considered in the following AI site 

analysis:  1) SNPs called heterozygous consistently in both eCLIP and WGS data. 2) the intersection of eCLIP 

and WGS data, but as heterozygous only in WGS data (the genotype call from WGS data was used for these 

SNPs); and 3) heterozygous SNPs called only in eCLIP data.  We also filtered the last two categories by keeping 

only bi-allelic SNPs. SNPs called only from eCLIP data that were called as homozygous in WGS data or were 

inconstant with dbSNP (v138) genotypes were also excluded.   

 

Finally, for each cell line and RBP, the number of unique CLIP tags supporting each allele of a heterozygous 

SNP was extracted from bam files with SAMtools (Li et al., 2009).  We inferred the sense transcript strand of 

each SNP by pooling CLIP tags from all CLIP and mock data and counting the number of tags from each strand.  

The strand with a majority of supporting tags was considered the sense strand.  Only heterozygous SNPs with 

unambiguously inferred transcript strand (i.e., #sense read/(#sense read+#antisense read)>0.9) were included in 

our analysis. The final dataset consisted of 229,265 and 155,388 heterozygous SNPs in HepG2 and K562 cells, 

respectively (Table S3). 

 

Identification of allelic interaction sites from eCLIP data 

To assess allelic binding of each RBP at a heterozygous SNP, we counted the number of sense CLIP tags of the 

RBP supporting each allele.  Two types of control data were used for comparison: 1) pooled CLIP data of all 

other RBPs (except the RBP under consideration) in the same cell line (e.g., RBFOX2 vs. CLIP data of all other 

RBPs except RBFOX2); 2) all pooled mock data in the same cell line (e.g., RBFOX2 vs. mock).  For each 

comparison, the magnitude of allelic imbalance was defined as |ΔA|=|AAFRBP-AAFcontrol|, where AAF (alternative 

allele frequency) was estimated from the number of sense CLIP tags supporting the alternative allele divided by 
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the total number of sense CLIP tags overlapping with the SNP.  The statistical significance of AI was evaluated 

using a Fisher’s exact test.  For this analysis, we considered all heterozygous SNPs with coverage ≥10 sense tags.  

Sites with |ΔA|≥ 0.1 and p<0.05 in either of the two comparisons were called significant AI sites (Table S4). 

 

Validation of PWMs using AI sites 

For each PWM derived by mCross, we trimmed the flanking motif positions with information content≤0.4.  For 

each AI site, the PWM score (Liu and Stormo, 2005) of the sequence associated with allele was calculated.  

Briefly, the reference and alternative allele sequences flanking each AI site of size 2W-1 were extracted, where 

W is the width of the trimmed PWM.  We scanned the sequences and calculated the PWM scores of all possible 

motif sites:   

                                                                        𝑠!" = log !!"(!,!,!)
!!!(!,!,!)

!
!!!  ,                                                                 (11) 

where a indicates the reference or alternative allele, j=1, 2 , …,W is the offset of the motif site and i is the 

position of the nucleotide in the motif site.  For the background base composition, we used 𝑝!!(!,!,!)=0.25. 

 

The PWM score was then normalized: 

                                                                               𝐵!" =
!!"!!
!!!

                                                                            (12) 

where M and m are the maximal and minimal possible scores of the PWM.  The binding affinity of the RBP to 

allele a is estimated to be 𝐵! = max! 𝐵!".  The SNP is considered to affect RBP binding if max 𝐵!"# ,𝐵!"# > 𝛼 

and 𝐵!"# − 𝐵!"# > 𝛿, where 𝛼 and 𝛿 are thresholds to be determined.   The AI site is denoted consistent AI site 

(with respect to the PWM) if the allele with higher binding affinity also has a larger number of supporting CLIP 

tags (ΔA>0 and 𝐵!"# > 𝐵!"#); otherwise, the AI site is denoted inconsistent AI site.  For each PWM of an RBP, 

we determined the number of all consistent AI sites 𝑁!"#$% and the number of all inconsistent AI sites 𝑁!"#$"%&.  

If the PWM correctly characterized the binding specificity of the RBP, we would expect 𝑁!"#$% > 𝑁!"#$"%&.  

The excess of consistent AI sites over inconsistent AI sites was performed using a one-sided Binomial test with a 

null hypothesis 𝑟 = 𝑁!"#$% 𝑁!"#$% + 𝑁!"#$"%& < 0.5.  We denote a PWM AI-consistent PWM if p<0.05 and 

r>0.5. 

 

To determine the optimal thresholds of 𝛼 and 𝛿, we used a representative PWM (i.e., the first PWM) for each 

RBP and performed a grid search of parameters 𝛼 and 𝛿 that maximized the number of AI-consistent PWMs.  

For analysis described in this paper, we used 𝛼 = 0.8 and 𝛿 = 0.09 to determine AI-consistent PWMs, as the 

combination maximized the number of AI-consistent PWMs.  With these determined thresholds, we then ranked 

all PWMs of each RBP based on the FDR using a single-sided binomial test (null hypothesis r<0.5; FDR derived 

from Benjamini correction for each RBP).  The most significant PWM was selected as the best PWM for each 
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RBP (Figure 5).  We also used the best PWMs for each RBP to define the subset of individual consistent AI sites 

that most likely affect RBP binding directly (Table S4). 

 

Comparison of PWMs by mCross, MEME and RNAcompete 

We compared the number of AI-consistent PWMs by mCross, MEME (Bailey and Elkan, 1994) and 

RNAcompete (Ray et al., 2013).  PWMs by MEME were derived from eCLIP data for all RBPs in HepG2 and 

K562 cells using 100 nt sequences around CLIP tag peaks as foreground.  Flanking sequences of the same size 

(500 nt away from peaks) were used as background.  The following parameters (-dna -mod zoops -nmotifs 10 -

minw 4 -maxw 7) were used to limit the motif size to 4-7 nt, allowing any number of sites per sequence.  For 

comparison, only the first PWM was used for each RBP.  In addition, we also considered 18 RBPs assayed by 

eCLIP that have one or more PWMs from RNAcompete for comparison with mCross.  The AI-consistent PWMs 

were defined as described above, using the same parameters. 

 

Prediction of SRSF1 binding GGA clusters 

We predicted clustered GGA motif sites that are bound by SRF1 using mCarts (Weyn-Vanhentenryck and 

Zhang, 2016; Zhang et al., 2013) to predict GGA motif clusters. Briefly, we trained the HMM using SRSF1 

eCLIP peaks, extending 50nt flanking either side of every peak.  Sequences without overlaps with CLIP tags 

were used as background.  We trained one model for each cell type and identified 1,781,913 and 1,759,031 

clusters for HepG2 and K562, respectively.  We found substantial overlap between the two models, with 

1,685,575 overlapping clusters (Figure 6C) and highly correlated cluster scores (r=0.98; Figure 6D). As such, we 

decided to focus on the HepG2-generated model because of its larger training set.  For comparison, we also 

predicted conserved GGAGGA sites using branch length score (BLS) estimated from multiple alignments of 40 

mammalian species (Zhang et al., 2008). 

  

Analysis of differential splicing upon SRSF1 knockdown 

We downloaded SRSF1 shRNA knockdown and matched control data for both cell lines from ENCODE (Van 

Nostrand et al., 2017). RNA-seq reads were mapped with OLego (v1.1.5) using the stranded mode (Wu et al., 

2013). AS quantification and differential splicing analysis upon SRSF1 knockdown were performed using 

Quantas as previously described (Yan et al., 2015), requiring a minimum coverage of 20 reads and FDR≤0.05.  

To generate RNA maps of SRSF1-dependent splicing, we used cassette exons with |ΔΨ|≥0.2 in HepG2 cells 

(465 exons with SRSF1-dependent inclusion and 396 exons with SRSF1-dependent exclusion).  For sensitivity 

and positive prediction plots, we required |ΔΨ|≥0.1 to identify 373 exons with SRSF1-dependent inclusion in 

both HepG2 and K562 cells.  Direct SRSF1 target cassette exons were predicted using overlapping GGA 

clusters and the exons were ranked by the cluster with the maximum motif score.  
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