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Abstract 32 

Meiotic recombination is a highly conserved process that has profound effects on genome 33 

evolution. Recombination rates can vary drastically at a fine-scale across genomes and often 34 

localize to small recombination “hotspots” with highly elevated rates surrounded by regions with 35 

little recombination. Hotspot targeting to specific genomic locations is variable across species. In 36 

some mammals, hotspots have divergent landscapes between closely related species which is 37 

directed by the binding of the rapidly evolving protein, PRDM9. In many species outside of 38 

mammals, hotspots are generally conserved and tend to localize to regions with open chromatin 39 

such as transcription start sites. It remains unclear if the location of recombination hotspots 40 

diverge in taxa outside of mammals. Threespine stickleback fish (Gasterosteus aculeatus) are an 41 

excellent model to examine the evolution of recombination over short evolutionary timescales. 42 

Using an LD-based approach, we found recombination rates varied at a fine-scale across the 43 

genome, with many regions organized into narrow hotspots. Hotspots had divergent landscapes 44 

between stickleback populations, where only ~15% were shared, though part of this divergence 45 

could be due to demographic history. Additionally, we did not detect a strong association of 46 

PRDM9 with recombination hotspots in threespine stickleback fish. Our results suggest fine-47 

scale recombination rates may be diverging between closely related populations of threespine 48 

stickleback fish and argue for additional molecular characterization to verify the extent of the 49 

divergence. 50 
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Introduction 63 

Meiotic recombination is a highly-conserved process across a broad range of taxa (de 64 

Massy 2013; Petes 2001). Recombination creates new allelic combinations by breaking apart 65 

haplotypes (Coop and Przeworski 2007; Otto and Lenormand 2002), promotes the proper 66 

segregation of chromosomes during meiosis in many species (Davis and Smith 2001; Fledel-67 

Alon et al. 2009; Kaback et al. 1992; Mather 1936), and has a pronounced impact on the 68 

evolution of genomes (Mugal et al. 2015; Webster and Hurst 2012). In many species, meiotic 69 

recombination occurs in small 1-2 kb regions called recombination “hotspots” which are 70 

surrounded by large genomic regions with little to no recombination (Barton et al. 2008; Baudat 71 

et al. 2010; Hellsten et al. 2013; Jeffreys et al. 1998; McVean et al. 2004; Myers et al. 2005; 72 

Steiner et al. 2002).  73 

In most species, hotspot location is highly conserved over long evolutionary timescales 74 

(Kawakami et al. 2017; Lam and Keeney 2015; Singhal et al. 2015; Tsai et al. 2010). For 75 

example, finches share upwards of 73% of hotspots across 3 million years of evolution (Singhal 76 

et al. 2015) while species of Saccharomyces share 80% of hotspots over 15 million years of 77 

evolution (Lam and Keeney 2015). Evolutionarily conserved hotspots are often localized around 78 

regions of open chromatin such as transcription start sites (TSSs) and CG-rich regions (i.e. CpG 79 

islands) in vertebrates (Auton et al. 2013; Kawakami et al. 2017; Lee et al. 2004; Pan et al. 2011; 80 

Pokholok et al. 2005; Singhal et al. 2015; Tischfield and Keeney 2012). This localization pattern 81 

is thought to be due the opportunistic nature of Spo11, a meiosis specific protein which initiates 82 

recombination by creating double stranded breaks at regions of open chromatin (Celerin et al. 83 

2000; Ohta et al. 1994; Pan et al. 2011).  84 

A notable exception to strong conservation of recombination hotspots has been 85 

documented in mammals, where hotspot location evolves rapidly between closely related species 86 

or even between populations (Baker et al. 2015; Brick et al. 2012; Pratto et al. 2014; Smagulova 87 

et al. 2016; Stevison et al. 2015). Contrary to the pattern observed in conserved systems, rapidly 88 

evolving hotspots typically form away from functional genomic elements and are localized by 89 

the zinc finger histone methyltransferase protein, PRDM9 (Baker et al. 2015; Baudat et al. 2010; 90 

Billings et al. 2013; Brick et al. 2012; McVean et al. 2004; Myers et al. 2005; Myers et al. 2010; 91 

Myers et al. 2008; Parvanov et al. 2010; Powers et al. 2016; Pratto et al. 2014). PRDM9 contains 92 

multiple DNA-binding zinc fingers that are under strong positive selection, leading to divergent 93 
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hotspot localization between closely related species (Baker et al. 2015; Billings et al. 2013; Brick 94 

et al. 2012; Myers et al. 2010; Parvanov et al. 2010). Though rapidly evolving hotspots have only 95 

been documented in some mammals, positive selection is acting on the zinc finger domain of 96 

PRDM9 orthologs in many non-mammalian species (Baker et al. 2017; Oliver et al. 2009). This 97 

raises the intriguing possibility that some species outside of mammals may also have rapidly 98 

evolving hotspots. It is also possible that PRDM9 is not necessary for rapid evolution of hotspots 99 

in other species and that other mechanisms could lead to the evolution of fine-scale rates of 100 

recombination over short timescales.  101 

Threespine stickleback fish (Gasterosteus aculeatus) are an excellent system to study the 102 

evolution of fine-scale recombination rates. Multiple populations of threespine stickleback fish 103 

have independently adapted to freshwater environments from marine ancestors in the last 10-15 104 

thousand years (Bell and Foster 1994; Orti et al. 1994), providing the opportunity to study the 105 

parallel evolution of hotspots in well-characterized populations across the Northern Hemisphere 106 

(Bell and Foster 1994; Ostlund-Nilsson et al. 2007; Wootton 1976). Broad-scale recombination 107 

rates have been examined in threespine stickleback using genetic crosses (Glazer et al. 2015; 108 

Peichel et al. 2001; Roesti et al. 2013; Sardell et al. 2018), but fine-scale recombination rates 109 

have not been estimated due to low marker density.  110 

Fine-scale recombination rates can be estimated through a variety of approaches. 111 

Recombination rates can be directly measured through genetic linkage maps (Broman et al. 112 

1998; Campbell et al. 2016; Drouaud et al. 2006; Marand et al. 2017) or though sperm 113 

genotyping (Baudat and de Massy 2007; Guillon and de Massy 2002; Jeffreys et al. 2001). Both 114 

methods require a large number of progeny or sperm and a high density of genetic markers to 115 

capture a sufficient number of crossovers. Recombination rates can also be indirectly measured 116 

by identifying the binding sites of proteins that initiate double strand breaks (Pratto et al. 2014; 117 

Smagulova et al. 2011) as well as repair double strand breaks through homologous 118 

recombination (Dumont and Payseur 2011; Froenicke et al. 2002). Another broadly used 119 

approach estimates recombination rates from patterns of linkage disequilibrium (LD) in 120 

populations, providing a historical measure of meiotic crossovers over multiple generations 121 

(Chan et al. 2012; McVean et al. 2004; Myers et al. 2005; Wall and Stevison 2016). LD-based 122 

methods are able to estimate rates at a fine-scale, but rate estimation can be biased by 123 

demographic history (e.g. bottlenecks, population expansions, population sub-structure, etc.) 124 
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(Dapper and Payseur 2017; Johnston and Cutler 2012), increasing false negative and false 125 

positive rates when calling recombination hotspots (Dapper and Payseur 2017). Despite the 126 

higher error rates, many recombination hotspots identified through LD-based methods have been 127 

validated using other approaches (Jeffreys et al. 2005; Morgan et al. 2017; Myers et al. 2006). 128 

Here, we used an LD-based approach to estimate genome-wide recombination rates in a 129 

marine (Puget Sound) and freshwater (Lake Washington) population of threespine stickleback 130 

fish. We found recombination landscapes varied at a fine-scale between the two populations, 131 

often organized into recombination hotspots. We found most recombination hotspots were not 132 

shared between populations. We describe how the complex demographic histories of threespine 133 

stickleback fish populations (Bell and Foster 1994; Ferchaud and Hansen 2016; Hohenlohe et al. 134 

2010; Liu et al. 2016) may influence the overall distribution of recombination hotspots and argue 135 

that the patterns we observe may not be completely driven by population bottlenecks. 136 

Additionally, we found little evidence that threespine stickleback hotspots are associated with 137 

PRDM9 binding, indicating hotspots are likely localized by a different mechanism. 138 

 139 

Materials and Methods 140 

Whole genome sequencing and assembly 141 

 Genomic DNA was extracted from caudal tail clips of 13 female and 12 male fish 142 

collected from Lake Washington (freshwater population; Washington, USA) and 18 female and 143 

6 male fish collected from Northern Puget Sound (marine population; Washington, USA) using a 144 

standard phenol-chloroform extraction. Paired-end libraries were prepared using the Illumina 145 

TruSeq kit and were size-selected to target 400 bp fragments. Libraries were multiplexed and 146 

sequenced on Illumina NextSeq lanes for 300 cycles (Georgia Genomics and Bioinformatics 147 

Core, University of Georgia). Residual adapter sequences and low quality regions were trimmed 148 

from the sequencing reads using Trimmomatic (v0.33) with the following parameters: PE –phred 149 

33 slidingwindow:4:20. Trimmed reads were aligned to the revised threespine stickleback 150 

genome assembly (supplemental file S5, https://datadryad.org/resource/doi:10.5061/ 151 

dryad.q018v/1) (Glazer et al. 2015) using Bowtie2 (v2.2.4, default parameters) (Langmead and 152 

Salzberg 2012). With these parameters, the average alignment rate for Lake Washington was 153 

94.2% and 87.3% for Puget Sound. Reads with a mapping PHRED quality score of 20 or less 154 

were removed from the analysis (Samtools, v1.2.0, default parameters) (Li et al. 2009). For 155 
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Puget Sound, four female individuals had 5x or lower sequencing coverage and were removed 156 

from the analysis. After removing poorly aligned reads and low coverage individuals, the 157 

average read coverage across all individuals in each population was 17x and 22x for Lake 158 

Washington and Puget Sound, respectively.  159 

Two outgroup species were used to infer ancestral allele states and to estimate mutation 160 

matrices for each population (see Estimation of Recombination Rates). Whole-genome Illumina 161 

sequences for one female ninespine stickleback fish (Pungitius pungitius, DRX012173) (White 162 

et al. 2015) and one female blackspotted stickleback fish (Gasterosteus wheatlandi, 163 

DRX012174) (Yoshida et al. 2014) were aligned to the revised threespine stickleback genome 164 

assembly (Glazer et al. 2015) using Bowtie2 (v2.2.4). Less stringent alignment parameters were 165 

used to allow for greater sequence divergence between threespine stickleback and each outgroup 166 

(-D 20 –R 3 –N 1 –L 20 –I S,1,0.50 -rdg 3,2 -rfg 3,2 -mp 3). The overall alignment rate of P. 167 

pungitius was 46.0% whereas the overall alignment rate of G. wheatlandi was 74.2%. The higher 168 

alignment rate of G. wheatlandi is consistent with G. wheatlandi sharing a more recent common 169 

ancestor with G. aculeatus (Kawahara et al. 2009).  170 

 171 

SNP genotyping 172 

Single nucleotide polymorphisms (SNPs) were genotyped in each threespine stickleback 173 

population and outgroup species independently following the GATK best practices for SNP 174 

discovery for whole genome sequences (v3.6) (Van der Auwera et al. 2013). PCR duplicates 175 

were removed using MarkDuplicates (REMOVE_DUPLICATES=true). Regions around 176 

insertions or deletions (indels) were realigned with RealignerTargetCreator (default parameters) 177 

and IndelRealigner (default parameters). Variants were called for each individual using 178 

HaplotypeCaller (genotyping mode DISCOVERY). Joint genotyping (GenotypeGVCFs, default 179 

parameters) was completed by pooling all individuals for each population. Low-quality SNPs 180 

were filtered from the data set using vcftools (v0.1.12b) (Danecek et al. 2011) with the following 181 

filters: removing all sites with more than two alleles, removing sites where genotype data was 182 

missing among individuals, removing sites where the population mean depth coverage was less 183 

than half or greater than twice the average coverage for each population (Lake Washington: 8x – 184 

24x read depth coverage; Puget Sound: 11x - 44x read depth coverage), and removing sites with 185 

a genotype quality score less than 30. Singletons and sites fixed for the alternate allele across all 186 
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individuals in a population were also removed. After filtering, the Lake Washington population 187 

had 5,054,729 SNPs genome-wide (11 SNPs/kb) and the Puget Sound population had 4,142,876 188 

SNPs (9 SNPS/kb) genome-wide (prior to filtering Lake Washington had 11,937,220 SNPs and 189 

Puget Sound had 11,070,421 SNPs). For the outgroup species, P. pungitius and G. wheatlandi, 190 

low-quality SNPs were excluded by removing variants with a genotyping quality score less than 191 

30 or a read depth less than two, resulting in 13,691,521 SNPs genome-wide in G. wheatlandi 192 

(16,783,618 SNPs prior to filtering) and 7,791,420 in P. pungitius (26,173,287 SNPs prior to 193 

filtering). 194 

 195 

Haplotype phasing 196 

 Each chromosome was phased independently with SHAPEIT (v2.r837), a read-aware 197 

phasing tool (Delaneau et al. 2013). Phase-informative reads with two heterozygous SNPs on the 198 

same read were identified to assist with the estimation of haplotypes. Phase-informative reads 199 

had a mapping quality score greater than 20. Convergence of the MCMC algorithm was 200 

estimated by examining switch error rates between individual runs. A low switch error rate 201 

would indicate that the MCMC phasing runs have converged on a similar haplotype 202 

configuration. Switch error was measured using vcftools (v0.1.12b) using –diff-switch-error 203 

(Danecek et al. 2011). A low switch error was achieved within a reasonable run time with the 204 

following SHAPEIT parameters: --main 2000 --burn 200 --prune 210 --states 1000 (average 205 

switch error between phasing runs: 0.824% for Lake Washington and 1.26% for Puget Sound). 206 

All other parameters were left at the default values. 207 

 208 

Estimation of recombination rates 209 

 Recombination rates were estimated with LDHelmet (v1.7) (Chan et al. 2012). LDHelmet 210 

estimates historical recombination rates from population data by analyzing patterns of linkage 211 

disequilibrium across phased individuals. The ancestral allele state was defined for every SNP in 212 

each threespine stickleback population by comparing to the allele present in the two outgroup 213 

species. An ancestral allele state could not be assigned if a polymorphism was segregating 214 

among the outgroup species. Therefore, SNPs were only assigned an ancestral state if P. 215 

pungitius and G. wheatlandi were homozygous for the same allele. The ancestral allele was 216 

assumed to be the nucleotide carried by P. pungitius and G. wheatlandi, and was assigned a prior 217 
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probability of 0.91. To allow for uncertainty in the ancestral allele state, the other three possible 218 

nucleotides were assigned prior probabilities of 0.03. If the ancestral allele state could not be 219 

inferred, the prior probability of each nucleotide being the ancestral allele was set as the overall 220 

frequency of that particular nucleotide on the chromosome. Nucleotide frequencies were 221 

empirically determined from all sites on a threespine stickleback chromosome where P. 222 

pungitius and G. wheatlandi had read coverage that passed the filtering scheme. Mutation 223 

matrices were estimated for each population separately. For every position where an ancestral 224 

allele state could be inferred, the total number of each type of mutation away from the ancestral 225 

allele was quantified. A normalized 4x4 mutation matrix was generated for each chromosome as 226 

previously described (Chan et al. 2012). The ancestral allele state and mutation matrices were 227 

generated using a custom Perl script.  228 

 Each LDHelmet module was run using the following parameters. Custom Python scripts 229 

were used to create the SNP sequence and SNP position input files. Full FASTA sequence were 230 

created using vcf2fasta from vcflib (available at https://github.com/vcflib/vcflib). Haplotype 231 

configuration files were created for each chromosome with the find_confs module using a 232 

window size of 50 SNPs (-w 50). Likelihood tables were created using table_gen with the 233 

recommended grid of population scaled recombination rates per base pair (/bp) (-r 0.0 0.1 10.0 234 

1.0 100.0). Watterson’s  was estimated using a custom Python script with the R package, 235 

PopGenome (Pfeifer et al. 2014), where Watterson’s  was calculated in 2 kb regions with a 236 

sliding window of 1 kb and all windows were averaged together. To maintain a reasonable 237 

computational time, a single representative likelihood lookup table was generated for the 238 

autosomes of each population from chromosome one, using the average Watterson’s  between 239 

Lake Washington and Puget Sound (-t 0.002). Although Watterson’s  was different between the 240 

Lake Washington and Puget Sound populations, previous studies have determined that small 241 

changes to parameters such as Watterson’s  do not affect the final likelihoods (Auton and 242 

McVean 2007; McVean et al. 2004). Separate likelihood tables were created for the 243 

pseudoautosomal region of the sex chromosomes (chromosome 19). Padé coefficient files were 244 

created using the module pade with a Watterson’s  of 0.002 and the recommended 11 padé 245 

coefficients (-t 0.002 –x 11). The module rjmcmc was run for 1 million iterations with 100,000 246 

burn in iterations, a block penalty of 10, and a window size of 50 SNPs (-w 50 –b 10 –burn_in 247 

100000 –n 1000000). Population-scaled recombination rates were extracted from the rjMCMC 248 
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run with the post_to_text module. Recombination rates were reported in /bp where  is a 249 

population scaled recombination rate (4Ner). 250 

 251 

Correlation with genetic maps 252 

  Population-scaled recombination rates were compared with recombination rates estimated 253 

from a high-density genetic linkage map (Glazer et al. 2015). Recombination rates from 254 

LDHelmet were converted from /bp to cM/Mb as previously described (Smukowski Heil et al. 255 

2015). Briefly, the recombination rate (cM/Mb) was calculated between every pair of adjacent 256 

markers in the genetic map and a chromosome-wide recombination rate was calculated as the 257 

average among the regions. The average LD-based recombination rate (/Mb) was computed in 258 

the same individual regions of a chromosome in Lake Washington and Puget Sound by 259 

averaging the per bp rho estimate across the total length of the region (/Mb). A single 260 

conversion factor was calculated for each chromosome. Each conversion factor was calculated 261 

by dividing the average linkage map recombination rate for a chromosome (in cM/Mb) by the 262 

average LD-based recombination rate (/Mb) for that chromosome. 263 

 264 

Identification of recombination hotspots 265 

 Recombination hotspots were defined using a sliding window approach. In each window, 266 

the average recombination rate within a 2 kb window was compared to the average 267 

recombination rate from the 40 kb regions flanking either side of the 2 kb window. Hotspots 268 

were defined as the 2 kb regions that had a 5-fold or higher recombination rate relative to the 269 

mean recombination rate in the flanking background regions. The 2 kb windows iterated forward 270 

in 1 kb increments. If multiple hotspots were found within a 5 kb region, only the hotspot with 271 

the highest rate was retained. Misassemblies in the reference genome could generate false 272 

hotspots. To limit this, all hotspots that spanned a contig boundary in the reference genome were 273 

removed (384 hotspots out of 4,349 total hotspots). Hotspots were considered shared between 274 

populations if the midpoints of the two hotspots were within 3 kb of each other.  Random 275 

permutations were used to calculate the expected amount of hotspot overlap between Lake 276 

Washington and Puget Sound. 10,000 random permutations were drawn from the genome 277 

totaling the number of 2 kb hotspots for each population. Recombination hotspots were identified 278 

and filtered using custom Perl and Python scripts. 279 
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 280 

Genetic variation within and between populations 281 

 Within population nucleotide diversity () and Tajima’s D were calculated separately for 282 

each chromosome. To capture rare variants, previously excluded singletons were included in the 283 

analysis. Nucleotide diversity and Tajima’s D were calculated using the R package, PopGenome 284 

(Pfeifer et al. 2014) and a custom Python script. Nucleotide diversity was calculated  285 

between populations by combining SNP variants among all individuals in each population. 286 

Population structure was estimated between Lake Washington and Puget Sound using 287 

FastStructure (v1.0) (Raj et al. 2014). For this analysis, SNPs from Lake Washington and Puget 288 

Sound were merged using vcftools (Danecek et al. 2011) and only biallelic sites with no missing 289 

data were retained. The sex chromosomes (chromosome 19) were also excluded. The final SNP 290 

dataset was composed of 4,113,937 SNPs. Three trials were completed at K values of 1, 2, and 3. 291 

These K values were chosen to differentiate scenarios where Lake Washington and Puget Sound 292 

were one panmictic population (K=1) or Lake Washington and Puget Sound were two distinct 293 

populations (K=2). A K of 3 was chosen to identify any hidden population structure within either 294 

population. The model that best explained the population structure was determined using 295 

chooseK.py (Raj et al. 2014) and the structure plot was visualized using distructK.py (Raj et al. 296 

2014).  297 

 298 

Estimation of demographic history 299 

 Demographic history can affect LD-based estimates of recombination rates (Dapper and 300 

Payseur 2017; Johnston and Cutler 2012). To determine whether the demographic history of 301 

threespine stickleback fish could influence the ability to detect recombination hotspots, hotspots 302 

were assayed in simulated haplotypes with known recombination profiles and demographic 303 

histories. Demographic histories used in the simulations were based on the estimated histories of 304 

Lake Washington and Puget Sound, modeled using a Pairwise Sequentially Markovian 305 

Coalescent (PSMC) process with default parameters (Li and Durbin 2011; Liu and Hansen 306 

2017). PSMC was run on one female from Lake Washington and one female from Puget Sound. 307 

Confidence intervals were estimated on 100 bootstrap replicates. Demographic histories were 308 

visualized using psmc_plot.pl (Li and Durbin 2011).  309 

 310 
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Simulations using estimated demographic histories 311 

 Using the demographic histories estimated with PSMC, 250 kb haplotypes with four 2 kb 312 

recombination hotspots were simulated using the program fin, part of the LDHat software 313 

package (Auton and McVean 2007; McVean et al. 2004). The hotspots were place 50 kb apart at 314 

75, 125, 175, and 225 kb. The background recombination rate was set at 0.03 /kb. Hotspots had 315 

varied intensities from 2 to 20 times the background rate, set at 0.06 /kb, 0.15 /kb, 0.3 /kb, 316 

and 0.6 /kb. One scenario simulated a constant effective population size, with 500 sequences, 317 

40 haplotypes each, with an average Watterson’s  of 0.00355, the average between Lake 318 

Washington and Puget Sound (–nsamp 40 –len 250000 –theta 0.00355). For both populations, a 319 

bottleneck was simulated 8,000 generations ago (Puget Sound: t = 0.029, theta = 0.0036; Lake 320 

Washington: t = 0.022, theta = 0.0035). Two bottleneck strengths were simulated by setting the 321 

probability that a lineage coalesces to 10% or 90% (s = 0.1, 0.9). Overall, hotspot sharing 322 

between simulated Lake Washington and simulated Puget Sound populations was quantified by 323 

examining all pairwise comparisons between populations and bottleneck strengths. The first 324 

hotspot simulated should not be called using our method as it falls below our cutoff, but can 325 

provide information about how hotspots that fall below our cutoff affect hotspot calling. The 326 

number of false positive and false negative hotspots were calculated using custom Python scripts.  327 

 328 

Location of hotspots around transcription start sites 329 

 Transcript annotations from Ensembl (build 90) were lifted to the revised threespine 330 

stickleback genome assembly (Glazer et al. 2015) by aligning each transcript using BLAT (v36, 331 

default parameters) (Kent 2002). Aligned transcripts were only retained if the entire transcript 332 

aligned to the revised genome assembly. Transcript start sites (TSSs) consisted of a 2 kb region, 333 

centered at the start position of the transcript. A hotspot was considered overlapping with a TSS 334 

if the midpoint of the hotspot overlapped with any part of a 2 kb TSS region. Enrichment of 335 

hotspots in TSSs were compared against 10,000 random permutations. 2 kb regions were 336 

randomly drawn across the genome, totaling the number of hotspots identified in each 337 

population. TSS annotation filtering, overlap of hotspots with TSSs, and random permutations 338 

were completed using custom Python scripts.  339 

 340 

GC-Biased Substitutions 341 
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 GC to AT and AT to GC substitutions were quantified within 2 kb regions of the genome 342 

that had recombination rates in the top and bottom 5% as well as within all 2 kb recombination 343 

hotspots. The top 5% of recombination rates captures regions of the genome that may broadly 344 

have high recombination rates and not contain recombination hotspots. The top 5% of 345 

recombination rates includes 96 hotspots for Lake Washington (out of 1,627 hotspots) and 314 346 

hotspots for Puget Sound (out of 2,338 hotspots). The equilibrium GC content was calculated as 347 

the proportion of AT to GC substitutions out of the total pool of substitutions (AT to GC and GC 348 

to AT) (Meunier and Duret 2004; Singhal et al. 2015; Sueoka 1962). To increase the total 349 

number of sites available for the analysis, the ancestral allele state was inferred using only G. 350 

wheatlandi, rather than requiring a matching ancestral allele in both G. wheatlandi and P. 351 

pungitius. Because CpG sites can have higher mutation rates (Fryxell and Moon 2005; Weber et 352 

al. 2014), all consecutive CG sites in the ancestral sequence were removed from the analysis.  353 

 354 

DNA motif identification 355 

MEME (v4.11.0) was used to identify novel DNA motifs enriched in hotspots and 356 

matched coldspots (Bailey and Eklan 1994). Each hotspot was matched to a randomly selected 2 357 

kb coldspot, which was located at least 25 kb from any identified hotspot, contained a GC 358 

nucleotide content that was within 2% of the hotspot after removing ancestral CpG sites (GC-359 

matched), and had a mean recombination rate that was less than half the background 360 

recombination rate of the population (Lake Washington: less than 0.017 /bp; Puget Sound: less 361 

than 0.035 /bp). MEME ignored motif occurrences if they were present in a hotspot multiple 362 

times (-mod zoops). This was to prevent the reporting of repetitive motifs. MEME was run 363 

separately for each chromosome and population and was completed when 50 motifs were 364 

identified (-nmotifs 50). Motif identification was conducted separately for shared hotspots and 365 

population-specific hotspots.   366 

 The DNA-binding protein, PRDM9, is important for localizing recombination hotspots in 367 

mammals (Baker et al. 2015; Baudat et al. 2010; Billings et al. 2013; Brick et al. 2012; Myers et 368 

al. 2010; Myers et al. 2008; Parvanov et al. 2010; Powers et al. 2016; Pratto et al. 2014). To 369 

determine if any PRDM genes had a role in localizing hotspots in threespine stickleback fish, 370 

FIMO (v4.11.0, default parameters) (Grant et al. 2011) was used to scan hotspot sequences for 371 

the predicted DNA binding motifs for each of the 11 annotated PRDM genes in the threespine 372 
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stickleback genome (Ensembl, build 90). DNA binding motifs for each PRDM protein were 373 

predicted using the Cys2His2 zinc finger prediction tool, Predicting DNA-binding Specificities 374 

for the Cys2His2 Zinc Finger Proteins (Persikov et al. 2009; Persikov and Singh 2014). Predicted 375 

zinc finger domains were included if the HMMER bit score for the zinc fingers was 17.7 or 376 

higher (Persikov et al. 2009; Persikov and Singh 2014). To determine the expected number of 377 

occurrences of a motif of the same length and GC composition in hotspots, the PRDM motifs 378 

were shuffled 100 separate times. FIMO was run on the shuffled motifs to create a null 379 

distribution. Motifs were shuffled using a custom python script.  380 

 381 

Results 382 

Genetic differentiation between Lake Washington and Puget Sound 383 

 Freshwater populations of threespine stickleback fish frequently exhibit signs of past 384 

bottlenecks, consistent with their colonization from marine ancestors ~10-15 thousand years ago 385 

(Bell and Foster 1994; Ferchaud and Hansen 2016; Hohenlohe et al. 2010; Liu et al. 2016). 386 

Given the recent divergence and the close geographic proximity between Lake Washington 387 

(freshwater) and Puget Sound (marine), we first examined whether these two populations were 388 

genetically distinct. Using FastStructure, a two population model was the most highly supported 389 

(marginal likelihood = -0.834, Supplemental Figure 1).  390 

Within each population, we explored whether there were signatures of past bottleneck 391 

events. The average nucleotide diversity within both populations was similar (Lake Washington: 392 

0.003; Puget Sound: 0.003), whereas the genome-wide average nucleotide diversity between 393 

populations was 0.004. The nucleotide diversity values we calculated are similar to previously 394 

reported values for other marine and freshwater stickleback populations (Guo et al. 2015; 395 

Hohenlohe et al. 2010; Kitano et al. 2007). Both populations had negative Tajima’s D values 396 

(Tajima 1989), consistent with an excess of rare variants from a recent population expansion 397 

(Lake Washington: -0.422; Puget Sound: -0.723).  398 

The demographic histories of Lake Washington and Puget Sound were estimated using 399 

Pairwise Sequentially Markovian Coalescent (PSMC) models (Figure 1). Puget Sound 400 

experienced a bottleneck from around 18,000 years ago until about 8,000 years ago where the 401 

effective population size decreased to 74,250  1,259 individuals (starting Ne = 132,700  796) 402 

while Lake Washington experienced a small bottleneck around the same time where the effective 403 
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population size decreased to 91,760  1,960 individuals (starting Ne = 129,138  897) (Figure 1). 404 

Both populations have had a constant effective population size for the last ~5,000 years. Puget 405 

Sound has a larger effective population size than Lake Washington, matching the expected 406 

pattern of marine populations having larger effective population sizes than freshwater 407 

populations (DeFaveri and Merila 2015; Gow et al. 2006; Makinen et al. 2006).  408 

 409 

Fine-scale estimation of recombination rates across the genome 410 

Using a dense set of SNP markers from whole-genome sequencing, we estimated 411 

recombination rates across the genomes of Lake Washington and Puget Sound threespine 412 

stickleback fish. The average genome-wide population recombination rate in Lake Washington 413 

was half of the rate observed in Puget Sound (Lake Washington: 0.035 /bp; Puget Sound: 0.072 414 

/bp; Wilcoxon Rank Test; p < 0.001, Supplemental Table 1). Despite having an overall lower 415 

genome-wide recombination rate in Lake Washington, recombination rates were largely 416 

conserved at broad scales between the two populations. We observed a highly significant 417 

positive correlation of recombination rates between the populations at the scale of 500 kb 418 

windows (Spearman’s Rank Correlation; r = 0.931, p < 0.001; Figure 2; Supplemental Figure 2). 419 

Additionally, recombination rates were lower at the center of chromosomes (center 25% of all 420 

chromosomes) and significantly higher at the ends of the chromosomes (terminal 25% of all 421 

chromosomes) for both populations (Wilcoxon Rank Test; Lake Washington: ends of 422 

chromosomes = 0.069 /bp, center of chromosomes = 0.009 /bp, p < 0.001; Puget Sound: ends 423 

of chromosomes = 0.108 /bp, center of chromosomes = 0.016 /bp, p < 0.001; Figure 2). Rate 424 

differences at chromosome ends have been documented in other populations of threespine 425 

stickleback (Glazer et al. 2015; Roesti et al. 2013; Sardell et al. 2018) as well as across a wide-426 

range of other animals, plants, and fungi (Barton et al. 2008; Berner and Roesti 2017; Broman et 427 

al. 1998; See et al. 2006).  428 

To determine whether the broad-scale recombination rates we estimated from LD-based 429 

methods are concordant with recombination rates measured from linkage mapping, we compared 430 

the rates from Lake Washington and Puget Sound with the rates estimated from a genetic linkage 431 

map from a freshwater female and a marine male (Glazer et al. 2015). We found a significant 432 

positive correlation between recombination rates in both populations and the linkage map 433 

(Spearman’s Rank Correlation; Lake Washington: r = 0.830, p < 0.001; Puget Sound: r = 0.810, 434 
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p < 0.001; Figure 3). These data indicate that broad-scale changes are conserved across multiple 435 

populations of threespine stickleback fish and confirm that the recombination rates estimated 436 

from LD-based methods largely parallel the rates observed from genetic linkage maps. Although 437 

broad-scale (Mb) recombination rates tend to be conserved over longer evolutionary timescales 438 

(Fledel-Alon et al. 2009; Kong et al. 2002; Serre et al. 2005; Stevison et al. 2015), fine-scale (kb) 439 

rates within chromosomes can rapidly evolve (Barton et al. 2008; Hellsten et al. 2013; McVean 440 

et al. 2004; Myers et al. 2005). In many organisms, recombination is organized locally into 441 

narrow regions of very high rates (i.e. “hotspots”), surrounded by regions of little to no 442 

recombination (i.e. “coldspots”) (Baudat et al. 2010; Jeffreys et al. 1998; Steiner et al. 2002). 443 

Consistent with this, we found highly variable fine-scale recombination rates across individual 444 

chromosomes in both Lake Washington and Puget Sound (Figure 4; Supplemental Figures 3 and 445 

4).  446 

 447 

Divergent hotspot locations between populations of threespine sticklebacks 448 

Using a sliding-window approach, we identified 2,338 hotspots in Puget Sound and 1,627 449 

hotspots in Lake Washington. Strikingly, only 312 of these hotspots were shared between 450 

populations (13.3% of hotspots in Puget Sound and 19.2% of hotspots in Lake Washington). 451 

This lack of hotspot overlap between Lake Washington and Puget Sound may, in part, be due to 452 

hotspots falling just below the hotspot threshold. To investigate this, we looked for any increase 453 

in recombination rate in locations where hotspots were present in one population, but absent in 454 

the other. We found little evidence of a localized increase in recombination rate in these regions. 455 

Recombination rates were close to the background rate in the population where hotspots were 456 

deemed absent (Figures 5A and 5B). This pattern was even more apparent when shared hotspots 457 

were removed from the analysis (Figures 5C and 5D). The small degree of overlap we observed 458 

in hotspots between the populations was much greater than what would be expected from chance 459 

alone (10,000 random permutations; p < 0.001; Supplemental Figure 5), indicating much of the 460 

hotspot overlap likely represents shared ancestry. 461 

 462 

Increased recombination rate in the pseudoautosomal region 463 

 Genetic recombination between sex chromosomes is restricted to the pseudoautosomal 464 

region (PAR), where rates of recombination can be orders of magnitude above genome-wide 465 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2018. ; https://doi.org/10.1101/430249doi: bioRxiv preprint 

https://doi.org/10.1101/430249
http://creativecommons.org/licenses/by-nd/4.0/


 
 

 16 

averages (Otto et al. 2011; Wright et al. 2016). In threespine stickleback, crossing over between 466 

the X and Y chromosomes is restricted to a ~2.5 Mb PAR (Peichel et al. 2004; Roesti et al. 2013; 467 

White et al. 2015; Yoshida et al. 2014). Because of the potential for high rates of crossing over in 468 

the PAR, we estimated population-scaled recombination rates for this region independently from 469 

the autosomes. The average recombination rate in the PAR was 0.232 /bp for Puget Sound and 470 

0.129 /bp for Lake Washington. These rates were significantly higher than the average 471 

recombination rate across the autosomes (Lake Washington autosome average rate: 0.035 /bp, p 472 

<0.001; Puget Sound autosome average rate: 0.072 /bp, p < 0.001; Figure 6). Although we 473 

observed some fine-scale variation in recombination rates across the PAR (Figure 6), we 474 

identified very few hotspots, which may be due to the increased background recombination rate 475 

across the PAR. 476 

 477 

Demographic history may not completely account for hotspot divergence 478 

To explore how changes in past effective population size (Ne) may have affected our 479 

ability to detect hotspots, we simulated haplotypes with known demographic histories that 480 

followed the demographic histories we estimated from Lake Washington and Puget Sound, along 481 

with a known distribution of recombination hotspots. If the minimal hotspot overlap we observed 482 

between populations of threespine stickleback fish was because of high false positive and false 483 

negative rates induced by demographic history, we would expect hotspots to be incorrectly called 484 

to a similar degree in the bottleneck simulations. Both bottleneck strengths exhibited elevated 485 

false positive and false negative rates compared to the control simulation, with the highest false 486 

positive and false negative rates under the strong bottleneck scenario (Supplemental Table 2). To 487 

determine the overall effect of elevated error rates on determining the number of shared hotspots 488 

between populations, we compared the simulated Lake Washington haplotypes to the simulated 489 

Puget Sound haplotypes from both bottleneck scenarios. Despite the elevated error rates, hotspot 490 

sharing was higher between the simulated populations than the observed number of hotspots 491 

shared between actual Lake Washington and Puget Sound populations for the weak bottleneck 492 

(weak bottleneck: Lake Washington: 59.7%; Puget Sound: 55.2%; actual Puget Sound shared 493 

hotspots: 13.3%; actual Lake Washington shared hotspots: 19.2%). This indicates that a weak 494 

bottleneck in both populations is not sufficient to drive the high degree of hotspot divergence we 495 

observed. However, if the bottleneck strength was very high (s=0.9) in both populations, 496 
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elevated error rates in hotspot calling could result in a lack of hotspot overlap that mirrors the 497 

divergence we observed between populations. In this simulation, there was a similar percent of 498 

shared hotspots as observed in the actual populations (strong bottleneck: Lake Washington: 499 

20.7%; Puget Sound: 19.8%; actual Puget Sound shared hotspots: 13.3%; actual Lake 500 

Washington shared hotspots: 19.2%).   501 

Based on the demographic histories we estimated, Lake Washington experienced a less 502 

intense bottleneck than Puget Sound. We therefore also used simulations to explore the expected 503 

hotspot overlap if only one of the populations experienced a strong bottleneck. If Puget Sound 504 

experienced a strong bottleneck and Lake Washington experienced a weak bottleneck, 36.7% of 505 

hotspots were shared in the simulated Lake Washington population and 20.5% of hotspots were 506 

shared in the simulated Puget Sound population (actual Lake Washington shared hotspots: 507 

19.2%, actual Puget Sound shared hotspots: 13.3%). Except for a scenario where both 508 

populations underwent a severe bottleneck in the past, our simulations suggest that demographic 509 

history alone is not sufficient to completely explain the divergence we observed in hotspot 510 

location between populations. 511 

 512 

Hotspots are enriched around transcription start sites 513 

 Hotspot localization in genomes varies among taxa. In yeast, birds, and some plants, 514 

where hotspots are evolutionarily conserved, hotspots tend to be enriched within transcription 515 

start sites (Kawakami et al. 2017; Pan et al. 2011; Singhal et al. 2015; Tischfield and Keeney 516 

2012). In mammals with rapidly evolving hotspots, hotspots are typically located away from 517 

genic regions (Brick et al. 2012; Brunschwig et al. 2012; Myers et al. 2005). We investigated 518 

whether threespine stickleback fish hotspots mimic either of the patterns seen in other systems. 519 

We found an enrichment of hotspots around TSSs, compared to random permutations of hotspots 520 

(Lake Washington: 26% of hotspots fell within 3 kb of a TSS, p < 0.034; Puget Sound: 29% of 521 

hotspots fell within 3 kb of a TSS, p < 0.001; Supplemental Figure 6). This pattern also held 522 

when examining only population specific hotspots (Lake Washington: p = 0.007; Puget Sound: p 523 

< 0.001; Supplemental Figure 7); however, shared hotspots were not enriched in TSSs compared 524 

to random permutations (Lake Washington: p = 0.370; Puget Sound: p = 0.827; Supplemental 525 

Figure 6). The lack of significant enrichment of shared hotspots around TSSs is likely due to the 526 

small sample size. When we randomly drew samples from the population-specific hotspots that 527 
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were equal in size to the shared hotspot pools, there was no longer enrichment around TSSs 528 

(Lake Washington: p = 0.947; Puget Sound: p = 0.808).  529 

 530 

Regions of high recombination exhibit GC-biased nucleotide substitution 531 

 Recombination leaves distinct signatures of nucleotide substitution across the genome 532 

(Duret and Arndt 2008; Mugal et al. 2015; Webster and Hurst 2012). Over time, the repair of 533 

heteroduplex DNA during meiosis favors the substitution of GC nucleotides over AT 534 

nucleotides, which increases the frequency of GC nucleotides, leading to GC-biased base 535 

composition (Lesecque et al. 2013; Marais 2003; Meunier and Duret 2004). Regions of the 536 

genome with higher recombination rates tend to have higher GC-biased base composition 537 

(Kawakami et al. 2017; Kong et al. 2002; Meunier and Duret 2004; Singhal et al. 2015). To 538 

determine whether regions of higher recombination rate showed signatures of GC-biased gene 539 

conversion, we calculated equilibrium GC content (Meunier and Duret 2004; Singhal et al. 2015; 540 

Sueoka 1962) in regions of the genome with the highest and lowest recombination rates (top and 541 

bottom 5%) as well as within recombination hotspots. 542 

In both Lake Washington and Puget Sound, we detected a significantly higher 543 

equilibrium GC content in regions of the genome with a high recombination rate (top 5% of 544 

recombination rates among 2 kb windows) compared to regions of the genome with 545 

recombination rates in the bottom 5% (Table 1). Overall, these results indicate GC nucleotide 546 

composition is influenced by the historical recombination landscape across the threespine 547 

stickleback genome. Interestingly, although hotspots in both populations have locally elevated 548 

recombination rates, there was not a parallel increase in equilibrium GC content. Equilibrium GC 549 

content in population-specific hotspots and shared hotspots was not significantly different than 550 

regions of the genome with the lowest recombination rates (bottom 5%) (Table 1). Our results 551 

are consistent with recombination hotspots being more recently derived, where locally increased 552 

recombination rates have not yet had an effect on GC-biased nucleotide substitution. 553 

 554 

PRDM genes are weakly associated with threespine stickleback recombination hotspots 555 

Hotspots in many species are targeted to specific regions of the genome by DNA binding 556 

motifs (Baudat et al. 2010; Kon et al. 1997; Myers et al. 2008; Steiner et al. 2002). In species 557 

where PRDM9 targets recombination hotspots to specific regions of the genome, the zinc finger 558 
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domain of PRDM9 is typically under strong positive selection (Baker et al. 2015; Baudat et al. 559 

2010; Billings et al. 2013; Myers et al. 2010; Oliver et al. 2009; Pratto et al. 2014) and the 560 

protein contains functional KRAB and SSXRD domains (Baker et al. 2017). In Teleost fish, two 561 

paralogs of PRDM9 have been identified, PRDM9 which contains all the protein domains and 562 

PRDM9 which lacks the KRAB and SSXRD domains (Baker et al. 2017). Threespine 563 

stickleback fish appear to have lost PRDM9, but retain PRDM9 without the SSXRD and 564 

KRAB domains. Consistent with a lack of function directing recombination hotspots, we did not 565 

observe strong signatures of positive selection in the zinc finger domain of PRDM9. We found 566 

zero fixed differences between threespine and blackspotted stickleback for the PRDM9 ortholog. 567 

There was one synonymous and one nonsynonymous mutation at moderate frequency in Lake 568 

Washington and two synonymous and three nonsynonymous mutations at moderate frequency in 569 

Puget Sound, indicating these mutations are likely not causing the population-specific 570 

localization of hotspots we observed between Lake Washington and Puget Sound.  571 

We also examined whether the predicted binding sites of any of the 11 previously 572 

annotated PRDM genes in threespine stickleback fish were enriched in recombination hotspots. 573 

Less than 14% of hotspots contained any of the predicted PRDM zinc finger binding domain 574 

motifs (Supplemental Table 3). However, six of the motifs were significantly enriched in 575 

hotspots, including PRDM9, when compared to scrambled motifs of the same size and GC 576 

content (Supplemental Table 3), indicating PRDM genes could have some role in localizing a 577 

subset of recombination hotspots. Outside of PRDM9 in mammals, multiple DNA binding motifs 578 

assist with hotspot targeting in other systems such as Schizosaccharomyces pombe (Kon et al. 579 

1997; Steiner et al. 2002). To see if other DNA motifs were targeting hotspots in threespine 580 

stickleback fish, we searched for motifs enriched in hotspots. The most significant motifs 581 

identified were simple mono- or di-nucleotide repeats which were present only in a subset of the 582 

hotspots (Supplemental Figure 8). These repeats were not specific to hotspots as they were also 583 

found in GC-matched coldspots.  584 

 585 

Discussion 586 

Broad-scale recombination rates across the threespine stickleback genome  587 

 At a broad scale, recombination rates across the threespine stickleback genome were 588 

conserved between the two populations. This broad scale conservation of recombination rates is 589 
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a feature observed in many taxa (Fledel-Alon et al. 2009; Kong et al. 2002; Serre et al. 2005; 590 

Stevison et al. 2015) and may reflect the necessity of crossing over for the proper segregation of 591 

chromosomes during meiosis (Davis and Smith 2001; Fledel-Alon et al. 2009; Kaback et al. 592 

1992; Mather 1936). Additionally, we observed differential rates of recombination associated 593 

with broad genomic regions that have been observed in other systems. First, we observed higher 594 

recombination rates towards the telomeres. In many species, the ends of chromosomes have 595 

higher rates of recombination (Barton et al. 2008; Berner and Roesti 2017; Kong et al. 2002; 596 

Roesti et al. 2013; Sardell et al. 2018), which is thought to be driven by male-specific 597 

localization of recombination (Broman et al. 1998; Moen et al. 2008; Singer et al. 2001). Our 598 

LD-based method estimates sex-averaged recombination rates, which does not allow us to test 599 

whether the pattern we observed around the ends of chromosomes is driven by males. However, 600 

sex-specific genetic linkage maps between the Japan Sea stickleback (Gasterosteus nipponicus) 601 

and the threespine stickleback (G. aculeatus) corroborate this pattern (Sardell et al. 2018). 602 

Second, we observed higher recombination rates in the pseudoautosomal region compared to the 603 

autosomes. Recombination rates in pseudoautosomal regions are often orders of magnitude 604 

above autosome-wide averages, as an obligate crossover should occur between the X and Y 605 

chromosomes in these small regions during every male meiosis (Hinch et al. 2014; Kauppi et al. 606 

2012; Otto et al. 2011).  607 

Overall, the genome-wide average recombination rate for Puget Sound was two-fold 608 

higher than in Lake Washington. Rate variation between populations or species can be driven by 609 

a number of processes. Structural variation (i.e. inversions, chromosomal rearrangements, and 610 

copy number variants) can contribute to rate variation among genomes. Indeed, recombination 611 

rates have been shown to vary across chromosomal regions due to segregating inversions 612 

between marine and freshwater populations of threespine stickleback (Glazer et al. 2015; Jones 613 

et al. 2012). Although structural variants could explain rate differences between Lake 614 

Washington and Puget Sound populations at a more localized level, they cannot explain the 615 

genome-wide rate differences we observed. Over longer evolutionary timescales, recombination 616 

rate also can evolve neutrally (Dumont and Payseur 2008), driving genome-wide rate variation 617 

between species. However, neutral divergence is likely not occurring at a pace that would alter 618 

genome-wide recombination rates between recently diverged populations of threespine 619 

stickleback fish. One plausible explanation for the observed rate differences is differences in 620 
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demographic history between the Lake Washington and Puget Sound populations. A larger 621 

effective population size could increase the population-scaled recombination rate (Burt 2000; 622 

Charlesworth 2009). In threespine stickleback, marine populations typically have a larger Ne 623 

than freshwater populations (DeFaveri and Merila 2015; Gow et al. 2006; Makinen et al. 2006), 624 

consistent with our observed pattern of a higher recombination rate in Puget Sound relative to 625 

Lake Washington. 626 

 627 

Identifying hotspots using patterns of linkage disequilibrium 628 

 LD-based estimates of recombination rates can be affected by demographic processes 629 

that change patterns of linkage disequilibrium across the genome (Chan et al. 2012; Dapper and 630 

Payseur 2017; Johnston and Cutler 2012; McVean et al. 2004; Wall and Stevison 2016). The 631 

duration and timing of these events can have varying effects on hotspot identification, often 632 

reducing the power to detect hotspots and increasing the rate of errors (Dapper and Payseur 633 

2017). Threespine stickleback fish have a complex history of bottleneck events and population 634 

expansions over the last 10-15 thousand years which vary across geographic regions (Bell and 635 

Foster 1994; Ferchaud and Hansen 2016; Hohenlohe et al. 2010; Liu et al. 2016; Orti et al. 636 

1994). Based on simulations, demographic history likely has some role in the observed 637 

divergence in hotspot location between Lake Washington and Puget Sound populations, but it 638 

seems likely that population demography does not completely explain the pattern. Only in the 639 

scenario where both populations experienced a strong bottleneck do error rates rise high enough 640 

to mimic the observed divergence in hotspot location. However, our estimates of effective 641 

population size over time revealed that Lake Washington and Puget Sound did not experience 642 

similar fluctuations. Both populations began with effective population sizes that largely parallel 643 

those observed in other threespine stickleback fish populations (Liu and Hansen 2017; Ravinet et 644 

al. 2018). Puget Sound then experienced a larger population expansion roughly 18,000 years ago, 645 

followed with a decrease in population size at approximately 8,000 years ago. Lake Washington 646 

had a slight increase in population size, followed by a small bottleneck around the same time, but 647 

overall changes in effective population size were more stable in this population. Examination of 648 

where recombination hotspots are currently forming across the genome in Lake Washington and 649 

Puget Sound would help confirm the patterns we observed. Surveys of double strand break 650 

hotspots (Pratto et al. 2014; Smagulova et al. 2011) or crossover breakpoints in genetic crosses 651 
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(Broman et al. 1998; Campbell et al. 2016; Drouaud et al. 2006; Marand et al. 2017) would 652 

reveal the degree to which recombination hotspots are targeted to different genomic locations in 653 

these two populations. 654 

 655 

Hotspot evolution in freshwater and marine threespine stickleback populations 656 

Of the 3,965 hotspots between Lake Washington and Puget Sound, only ~15% of 657 

hotspots are shared, indicating many of the hotspots are recently derived within populations of 658 

threespine stickleback fish. Consistent with the recent evolution of hotspots, we did not observe 659 

an elevated equilibrium GC content in these regions. One possible model is that recombination 660 

hotspots can shift over short evolutionary timescales among regions of the genome that are 661 

susceptible to homologous recombination, such as regions of accessible chromatin. Both 662 

evolutionarily conserved and rapidly evolving hotspots tend to locate to regions of accessible 663 

chromatin (Lam and Keeney 2015; Ohta et al. 1994; Pan et al. 2011; Tischfield and Keeney 664 

2012) or regions with histone 3 lysine 4 trimethylation (H3K4me3) (Auton et al. 2013; Baker et 665 

al. 2015; Marand et al. 2017; Smagulova et al. 2011).  666 

 In taxa where hotspots are evolutionarily conserved, hotspots are highly enriched around 667 

TSSs (Auton et al. 2013; Kawakami et al. 2017; Pan et al. 2011; Singhal et al. 2015; Tischfield 668 

and Keeney 2012).This pattern could be due to either higher selective constraints at TSSs or the 669 

chromatin structure at TSSs. TSSs are often under purifying selection and if a genomic feature, 670 

like a DNA motif, is targeting hotspots to these regions, these features would also be preserved 671 

through purifying selection, maintaining the location of the hotspot (Kawakami et al. 2017; Lam 672 

and Keeney 2015; Singhal et al. 2015; Tsai et al. 2010). On the other hand, an open chromatin 673 

conformation could be driving this pattern. TSSs and the surrounding regions must be accessible 674 

for transcription to occur while also providing sites for Spo11 to bind, initiating recombination 675 

(Lee et al. 2004; Pokholok et al. 2005) as Spo11 will create double strand breaks at any sites with 676 

accessible chromatin (Celerin et al. 2000; Ohta et al. 1994; Pan et al. 2011). In Lake Washington 677 

and Puget Sound populations, we found some enrichment of hotspots at TSSs (Lake Washington: 678 

26% of hotspots fell within 3 kb of a TSS; Puget Sound: 29% of hotspots fell within 3 kb of a 679 

TSS) which is similar to hotspot enrichment around TSS in taxa that do not have a functional 680 

PRDM9 protein. In birds and dogs, for example, ~20-30% of hotspots overlap with TSSs (Auton 681 

et al. 2013; Kawakami et al. 2017; Singhal et al. 2015). Additional characterization is needed to 682 
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determine if hotspots in threespine stickleback are occurring in regions of the genome that are 683 

already open due to transcription or if there is a mechanism that creates accessible chromatin 684 

specifically for double strand break formation, like what is believed to occur with PRDM9 in 685 

mammalian species (Diagouraga et al. 2018; Hayashi et al. 2005; Powers et al. 2016). 686 

 In some mammalian systems, positive selection acting on the zinc finger binding domain 687 

of PRMD9 has led to multiple distinct DNA binding motifs between closely related species 688 

(Baudat et al. 2010; Myers et al. 2010; Myers et al. 2008; Pratto et al. 2014). This leads to a rapid 689 

evolution of hotspot localization (Baker et al. 2015; Brick et al. 2012; Pratto et al. 2014; 690 

Smagulova et al. 2016; Stevison et al. 2015). Typically, ~40% of hotspots will contain a PRDM9 691 

motif in mouse and humans (Baudat et al. 2010; Myers et al. 2008). In threespine stickleback 692 

fish, we found that less than 14% of hotspots had PRMD9 or any other PRDM motifs, contrary 693 

to what we would expect if PRDM9 was controlling hotspot location in threespine stickleback. 694 

In addition, we did not find any other DNA motifs enriched in hotspots that would indicate a role 695 

of an alternative DNA-binding protein that could localize hotspots. Additional characterization is 696 

needed to understand what genomic features could be targeting hotspots, leading to the distinct 697 

fine-scale recombination landscapes observed between populations of threespine stickleback 698 

fish.  699 
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Table 1. Mean equilibrium GC content ( SE) 

 

 Lake Washington Puget Sound 

Top 5% of Recombination 

Rates 
0.432 (0.0006)a 0.430 (0.0006)a 

Bottom 5% of Recombination 

Rates 
0.421 (0.0005)b 0.415 (0.0005)b 

Population-Specific Hotspots 0.420 (0.002)b 0.416 (0.001)b 

Shared Hotspots 0.422 (0.004)a,b 0.417 (0.004)b 

 

a,bGroups significantly different within populations by Wilcoxon Rank Test; p < 0.05 
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Figure 1. Lake Washington and Puget Sound have experienced past population bottlenecks. 

Demographic history for Lake Washington (A) and Puget Sound (B) was estimated using 

pairwise sequential Markov coalescent (PSMC) from a single female fish from each population. 

100 bootstrap replicates around the estimated history are shown. 
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Figure 2. Recombination rates are similar at a broad scale in each population. Mean 

recombination rates were estimated using LDHelmet in non-overlapping 500 kb windows for 

each autosome in Lake Washington (A) and Puget Sound (B). Centromere positions are shown in 

Supplemental Figures 3 and 4. Transitions between gray and purple indicate different 

chromosomes. 
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Figure 3. LD-based estimates of recombination rates are highly correlated with estimates from 

genetic linkage maps. Population-scaled recombination rates were converted to cM/Mb. There is 

a significant positive correlation in Lake Washington (Spearman’s rank correlation; r = 0.830; p 

< 0.001) (A) and Puget Sound (Spearman’s rank correlation; r = 0.810; p < 0.001) (B) between 

LD-based recombination rates and genetic map-based recombination rates. 
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Figure 4. Recombination rates vary at a fine-scale across chromosome one. Population-scaled 

recombination rates across chromosome one are shown for Puget Sound (red) and Lake 

Washington (blue) (A). A subset of chromosome one is shown to highlight population-specific 

peaks of recombination across a narrow 2.5 Mb region (B). Only recombination rates below 4.5 

/bp are shown. The remaining chromosome plots are in supplemental figures 3 and 4. 
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Figure 5. LD-based recombination rates around hotspots are population-specific. Mean 

recombination rates are shown across a 40 kb interval, flanking the center of hotspots. The mean 

recombination rate in shared and population-specific Lake Washington hotspots is higher in the 

Lake Washington population compared to the homologous regions in the Puget Sound 

population (A). The mean recombination rate in shared and population-specific Puget Sound 

hotspots are higher in the Puget Sound population compared to the homologous regions in the 

Lake Washington population (B). The pattern is more pronounced when shared hotspots are 

removed from the comparison, leaving only the population-specific hotspots (C and D). Puget 

Sound is shown in red and Lake Washington is shown in blue. 
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Figure 6. LD-based recombination rates are higher across the pseudoautosomal region (PAR). 

The PAR is the first ~2.5 Mb of linkage group 19. The Lake Washington (A) and Puget Sound 

(B) population-specific rates are shown separately. Overall, recombination rates are higher 

across the PAR than the autosomes (see Figure 4B) (Lake Washington PAR average: 0.129 /bp; 

Lake Washington autosome-wide average: 0.035 /bp; Puget Sound PAR average: 0.232 /bp; 

Puget Sound autosome-wide average: 0.072 /bp). 
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