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Abstract

Dengue virus (DENV) exists as four genetically distinct serotypes, each of which
is also antigenically distinct: the immune response to primary infection can be either
cross-protective or associated with severe disease upon heterotypic secondary infection.
Each serotype is historically assumed to be antigenically uniform. Recent analyses
suggest that antigenic heterogeneity may exist within each serotype, but its source,
extent and impact remain unclear. Here, we construct a phylogeny-based model to
directly map antigenic change to underlying genetic divergence. We report moderate
antigenic diversity within each serotype, and identify 12 antigenically distinct clades.
We also quantify the impact of this antigenic heterogeneity on real-world DENV
population dynamics. We find that antigenic fitness mediates fluctuations in DENV
clade frequencies, although this appears to be driven by coarser serotype-level antigenic
differences. These results provide a more nuanced understanding of dengue antigenic
evolution, with important ramifications for vaccine design and epidemic preparedness.
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Author Summary

Dengue virus (DENV), the causative agent of dengue hemorrhagic fever, exists as four
genetically distinct serotypes, DENV1-4. These serotypes are antigenically distinct: symp-
tomatic reinfection with a homotypic virus is very rare, while reinfection with a heterotypic
virus is associated with severe disease. Until recently, it has been assumed that viruses
within each serotype are antigenically uniform. However, specific genotypes within each
serotype have been anecdotally associated with varying severity of patient outcomes and
epidemic magnitude. One hypothesis is that each serotype contains overlooked, meaningful
antigenic diversity. While antigenic cartography suggests that heterogeneity may exist
within each serotype, its source, extent and impact is unclear. Here, we analyze a previously
published neutralization titer dataset to quantify and phylogenetically characterize the
extent of DENV intraserotype antigenic diversity. We map antigenic changes to specific
branches of the virus phylogeny, and interpolate across the tree to estimate the antigenic
distance between pairs of viruses based on their relative positions in the phylogeny. We find
that DENV antigenic divergence is tightly coupled to DENV genetic divergence, and is likely
a gradual, ongoing process. We report modest but significant antigenic diversity within
each serotype of DENV, and identify a minimum of 12 distinct antigenic clades. Within
each serotype, these antigenic clades are separated by antigenic distances comparable to
those associated with differing vaccine efficacy in the recent CYD-TDV vaccine trial. This
suggests that antigenic interactions between specific viral genotypes may contribute to
secondary case outcomes and vaccine efficacy. To understand the impact of this antigenic
heterogeneity on real-world DENV population dynamics, we also quantify the extent to
which population immunity–accumulated through recent circulation of antigenically similar
genotypes–determines the success and decline of DENV clades in a hyperendemic popula-
tion. We find that antigenic fitness is a key determinant of DENV population turnover,
although this appears to be driven by coarser serotype-level antigenic differences. By
leveraging both molecular data and real-world population dynamics, these results provide
a more nuanced understanding of dengue antigenic evolution, with important ramifications
for improving vaccine design and epidemic preparedness.
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Introduction

Dengue virus (DENV) is a mosquito-borne flavivirus which consists of four genetically
distinct clades, canonically thought of as serotypes (Lanciotti et al., 1997). DENV circulates
primarily in South America and Southeast Asia, infecting 400 million people annually.
While most of these infections are asymptomatic or mild, ∼1–3% of cases progress to severe
dengue hemorrhagic fever, causing approximately 10–15,000 deaths each year (Bhatt et al.,
2013). Unlike most infectious diseases, DENV secondary infections are more likely than
primary infections to cause severe disease, with estimates of relative risk of severe dengue of
∼24 (Mizumoto et al., 2014). Primary DENV infection is more often mild and is thought to
generate lifelong homotypic immunity and temporary heterotypic immunity, which typically
wanes over six months to two years (Katzelnick et al., 2016; Sabin, 1952). Subsequent
heterotypic secondary infection induces broad cross-protection, and symptomatic tertiary
and quaternary cases are rare (Gibbons et al., 2007; Olkowski et al., 2013). However, a small
subset of secondary infections are enhanced by nonneutralizing, cross-reactive antibodies,
resulting in severe disease (Halstead, 1979; Katzelnick et al., 2017; Sangkawibha et al.,
1984). Thus, the antigenic relationships between dengue viruses — describing whether the
immune response generated after primary infection results in protection or enhancement of
secondary infection — are key drivers of DENV case outcomes and epidemic patterns.

While each serotype is clearly genetically and antigenically distinct, it is not clear how
sub-serotype clades of DENV interact antigenically. Each DENV serotype consists of broad
genetic diversity, including canonical clades termed ‘genotypes’ (Figure 1) (Rico-Hesse, 1990;
Twiddy et al., 2003). Specific genotypes have been associated with characteristically mild
or severe disease, and heterogeneous neutralization titers suggest that the immune response
to some genotypes is more cross-protective than others (Gentry et al., 1982; Russell and
Nisalak, 1967). Until recently, it has been assumed that these intraserotype differences are
minimally important compared to interserotype differences. However, empirical evidence
has demonstrated that these genotype-specific differences can drive case outcomes and
epidemic severity (reviewed in Holmes and Twiddy, 2003). For example, analysis of a
longitudinal cohort study demonstrated that specific combinations of primary infection
serotype and secondary infection genotype can mediate individual case outcomes (OhAinle
et al., 2011). On a population scale, the DENV1-immune population of Iquitos, Peru,
experienced either entirely asymptomatic or very severe epidemic seasons in response to
two different genotypes of DENV2 (Kochel et al., 2002).

One explanation for these and similar observations is that overlooked intraserotype antigenic
variation contributes to these genotype-specific case outcomes and epidemic patterns.
Recent efforts to antigenically characterize diverse DENV viruses suggests that each serotype
may contain antigenic heterogeneity, but the source and impact of this heterogeneity is
not clear (Katzelnick et al., 2015). Here, we take a phylogenetic approach to characterize
the evolutionary basis for observed antigenic heterogeneity among DENV clades. We also
quantify the impact of within- and between-serotype antigenic variation on real-world
DENV population dynamics.
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Figure 1. Phylogeny of dengue viral sequences. Maximum likelihood phylogeny of dengue
virus genomes, colored by canonical genotype assignment.

Results

Dengue neutralization titer data

Antigenic distance between a pair of viruses i and j is experimentally quantified using
neutralization titer, which measures how well serum drawn after infection with virus i is able
to neutralize virus j in vitro(Russell and Nisalak, 1967). To measure the pairwise antigenic
distances for a panel of diverse DENV viruses (Figure S1), Katzelnick et al. infected naive
non-human primates (NHP) with each virus, drew sera at three months post-infection,
and then titered this sera against a panel of test viruses (Katzelnick et al., 2015). To
compare patterns of cross-protection in NHP and humans, they also drew sera from 31
study participants six weeks after inoculation with a monovalent component of the NIH
dengue vaccine candidate. This sera was also titered against a broad panel of DENV viruses.
As originally reported, we find generally consistent patterns of neutralization between the
NHP and human sera data; see (Katzelnick et al., 2015) for a detailed comparison. In total,
our dataset consists of 454 NHP sera titrations spanning the breadth of DENV diversity,
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and 728 human sera titrations providing deep coverage of a small subset of viruses.

To standardize these measurements, we first take the log2 of each value, such that one
titer unit corresponds to one, two-fold drop in neutralization. We then define antigenic
distance between autologous virus-sera pairs (i.e., virus i and serum i) as zero. Normalized
antigenic distance between i and j are thus calculated as Dij = log2(Tii)− log2(Tij), such
that a higher value of Dij indicates that serum i is less effective at neutralizing virus j,
implying greater antigenic distance between viruses i and j.

The full dataset of standardized titer values is shown in Figure 2. Here, we see that
homotypic virus-serum pairs are more closely related antigenically than heterotypic pairs.
However, we also observe large variance around this trend, both within and between
serotypes. This suggests that treating each serotype as antigenically uniform overlooks
potentially important antigenic heterogeneity across viruses within each serotype.

Figure 2. Normalized antigenic distance between pairs of dengue viruses and sera.
Aggregated neutralization titers from Katzelnick et al. are standardized such that the distance
between autologous virus-serum pairs is 0, and each titer unit corresponds to one, two-fold change
in PRNT50 value. Light gray areas represent missing data. Higher values correspond to greater
antigenic distance.

Dengue antigenic evolution corresponds to phylogenetic divergence

Titer measurements are prone to noise, and there is a limited amount of available titer
data. If the antigenic heterogeneity observed in the raw data is truly the result of an
underlying evolutionary process, we expect that changes in antigenic phenotype correspond
to underlying changes in viral genotype. Figure 3 shows the relationship between genetic
and antigenic distance between each pair of viruses in our dataset. There are two groups
of comparisons — between serotype and within serotype — however, even within serotypes
there is significant genetic diversity and a correlation between increased genetic distance
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Figure 3. Normalized antigenic distance vs. genetic distance between pairs of dengue
viruses. Antigenic distances are the same as from Figure 2; genetic distances are the patristic
distances between viral genomes on a maximum likelihood phylogeny.

and increased antigenic distance. The relationship between genetic distance and antigenic
distance is consistent within and between serotypes, where increasing genetic divergence
generally corresponds to increased antigenic distance.

Antigenic evolution occurs within serotypes

To fully map the relationship between DENV genetic and antigenic evolution, we adapt a
phylogeny-based model originally developed for influenza (Neher et al., 2016). Conceptually,
this model predicts titer values through three steps. First, we build a phylogeny of dengue
virus sequences to establish the genetic relationships between viruses (Figures 1, S2). Next,
we infer how much antigenic change has occurred along each branch of the phylogeny by
mapping titer changes to individual branches. This assigns each branch b an antigenic
distance db. With this in hand, we estimate the antigenic distance between all pairs
of viruses by tracing the path between them in the phylogeny, summing branch-specific
distances db as we go (Methods, Eq. 2).

To learn these values of db, we first split our dataset into training (random 90% of
measurements) and test data (the remaining 10% of values). We take the training data
and fit db for each branch in the tree, subject to regularization as follows (also detailed
in Methods, Eq. 3). Parsimoniously, we expect that antigenic change is more likely to
occur through larger changes on a few branches than through small changes on many
branches; correspondingly, our prior expectation of values of db is exponentially distributed
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such that most values of db = 0. This is analogous to lasso regression to identify a few
parameters with positive weights and set other parameters to 0. Additionally, some viruses
have greater binding avidity, and some sera are more potent than others (Figure S3); these
‘row’ and ‘column’ effects, respectively, are normally distributed and are taken into account
when estimating titers. The model uses convex optimization to learn the values of db that
minimize the sum of squared errors (SSE) between observed and predicted titers in the
training data.

Figure 4. Titer model formulations and performance. A The ‘interserotype model’ only
allows branches that lie between serotypes to contribute to antigenic evolution. All other branches
are assigned db = 0. B The ‘full tree model’ allows any branch in the phylogeny to contribute
to antigenic evolution (db >= 0). C,D Predictive performance of each model on the test dataset
(aggregated from 10-fold cross-validation). Shading represents the 95% confidence interval.

This model formulation is an effective tool for estimating antigenic relationships between
viruses based on their relative positions in the phylogeny. We can use variations of this
model to explicitly test whether the observed antigenic phenotypes are better explained
by the hypothesis that dengue serotypes are antigenically uniform (‘interserotype model’),
or by the hypothesis that serotypes are antigenically diverse (‘full tree model’). In the
interserotype model, we set db = 0 for all branches in the tree that do not lie between
serotypes (Figure 4A). Alternatively, the ‘full tree model’ allows any branch in the phylogeny
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to contribute to antigenic evolution (Figure 4B). For each model, we learn model parameters
from the training data, and then use those parameters to predict test data values. We
assess model performance by comparing the predicted test titer values to the actual values.
Model performance indicates how well the hypothesis embedded in the model explains the
observed data.

We find that serotype-level characterization alone explains observed antigenic phenotypes
to a reasonable degree. On average, this interserotype model predicts titers within 1.02
log2 titer units of the true value (root mean squared error, RMSE), and explains 62% of
the observed variation in neutralization titers overall (Figure 4).

However, we find that accounting for within-serotype antigenic evolution substantially
improves our ability to explain dengue antigenic phenotypes. The full tree model is able
to predict test titers within 0.86 log2 titer units of the true value (RMSE approaching
the level of error intrinsic to the assay), and explains 74% of the observed variation in
neutralization titers overall (Figure 4). Importantly, all reported error metrics refer to
performance on test data, so this difference in model performance is not due to the number
of free parameters. The full tree model performance is comparable to the model error from
a cartography-based characterization of the same dataset (RMSE 0.65–0.8 log2 titer units),
and to the error observed when this model was used to characterize an influenza dataset
(RMSE of 0.5 log2 titer units) (Katzelnick et al., 2015; Neher et al., 2016). From this, we
conclude that there is antigenic evolution within each serotype of DENV, and that this is
driven by underlying genetic divergence.

Collapsing putatively antigenically uniform clades, we observe at least 12 distinct antigenic
phenotypes of DENV (Figure 5) and reject the null hypothesis that all DENV viruses within
a serotype are antigenically uniform. The titer dataset spans the breadth of canonical
DENV genotypes, but in most cases lacks the resolution to detect within-genotype antigenic
diversity. We thus expect that these results represent a lower-bound on the true extent of
DENV intraserotype antigenic diversity.

Antigenic novelty predicts serotype success

From the titer model, we observe strong evidence that homotypic genotypes of DENV
vary in their ability to escape antibody neutralization (Figures 4, S5). However, antibody
neutralization is only one of many factors that shape epidemic patterns. We investigate
whether the observed antigenic diversity influences dengue population dynamics in the
real world. The size of the viral population (i.e., prevalence, commonly analyzed using
SIR models as reviewed in (Lourenço et al., 2018)) is determined by many complex
factors, and reliable values for population prevalence are largely unavailable. Contrastingly,
the composition of the viral population (i.e., the relative frequency of each viral clade
currently circulating) can be estimated over time by examining historical sequence data
(Lee et al., 2018; Neher et al., 2016), and is primarily driven by viral fitness (Bedford et al.,
2011). In meaningfully antigenically diverse viral populations, antigenic novelty (relative
to standing population immunity) contributes to viral fitness: as a given virus i circulates
in a population, the proportion of the population that is susceptible to infection with
i–and other viruses antigenically similar to i–decreases over time as more people acquire
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Figure 5. Tree of dengue antigenic phenotypes. We infer the topology from a maximum
likelihood phylogeny of DENV genomes. Branch lengths are scaled to reflect db, the relative
contributions of each branch to antigenic divergence, as inferred by the ‘full tree’ model of DENV
evolution. Antigenically uniform clades are collapsed, and node diameter reflects the size of the
collapsed clade. Figure S4 offers an additional view of the same topology.

immunity (Bedford et al., 2012;  Luksza and Lässig, 2014). Antigenically novel viruses that
are able to escape this population immunity are better able to infect hosts and sustain
transmission chains, making them fitter than the previously circulating viruses (Bedford
et al., 2012; Zhang et al., 2005). Thus, if antigenic novelty constitutes a fitness advantage
for DENV, then we would expect greater antigenic distance from recently circulating
viruses to correlate with higher growth rates.

To test this hypothesis, we examine the composition of the dengue virus population in
Southeast Asia from 1970 to 2015. We estimate the relative population frequency of each
DENV serotype at three month intervals, xi(t) (Figure 6A), based on available sequence
data (Methods, Eq. 4).

Fitter virus clades increase in frequency over time, such that xi(t+ dt) > xi(t). It follows
that these clades have a growth rate–defined as the fold-change in frequency over time–
greater than one: xi(t+dt)

xi(t)
> 1. To isolate the extent to which antigenic fitness contributes to

clade success and decline, we extend work by  Luksza and Lässig* ( Luksza and Lässig, 2014)
to build a simple model that attempts to predict clade growth rates based on two variables:
the antigenic fitness of the clade at time t, and a time-invariant free parameter representing
the intrinsic fitness of the serotype the clade belongs to. We estimate the antigenic fitness
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Figure 6. Antigenic novelty predicts serotype success. A The relative frequency of each
serotype, xi, in Southeast Asia is estimated every three months based on available sequence data.
B We calculate antigenic fitness for each serotype over time as its frequency-weighted antigenic
distance from recently circulating viruses. We then add this to a time-invariant intrinsic fitness
value to calculate total fitness (shown here, arbitrary units). C illustrates how the model predicts
clade growth rates. At each timepoint t, we blind the model to all empirical data from timepoints
later than t and predict each serotype’s future trajectory based on its initial frequency, time-
invariant intrinsic fitness, and antigenic fitness at time t (Methods, Eq. 10). We predict forward in
three-month increments for a total prediction period of dt = 5 years. At each increment, we use
the predicted stepwise frequency change to adjust our estimates of antigenic fitness on a rolling

basis (Methods, Eq. 14). Predicted growth rates are calculated as ĝ = x̂i(t+dt)
xi(t)

and compared to

empirically observed growth rates, g = xi(t+dt)
xi(t)

in D. The example illustrated in C is also shown

in D as the blue point. Serotype growth versus decline is accurate (i.e., the predicted and actual
growth rates are both > 1 or both < 1, all points outside the gray area) for 80% of predictions.

of clade i at time t as a function of its antigenic distance from each viral clade j that has
circulated in the same population over the previous two years, weighted by the relative
frequency of j and adjusted for waning population immunity (Figure 6B; Methods, Eq. 7).
Growth rates are estimated based on a five year sliding window (Figure 6C).

This simple model explains 62% of the observed variation in serotype growth rates, and
predicts serotype growth vs decline correctly for 80% of predictions (Figure 6D). This
strongly suggests that antigenic fitness is a major driver of serotype population dynamics.
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This also demonstrates that this model captures key components of dengue population
dynamics; examining the formulation of this model in more detail can yield insights into
how antigenic relationships influence DENV population composition. The fitness model
includes eight free parameters that are optimized such that the model most accurately
reproduces the observed fluctuations in DENV population composition (reduction in
prediction error relative to a null model, see Methods). We find that serotype fluctuations
are most consistent with a model wherein population immunity wanes linearly over time,
with the probability of protection dropping by about 48% per year for the first two years
after primary infection. We also find that these dynamics are best explained by intrinsic
fitness that moderately varies by by serotype (Table S1).

Antigenic novelty also partially predicts genotype success

To estimate how well antigenic fitness predicts genotype dynamics, we used the same
model to predict genotype success and decline. As before, fitness of genotype i is based
on the intrinsic fitness of the serotype i belongs to, and the antigenic distance between
i and each other genotype, j, that has recently circulated (Figure 7B). Importantly, we
can calculate antigenic distance between i and j at the serotype level (i.e., the antigenic
distances computed from the ‘interserotype model’ as illustrated in Figure 4A) or at the
genotype level (i.e., the antigenic distances computed by the ‘full tree model’ as illustrated
in Figure 4B, which incorporates the observed within-serotype heterogeneity). If within-
serotype antigenic heterogeneity contributes to genotype fitness, then we would expect
estimates of antigenic fitness based on the ‘full tree model’ to better predict genotype
growth rates.

We find that antigenic fitness contributes to genotype turnover, although it explains less of
the observed variation than for serotypes. When antigenic distance is estimated from the
‘interserotype model’, we find that our model of antigenic fitness explains approximately
31% of the observed variation in genotype growth rates, and correctly predicts genotype
growth vs. decline 68% of the time (Figure 7C). Perhaps surprisingly, more precise estimates
of antigenic distance between genotypes from the ‘full tree model’ does not improve our
predictions of genotype success (R2 = 0.28, 70% accuracy; Figure 7D). This suggests that
although we find strong evidence that genotypes vary in their ability to escape neutralizing
antibodies (Figures 4, S5), these differences are subtle enough that they do not impact
broad-scale regional dynamics over time.
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Figure 7. Relative frequencies and fitness of dengue genotypes, 1970-2015. A Relative
frequencies of each canonical dengue genotype across Southeast Asia, estimated from available
sequence data. B Antigenic fitness is calculated for each genotype as its frequency-weighted antigenic
distance from recently circulating genotypes. We then add this to a time-invariant, serotype-specific
intrinsic fitness value to calculate total fitness (shown here, arbitrary units). We assess antigenic
distance using either the ‘full tree model’ or the ‘interserotype model’ of antigenic relationships
(Figure 4). In this panel, we show total fitness over time, incorporating estimates of antigenic fitness
derived from the ‘full tree’ model. C, D Fitness estimates were used to predict clade growth rates
over 5 years, compounding immunity every three months based on predicted frequency changes
(Methods Eq. 14). Here, we compare observed vs predicted growth rates for both formulations of
the fitness model (using fitness derived from either the ‘interserotype’ or ‘full tree’ model estimates
of antigenic distance). Growth versus decline was accurate (predicted and actual growth rates both
> 1 or both < 1, points outside the gray shaded area) for 68% – 70% of predictions, respectively.

Discussion

Within-serotype antigenic heterogeneity

We show that mapping antigenic change to individual branches and interpolating across
the DENV phylogeny is able to explain a large majority of the observed variation in
antigenic phenotypes, as measured by neutralization titers. This demonstrates that DENV
antigenic divergence is closely coupled to genetic divergence. We also find that accounting
for within-serotype antigenic evolution is necessary to explain the observed variation in
antigenic phenotypes. This supports and expands upon previous reports (Katzelnick et al.,
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2015) that the null hypothesis of antigenically uniform serotypes is inconsistent with
observed patterns of cross-protection and susceptibility. We observe at least 12 distinct
antigenic phenotypes that are both genetically and antigenically distinct. Analysis of the
recent CYD-TDV vaccine trial shows different vaccine efficacy against genotypes I and II
of DENV4 (Juraska et al., 2018); the antigenic distance between these two genotypes is
comparable to the antigenic distance separating each of the 12 antigenic phenotypes we
report (Figures 5, S5). This suggests that these phenotypes may be sufficiently distinct to
have important impacts on secondary case outcomes and vaccine efficacy.

Overall, we expect that these antigenic phenotypes represent a lower-bound on the extent,
magnitude, and nature of antigenic heterogeneity with DENV. Our current titer dataset
spans the breadth of DENV diversity, but due to small sample size, it lacks the resolution
to detect most sub-genotype antigenic variation or to identify which specific mutations
correspond to changes in antigenic phenotype. The appearance of the deep antigenic
divergence of the four serotypes, and the more recent antigenic divergences within each
serotype, suggest that DENV antigenic evolution is likely an ongoing, though gradual,
process. We therefore expect that future studies with richer datasets will find additional
antigenic variation within each genotype. This dataset also contains many left-censored
titer values, where we know two viruses are at least T titer units apart, but do not know
exactly how far apart. If we knew the true value of these censored titers, many of them
would indicate larger antigenic distances than the reported values, T , which are used
to train the model. Thus, it is likely that our model systematically underestimates the
magnitude of titer distances. Finally, antibody neutralization and escape (as measured
by PRNT titers) is only one component of the immune response to DENV. Although
analysis of a longitudinal cohort study shows that these neutralization titers correlate with
protection from severe secondary infection, it is unclear how PRNT titers correspond to
antibody-dependent enhancement (Katzelnick et al., 2016). It is also important to note
that DENV case outcomes are partially mediated by interactions with innate and T-cell
immunity, the effects of which are not captured in neutralization titers (Green et al., 2014).
Overall, while richer datasets and the development of more holistic assays will be required
in order to fully characterize the extent of DENV antigenic diversity, it is clear that the
four-serotype model is insufficient to explain DENV antigenic evolution.

Viral clade dynamics

We use these inferred antigenic relationships to directly quantify the impact of antigenic
fitness on DENV population composition. To do so, we measure serotype frequencies
across Southeast Asia over time and construct a model to estimate how they will fluctuate
(Methods, Eq. 6–19). This model places a fitness value on each serotype that derives from a
constant intrinsic component alongside a time-dependent antigenic component. Antigenic
fitness declines with population immunity, which is accumulated via the recent circulation
of antigenically similar viruses. We find that antigenic fitness is able to explain most
of the observed variation in serotype growth and decline (Figure 6). This demonstrates
that antigenic fitness is a strong determinant of DENV serotype dynamics in a real-world,
hyperendemic population.
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We similarly use this model to quantify the effect of within-serotype antigenic variation
on the success and decline of canonical DENV genotypes (Figure 7). As above, genotype
antigenic fitness declines with population immunity. Here, we estimate population immunity
based on antigenic distance from recently circulating genotypes, using distances derived
from the ‘interserotype model’ or the ‘full tree model’ of DENV antigenic evolution. We
then directly compare how strongly these coarser serotype-level versus specific genotype-
level antigenic relationships impact DENV population dynamics. Overall, we find that
antigenic fitness explains a moderate portion of the observed variation in genotype growth
and decline. Surprisingly, however, we find that incorporating within-serotype antigenic
differences does not improve our predictions (Figure 7C,D). This suggests that although
genotypes are antigenically diverse, these differences do not appear to influence large-scale
regional dynamics over time.

However, this observation is subject to caveats imposed by the the available data and model
assumptions. Our estimates of antigenic fitness are informed by the antigenic distances
inferred by the titer tree model; thus, as above, we are unable to account for nuanced
antigenic differences between sub-genotype clades of DENV due to limited titer data.
We estimate DENV population composition over time based on available sequence data,
pooled across all of Southeast Asia (Methods, Eq. 4). As the vast majority of cases of
DENV are asymptomatic, sequenced viruses likely represent a biased sample of more severe
cases from urban centers where patients are more likely to seek and access care. We also
assume that Southeast Asia represents a closed viral population with homogeneous mixing.
However, increasing globalization likely results in some amount of viral importation that is
not accounted for in this model (Allicock et al., 2012). Finally, although Southeast Asia
experiences hyperendemic DENV circulation, the majority of DENV transmissions are
hyper-local (Salje et al., 2017), and viral populations across this broad region may not
mix homogeneously each season. Thus, it is possible that these sub-serotype antigenic
differences impact finer-scale population dynamics, but we lack the requisite data to
examine this hypothesis.

Conclusions

We find that within-serotype antigenic evolution is necessary to explain the observed
patterns of cross-immunity and susceptibility after primary DENV infection. These within-
serotype differences are large enough that we believe they likely impact secondary case
outcomes and small scale population dynamics. We also find that population immunity is
a strong determinant of the composition of the DENV population across Southeast Asia,
although this is putatively driven by coarser, serotype-level antigenic differences. As richer
datasets become available, future studies that similarly combine viral genomics, functional
antigenic characterization, and population modeling have great potential to improve our
understanding of how DENV evolves antigenically and moves through populations.
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Model sharing and extensions

We have provided all code, configuration files and datasets at ‘github.com/blab/dengue-
antigenic-dynamics’, and wholeheartedly encourage other groups to adapt and extend this
framework for further investigation of DENV antigenic evolution and population dynamics.
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Methods

Data

Sequences
We downloaded all dengue virus sequences available from the Los Alamos National Lab
Hemorrhagic Fever Virus Database as of March 7, 2018, that contained the full coding
sequence of E (total N=12,645) (Kuiken et al., 2011). We discarded sequences which were
putative recombinants, duplicates, lab strains, or which lacked an annotated sampling
location and/or sampling date. We then randomly subsampled up to 8 viruses per region,
per month, preferentially including records with available titer data and longer sequences.
Our final dataset consists of 2,563 viral sequences (Figure S2). We used the annotated
reference dataset from (Pyke et al., 2016) to assign sequences to canonical genotypes.

Titers

Antigenic distance between pairs of viruses i and j is experimentally measured using a
neutralization titer, which measures how well serum drawn after infection with virus i
is able to neutralize virus j in vitro (Russell and Nisalak, 1967). Briefly, two-fold serial
dilutions of serum i are incubated with a fixed concentration of virus j. Titers represent
the lowest serum concentration able to neutralize 50% of virus, and are reported as the
inverse dilution. We used two publicly available plaque reduction neutralization titer
(PRNT50) datasets generated by Katzelnick et al. in (Katzelnick et al., 2015). The primary
dataset was generated by infecting each of 36 non-human primates with a unique strain
of DENV. NHP sera was drawn after 12 weeks and titered against the panel of DENV
viruses. The secondary dataset was generated by vaccinating 31 human trial participants
with a monovalent component of the NIH DENV vaccine. Sera was drawn after 6 weeks
and titered against the same panel of DENV viruses. As discussed in Katzelnick et al.,
these two datasets show similar patterns of antigenic relationships between DENV viruses.
In total, our dataset includes 47 virus strains, 36 serum strains, and 1182 measurements.

Titer Model

We compute standardized antigenic distance between virus i and serum j (denoted Dij)
from measured titers relative to autologous titers (denoted Tii and Tij , respectively), such
that

Dij = log2(Tii)− log2(Tij) (1)

To predict unmeasured titers, we employ the ‘tree model’ from Neher et al. and implemented
in Nextstrain, which assumes that antigenic evolution is driven by underlying genetic
evolution (Hadfield et al., 2018; Neher et al., 2016). We use RAxML version 8.2.11 and
a GTRCAT nucleotide substitution model to build a maximum likelihood phylogeny of
dengue viral genome sequences (Stamatakis, 2014). Observed titer drops are mapped to
branches in the viral phylogeny after correcting for overall virus avidity, vi, and serum
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potency, pj (‘row’ and ‘column’ effects, respectively):

D̂ij ≈ Dij =
∑

b∈path(i,j)

db + vi + pj (2)

where db is the titer drop assigned to each branch, b, in the phylogeny. We randomly
withhold 10% of titer measurements as a test set. We use the remaining 90% of titer
measurements as a training set to learn values for virus avidity, serum potency, and branch
effects. As in Neher et al., we formulate this as a convex optimization problem and solve
for these parameter values to minimize the cost function:

C =
∑
i,j

(D̂ij −Dij)
2 + λ

∑
b

db + γ
∑
i

v2i + δ
∑
j

p2j (3)

Respectively, these terms represent the squared training error; an L1 regularization term
on branch effects, such that most values of db = 0; and L2 regularization terms on virus
avidities and serum potencies, such that they are normally distributed. These parameter
values are then used to predict the antigenic distance between all pairs of viruses, i and j, in
the phylogeny. We assess performance by comparing predicted to known titer values in our
test data set, and present test error (aggregated from 10-fold cross-validation) throughout
the manuscript.

Viral Clade Dynamics

Empirical Clade Frequencies
As discussed in Neher et al and Lee et al, we estimate empirical clade frequencies from
1970 to present based on observed relative abundance of each clade in the ‘slice’ of the
phylogeny corresponding to each quarterly timepoint (Lee et al., 2018; Neher et al., 2016).

Briefly, the frequency trajectory of each clade in the phylogeny is modeled according to
a Brownian motion diffusion process discretized to three-month intervals. Relative to a
simple Brownian motion, the expectation includes an ‘inertia’ term that adds velocity
to the diffusion and the variance includes a term x(1 − x) to scale variance according
to frequency following a Wright-Fisher population genetic process. This results in the
following diffusion process:

x(t+ dt) = N
(
x(t) + εdx, dtσ2x(t)(1− x(t))

)
(4)

with ‘volatility’ parameter σ2. The term dx is the increment in the previous timestep, so
that dx = x(t) − x(t − dt). We used ε = 0.7 and σ = 2.0 to maximize fit to empirical
trajectory behavior.

We also include an Bernoulli observation model for clade presence / absence among sampled
viruses at timestep t. This observation model follows

f(x, t) = Πv∈V x(t) Πv/∈V (1− x(t)) (5)

where v ∈ V represents the set of viruses that belong to the clade and v /∈ V represents
the set of viruses that do not belong to the clade. Each frequency trajectory is estimated
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by simultaneously maximizing the likelihood of the process model and the likelihood of the
observation model via adjusting frequency trajectory ~x = (x1, ...xn).

Population Immunity
For antigenically diverse pathogens, antigenic novelty represents a fitness advantage (Lip-
sitch and O’Hagan, 2007). This means that viruses that are antigenically distinct from
previously-circulating viruses are able to access more susceptible hosts, allowing the anti-
genically novel lineage to expand. We adapt a simple deterministic model from  Luksza and
Lässig to directly quantify dengue antigenic novelty and its impact on viral fitness ( Luksza
and Lässig, 2014). We quantify population immunity to virus i at time t, Pi(t), as a
function of which clades have recently circulated in the past N years, and how antigenically
similar each of these clades is to virus i:

Pi(t) =
n=N∑
n=1

w(n)
∑
j

(
xj(t− n)C(Dij)

) (6)

Where Dij is the antigenic distance between i and each non-overlapping clade j, n is the
number of years since exposure, and xj(t− n) is the relative frequency of j at year t− n.
Waning immunity is modeled as a non-negative linear function of time:

w(n) = max(−γn+ 1, 0) (7)

The relationship between antigenic distance and the probability of protection, C, is also
assumed to be linear and non-negative, such that:

C(Dij) = max(−σDij + 1, 0) (8)

We model the effects of population immunity, Pi(t), on viral antigenic fitness, fi(t), as:

fi(t) = f0 − βPi(t) (9)

where β and f0 are fit parameters representing the slope of the linear relationship between
immunity and fitness, and the intrinsic relative fitness of each serotype, respectively.

Frequency Predictions
Similar to the model implemented in  Luksza and Lässig*, we estimate predicted clade
frequencies at time t+ dt as

x̂i(t+ dt) =
xi(t)e

fi(t)dt∑
i xi(t)e

fi(t)dt
(10)

for short-term predictions (where dt < 1 year).

For long-term predictions, we must account for immunity accrued at each intermediate
timepoint between t and dt. We divide the interval between t and dt into a total of U
3 month timepoints, [t + u, t + 2u, ...t + U ], such that t + U = dt. We then compound
immunity based on predicted clade frequencies at each intermediate timepoint:

x̂i(t+ u) = xi(t)e
fi(t)u (11)
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x̂i(t+ 2u) = x̂i(t+ u)efi(t+u)u (12)

...

x̂i(t+ U) = xi(t)e
fi(t)uefi(t+u)uefi(t+2u)u...efi(t+U)u (13)

x̂i(t+ dt) = x̂i(t+ U) = xi(t)e
∑

u fi(t+u)u (14)

We then calculate clade growth rates, defined as the fold-change in relative clade frequency
between time t and time t+ dt:

x̂i(t+ dt)

xi(t)
(15)

Null model and model performance
To quantify the impact of antigenic fitness on DENV clade success, we compare our
antigenically-informed model to a null model wherein all viruses have equal antigenic fitness
at all timepoints:

fnulli (t) = 0 (16)

x̂i
null(t+ dt) = xi(t)e

0 = xi(t) (17)

For both the null model and the antigenically-informed model, we can assess predictive
power as the sum of squared error between predicted and empirical clade growth rates:

SSE =
∑
i,t

(
x̂i(t+ dt)

xi(t)
− x̂i

null(t+ dt)

xi(t)

)2

(18)

We can then estimate how much more error is present in the null model than the
antigenically-informed model:

∆SSE = SSEnull − SSEmodel (19)

Our frequency prediction model has a total of 8 free parameters:

β Slope of linear relationship between population immunity and viral fitness
γ Slope of linear relationship between titers and probability of protection
σ Proportion of titers waning each year since primary infection
fs0 Relative intrinsic fitness of each serotype (f0 = 0 for DENV4)
N Number of years of previous immunity that contribute to antigenic fitness
dt Number of years in the future to predict clade frequencies

For each dataset, we jointly fit these parameters to maximize ∆SSE (Table S1).
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Data availability

Sequence and titer data, as well as all code used for analyses and figure generation, is
publicly available at github.com/blab/dengue-antigenic-dynamics.
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Supplement

Table S1. Fit parameter values for fitness model

Genetic resolution Antigenic resolution Metric Metric value β γ σ DENV1 f0 DENV2 f0 DENV3 f0 DENV4 f0
Serotype Interserotype ∆ SSE 15.02 2.57 0.57 0.86 4.57 3.43 2.14 0.00
Serotype Interserotype Pearson R2 0.63 2.57 0.57 0.86 3.43 2.29 0.71 0.00

Genotype Interserotype ∆ SSE 14.83 2.57 0.57 0.86 5.71 4.57 3.57 0.00
Genotype Interserotype Pearson R2 0.36 2.57 0.57 0.86 5.71 5.71 2.86 0.00

Genotype Full tree ∆ SSE 14.22 1.71 0.57 0.43 1.40 0.80 0.40 0.00
Genotype Full tree Pearson R2 0.33 1.29 0.57 0.43 1.40 1.60 0.40 0.00

Figure S1. Tree of DENV viruses in titer dataset Maximum likelihood phylogeny of all
DENV viruses that were included in the titer dataset.
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Figure S2. Sequence dataset distribution Temporal and geographic distribution of sequences
included in our dataset after subsampling.

Figure S3. Titer value symmetry Some viruses have greater avidity overall, and some sera are
more potent overall. We normalize for these row and column effects (va and pb, respectively) in the
titer model. Once overall virus avidity and serum potency are accounted for, titers are roughly
symmetric (i.e., Dij ≈ Dji).
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Figure S4. Tree of dengue antigenic phenotypes (alternate view) As in Figure 5, the
topology is inferred from a maximum likelihood phylogeny of DENV sequences. Branch lengths are
scaled to represent the db assigned to each branch by the ‘full tree’ model of antigenic evolution.
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Figure S5. Titer distance by genotype Values represent the mean interpolated antigenic
distance between canonical dengue genotypes (in standardized log2 titer units).
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