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Abstract ​: Scale invariance is a common property of physical laws and a key concept in 
perspective drawing, which aims to provide a meaningful two-dimensional representation of a 
more complex, three-dimensional scene. Here we describe Scale Invariant Geometric Data 
Analysis (SIGDA), a new, general exploratory data analysis (EDA) method based on 
normalization of data to scale invariance. We discuss similarities and differences between 
SIGDA and two widely-used EDA methods, Correspondence Analysis (CA) and Principal 
Components Analysis (PCA). We then illustrate SIGDA’s ability to analyze and visualize 
population structure relationships within the data that inspired its development: genetic marker 
data, in which context PCA is considered a standard method. We show that SIGDA provides 
significant advantages over PCA of the same data, including: (a) robust detection and separation 
of a larger number of population axes, leading to (b) better separation of annotated populations; 
(c) separation of an independent allele frequency axis interpretable as a proxy for allele age, (d) 
visualization of marker flow between populations (population ​history​), and (d) robust detection 
and visualization of relationships between closely-related individuals and among family groups. 
Although this illustration focuses on a specific task, SIGDA is a general-purpose EDA method 
and derives its advantages from its novel approach to fundamental issues in data analysis, rather 
than clever sampling or other task-specific methodology. 

One Sentence Summary:​  We illustrate the advantages of Scale Invariant Geometric Data 
Analysis (SIGDA), a new exploratory data analysis method similar to PCA, by applying SIGDA 
to derive detailed, robust visualizations of the complex history of human population structure 
from a large sample of single nucleotide variants.  

 

Overview 

Scale-Invariant Geometric Data Analysis (SIGDA) is a new general-purpose exploratory data 
analysis method with a focus on scale invariance. SIGDA is intended to generalize two 
widely-used methods which apply to different kinds of data: Principal Components Analysis 
(PCA) ​[1,2] ​, which applies z-score normalization to each of a set of random variables (columns) 
measured on a set of objects (rows), and Correspondence Analysis (CA) ​[3] ​, which applies a 
chi-squared model to cross-tabulated counts of observed events (a contingency table). SIGDA 
interprets each matrix entry as a weight of similarity (or proximity or association) between the 
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containing row and the containing column, or equivalently whatever (hidden) annotation may be 
associated with each row and column. SIGDA therefore generalizes both PCA and CA by 
discarding the assumptions which determine their respective approaches to data normalization, 
and it is SIGDA’s unique approach to data normalization which distinguishes it most from 
existing methods. SIGDA’s normalization, which we call ​projective decomposition​, 
simultaneously rescales the rows and columns of the data matrix   by M = m{ ij} = r w c{ i ij j}  
positive scaling factors  for each row and  for each column to produce the scale-invariantri cj  
matrix (see Methods). These scaling factors cancel to preserve every relative ratio W = w{ ij}  

of columns across rows of  in , , and likewise preserve everyM W  (mit

mis ) /(mjt

mjs ) = ( wit

wis ) /( wjt

wjs )  
relative ratio of rows across columns. SIGDA is therefore designed for data with variation on a 
scale ​relative ​ to the data’s expected value, while PCA is designed for data varying on an 
absolute​ scale that is independent of its expected value. Examples of data for which SIGDA’s 
model may be most appropriate include contingency tables, gene expression data, relative 
probabilities of events, and other “ratio-scale” data. 

Below we illustrate SIGDA’s ability to analyze and visualize complex relationships within the 
data which inspired its development: patterns of population structure history among the single 
nucleotide variants observed in the 1000 Genomes Project ​[4] ​. PCA is a standard method ​[5] ​ for 
visualization of static population structure and encoding population structure numerically for use 
as a covariate in genome-wide association studies (GWAS). Here we show that SIGDA provides 
substantially more robust and detailed analyses of population structure from the same data. We 
also demonstrate SIGDA’s ability to visualize relationships between the scale invariant 
dimensions and an explicit scale dimension. In genetic marker data, scale is proportional to 
minor allele frequency, and is a proxy for time as the expected age of the derived marker allele 
[6] ​. We therefore argue that SIGDA visualizations of genetic marker data describe human 
population divergence and admixture over time. 

Materials and Methods 

Overview. ​SIGDA’s goal is to represent both the rows and the columns of an  data matrix as×nm  
points in a shared coordinate system; the process by which this is accomplished (Figure 1) is 
described in the three phases of simultaneous capture of two views of the data with by projective 
decomposition (Capture), ordination of axes of variation within the captured views (Orient), and 
construction of a merged image in a single, shared coordinate space (Project). 
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Figure 1. Overview of SIGDA. ​Input matrix: ​ The corners of a cube (points, upper left; numbered) with edges 
(lines) parallel to the coordinate axes x, y, and z (arrows) are defined in an 8 × 3 data matrix A (Supplementary 
Table S1). ​Capture: ​ SIGDA interprets A twice: as 3D points defined by the eight rows (dark gray, right of A), and 
unconventionally (colored, below A) as an 8-dimensional point for each axis (column). Conceptually, projective 
decomposition simultaneously “focuses” these row and column points onto spheres (blue arcs); procedurally, it 
rescales each row and column of A to form a scale-free matrix W. ​Orient: ​ SVD identifies axes of variation as 
min{8,3} = 3 pairs of orthogonal vectors, the orientation of each axis as it appears in the two views. Using these 
corresponding axes, the two sets of points superimpose onto a single spherical surface in a shared coordinate system 
(bottom center). ​Project: ​ SIGDA flattens the spherical merged image by projection onto a flat hyperplane, removing 
one dimension. ​Output matrix: ​ The result is an 11 x 2 matrix (11=8+3, 2 = min{8,3}-1). These points form a 2D 
drawing (lower left) of the cube plus the 3 column points. Extended edges (dashed) intersect at the column points to 
representing the parallel coordinate axis, confirming that SIGDA has created a 3-point perspective diagram, with the 
column points representing points at infinity on each original coordinate axis. 
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Normalization by projective decomposition.​ SIGDA therefore interprets each matrix entry twice: 
as a coordinate in a row vector, and as a coordinate in a column vector (Fig. 1). Acting as a kind 
of stereoscopic camera viewing the rows and columns from the origin, projective decomposition 
(as summarized above) iteratively rescales the row vectors to have length  and the column√n  
vectors to have length , “focusing” the vectors onto two focal spheres. The rows of the√m  
normalized matrix  identify “row points” forming an image of the data matrix on theW m  
sphere of radius  in , while the columns of  identify  ​“column points” forming an√n Rn W n  
alternative image of the same data on the sphere of radius  in . Each of these images√m Rm  
consists of a set of points on a hypersphere embedded in a higher-dimensional Euclidean space; 
the points do not vary by distance from the origin, only on their direction from the origin. 
Furthermore, both images are embedded in subspaces of at most  dimensionsink = m {m, }n  
(either more than  points are embedded in , or  points are embedded in ak Rk k  
higher-dimensional space, and therefore contained in the subspace spanned by the  vectorsk  
from the origin and to the  points themselves).k  

Ordination of axes. ​SIGDA determines the “relative orientation” between these two k
-dimensional sub ​spaces by singular value decomposition (SVD) ​[7] ​, obtaining  ​pairs ofk  
corresponding singular vectors. Each singular vector pair represents the same axis of variation 
among the data in  as it appears in the row image and the column image, allowing the originsW  
and singular vectors of the two subspaces to be equated and interpreted as a shared coordinate 
space ( ). The row and column points therefore occupy the spheres of radius  and ,Rk √n √m  
respectively, in .Rk  

Projection to a shared coordinate system. ​SIGDA projects the spherical row and column images 
onto the flat hyperplane a distance  from the origin along the principal axis of variation√k  
(corresponding to the first singular vector pair), with three effects: (1) elimination of the 
dimension along the principal axis of variation, and rescaling the row points from a curved 
surface with radius of curvature  and the column points from a curved surface with radius of√n  
curvature  ​to the same hyperplane, with the effect of (2) eliminating the difference in scale√m  
between the row points and the column points, and (3) placing all points into a geometrically flat 
space, one with a Euclidean geometry. The projected row and column therefore merge into a 
shared, -dimensional Euclidean coordinate system, one in which geometrical patterns(k )− 1  
have their familiar, Euclidean characteristics, simplifying their interpretation. The order of the 
axes of this space is inherited from the singular value decomposition of , and therefore inW  
order of decreasing singular value (as in PCA). 

SIGDA’s output. ​ We refer to these scale-invariant axes as , , …,  (EC standsEC1 EC2 ECk−1  
for “Euclidean Coordinate” (or “Espalier Coordinate”, see below). ECs are not simple linear 
combinations of the columns of , and are therefore not “components” as defined by PCAM  
despite the apparent similarities. Each EC axis is scale invariant; for analysis of relationships 
between these  scale invariant dimensions and an appropriate notion of scale, SIGDA(k )− 1  
uses the mean absolute value of each row (column) in  as the appropriate scale dimension.M  
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Mathematical and implementation details for projective decomposition.​ Projective 
decomposition separates the  data matrix  into a product of scaling×nm f D W D  A = a{ ij} =  A α β  
factors ( , the Frobenius norm of , and the positive row factors  and column factors  onf A A α β  
the diagonals of the diagonal scaling matrices  and , respectively) and the normalizedDα Dβ  

matrix , where  and each of its rows and columns are constrained W = w{ ij} = { aij

f α β( A i j)} W  

to have unit root-mean-square (RMS). Projective decomposition can be performed efficiently by 
standard matrix balancing algorithms ​[8,9] ​ ​adapted to balance RMS instead of row and column 
sums.  is invariant  to transposition and scaling of , and we therefore refer to  as theW A W  1

scale invariant​ matrix similar  to .A   2

Unlike PCA’s scale standardization, projective decomposition is not translation invariant: adding 
a value to any row or column of the data matrix in general alters the direction from the “camera” 
to some or all of the data points, yielding a different normalized matrix. Whenever the origin lies 
inside the convex hull of the row or column data points, the image SIGDA produces will 
conceptually surround a point at infinity (the observer) with the data, and appear “inside out”. 
Unless this is a desired effect, a constant may be added to the matrix to ensure the origin lies 
outside the data. Scale standardization also standardizes the observer’s view of the data, which is 
often considered an advantage; however the ability to control the observer’s view can resolve 
whether geometric properties are intrinsic to the data, i.e. independent of the chosen view. 

SIGDA Visualizations.​ Scale invariance is a central concept of projective geometry, the 
mathematics of perspective drawing. We illustrate that SIGDA produces perspective 
visualizations with the analysis of an  matrix representing the corners of a cube (Fig. 1,×38  
lower left; Supplementary Table S1). The merged image is a perspective visualization of the 
cube containing a point for each row and a point for each column; the column points, each of 
which represents a coordinate axis in the data matrix, become vanishing points (points at infinity 
along the coordinate axes) at which all lines parallel to the coordinate axes intersect. However, in 
general SIGDA will be used on data with many more than 3 dimensions, and this interpretation 
as a perspective drawing is therefore of limited utility. This connection with projective geometry 
is, however, at the heart of our “data camera” analogy. 

Analysis of a matrix whose rows contain weighted sums of three vectors , , and  (Figure 2,a b c  
Supplementary Table S2) illustrate some of SIGDA’s scale invariance properties. Note that the 
points for rows containing weighted sums (computed as labeled) lie on line segments connecting 
the points for the pair of vectors they combine in SIGDA’s results (Fig. 2b), but not PCA’s (Fig. 
2a). Geometrically, a line segment represents every weighted ​average​ of its endpoints, and a 
weighted average is a scale invariant representation of a class of weighted sums. Looking again 
at the PCA analysis, the points for weighted sums can be seen as displaced from collinearity in 

1Scaling: If ​A = f​A​ D​𝛼​ W D​𝛽​ and ​D ​𝛼​, ​D​𝜆​ are ​m×m ​ matrices with positive diagonals and ​D ​𝛼​, ​D​𝜆​ are ​n×n​ matrices with 
positive diagonals, then ​V = ​D​𝜆​ A D​𝜌​ = f​V​ D​𝜆𝛼​ W D​β𝛒​, where the diagonals ​λ α > 0​ and ​β 𝜌 > 0​ are positive. 
Transposition: ​A ​T ​ = f​A​ D​𝛽​T​ W​T ​ D​𝛼​T​. 
2Two ​m×n​ matrices ​A ​ and ​B ​ are said to be ​similar ​ if strictly positive scaling vectors ​γ​ of length ​m​ and ​𝜌​ of length 
n​ exist that satisfy the equation ​B = D ​γ​ A D​𝜌​, where as above ​D ​x​ = Diag{x} ​, the square matrix with diagonal ​x ​. 
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proportion total weight. These observations are consistent with complete separation of a scale 
dimension from  scale invariant EC axes by SIGDA, but retention of at least some scalek − 1  
effects in the  PC axes of PCA.k  
 

 
 
Figure 2. SIGDA represents scale invariant relationships geometrically.​ We analyzed an 11 x 6 matrix 
(Supplementary Table S2) containing 3 independent vectors (a, b, and c, open circles) and weighted sums (filled 
circles) of a and b (3 sums, dashed line; red), a and c (2 sums, dashed line; green), or b and c (3 sums, dashed line; 
blue). (A) Biplot of the first two principal components from a PCA analysis. PCA places the weighted sums at a 
distance from the associated vectors proportional to total weight, preserving scale relationships between rows 
despite standardizing column scales; roughly collinear points are not all linearly related. (B) Biplot of the first two 
dimensions (ECs) from the a SIGDA analysis. SIGDA places the point for each weighted sum directly between the 
points for the associated vectors, preserving the scale invariant linear relationships among all sets of sums. The rows 
for vectors a, b, and c were randomly generated, and no association between the row points and column points 
(x1-x6, gray) is expected or apparent. 

SIGDA’s behavior on a data matrix representing a four-dimensional nonlinear relationship, the 
Ideal Gas Law  (Fig. 3), illustrates a valuable property of scale invariant analysis.V  nTP = R  
To construct this dataset (Supplementary Table S3), we randomly generated  combinations0002  
of pressure , volume , and mass , and computed temperature according to the Ideal GasP V n  
Law, . Stereograms of PCA results (Fig. 3a) and SIGDA results (Fig. 3b) areT = Rn

P V  
qualitatively different. While the PCA analysis reflects uniform sampling of a rectangular 
volume of pressure, volume and mass values, the SIGDA analysis is interpretable as a 3D 
perspective visualization: a saddle surface in three scale-invariant dimensions, bounded by points 
at infinity along the , , , and  axes ​. The saddle shape is indicative of the algebraic formP V n T  
of the Ideal Gas Law: orthogonal (additive) quadratic terms  and  with oppositeP × V n × T  
signs, , where the formal constants  represent scale invariance. P V  nTα − β = 0 , βα   
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Figure 3. SIGDA reveals the scale invariant geometry of nonlinear relationships.​ We generated  random000  2  
sets of pressure ( ), volume ( ), and mass ( ) values and computed the corresponding temperature ( ) from the P  V  n  T  
Ideal Gas Law,   (SI units;  L atm mol​-1 ​ K ​-1 ​) to produce a  matrix P V /Rn  T =   0.082057  R =  000×4  2  
(Supplementary Table S3). Stereo image pairs of the first three dimensions produced by PCA (A) and SIGDA (B) 
contain a point for each row, colored by temperature on a logarithmic scale. The SIGDA images also contain a point 
representing each variable (B, black points). The PCA triplot (A) shows that temperature is associated with PC​3​. 
SIGDA (B) produces a smooth saddle surface ( ), with the point for each variable a point at infinity z = x2 − y2  
corresponding to high values of that variable (compare colors, location of ). As annotated, this saddle directly T  
represents the algebraic structure of the Ideal Gas Law, .C3 V T  E = P − n  

Espalier plots. ​ SIGDA records an explicit scale dimension, the mean value within each row and 
column. In prior work ​[10] ​, we defined an Espalier plot to have a scale independent horizontal 
axis and scale as the vertical axis; the name refers to garden espaliers (trellises) used to simplify 
the complex, inaccessible branching structure of fruit trees and other plants readily accessible on 
a two-dimensional, vertical surface. 

Genetic marker data. ​We conceived of SIGDA during analysis of single nucleotide variant 
(SNV) data from the 1000 Genomes Project’s phase 3 cohort ​[4] ​. This data set comprises whole 
genome sequences, assembled, corrected, and filtered by rigorous comparison of multiple data 
sources and diverse experimental methods, for 2504 DNA samples from 26 annotated 
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populations, including over 20 million biallelic autosomal SNVs with 5 or more observations of 
the minor allele (MAF >= 5/5008 = 0.1%). We randomly labeled these SNVs with a number 
from 1 to 50, creating 50 partitions of approximately equal size (414,652 to 417,011 SNVs), and 
formed a sparse genotype matrix for each subset. Each matrix entry is the count (0, 1, or 2) of 
occurrences of the minor allele for a SNV observed in each DNA sample; in subset 01, 11.7% of 
the genotype matrix entries were nonzero. We focused on analysis of subset 01; the remaining 
subsets were reserved for robustness analysis (below). 

The typical preparation of genetic markers for PCA analysis of population structure retains only 
single nucleotide polymorphisms (SNPs, SNVs with MAF > 5%) that are considered 
“ancestry-informative” by an information-theoretic criterion ​[11] ​. However, since a genotype 
matrix contains counts of observed minor alleles, MAF corresponds to SIGDA’s scale axis: two 
alleles are counted per sample, and the average value in a column is therefore twice the MAF of 
the corresponding SNV. We therefore excluded only SNVs with MAF too low to accurately 
estimate (fewer than 5 minor alleles observed). Our focus in this paper is not on efficient use of 
marker data; it is on SIGDA as a general exploratory data analysis tool. 

Results 
 
We evaluated SIGDA’s utility for population structure analysis by comparing PCA and SIGDA 
analyses of a large set of genetic variants: 415724 SNVs data from the 1000 Genomes Project’s 
phase 3 cohort (subset 01; see Methods). The PC​2​ - PC ​1​ biplot (PCA, Fig. 4A) and the 
corresponding EC​2​ - EC​1​ biplot (SIGDA, Fig. 4B) of the 2504 samples (dots), colored by 
annotated population (see legend) are broadly similar: both organize most samples near the 
corners or edges of an AFR-EAS-EUR triangle typically visible in PCA visualizations of 
worldwide population structure. The samples farther into the triangle’s interior on both biplots 
are generally from populations acknowledged to be admixed (the AMR populations and AFR 
populations ASW and ACB), but note that the SAS populations are also within the triangle, and 
are simply separated from the other continental populations on axes with lower singular values.  
 
Two notable differences between these PC biplots and EC biplots with points representing the 
samples are (a) the position of the origin and (b) the relative location of EAS and AFR samples 
on PC ​2​ (AFR < EAS < EUR) versus EC ​2​ (EAS < AFR < EUR). Together, these differences cause 
AFR, EUR, SAS, and EAS samples to segregate to different quadrants of the SIGDA plot, while 
AFR is located on the PC​1​ axis and quadrant 4 of Figure 4A contains both EUR and SAS. The 
four continental populations are therefore partitioned by EC thresholds at 0 in the EC biplot, but 
not by PC thresholds at 0. In subsequent dimensions (not shown), the order and degree of 
separations among the 26 annotated populations remain similar through the first 5 to perhaps as 
many as 10 dimensions (depending on the standards applied), then increasingly diverge . Thus, 3

SIGDA provides roughly the same analysis of population structure provided by PCA, with some 

3 A more thorough analysis of these patterns has been performed and will be described in a future version of this 
manuscript. For now, we only claim that the nature of the differences in subsequent dimensions are similar to those 
observable in the biplots we have shown. 
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differences in the order of separations between closely related populations in the context of a 
diverse, worldwide cohort.  
 

 
Figure 4. Organization of rows (samples).​ Both PCA and SIGDA produce coordinates for rows (samples) as well 
as columns (SNVs). In PCA, row coordinates are interpreted as the location of a geometric point for each sample, 
but column coordinates are interpreted as the direction of a line through the origin (axis) for each SNV; in SIGDA 
both row coordinates and column coordinates are interpreted as geometric points. The plots above show a point for 
each sample at its corresponding row coordinates; the column coordinates, which would be shown as vectors in a 
traditional PCA plot, are too numerous and are omitted for clarity. These plots are therefore a traditional PCA biplot 
(left) of the 2,504 samples of the 1000 Genomes cohort shows one point for each row (sample), and the 
corresponding SIGDA biplot (right). Each sample is colored by population (legend), and spatial organization of 
samples reflects population structure. Population structure is broadly similar between the two approaches on these 
first two axes, with subtle differences. SIGDA, but not PCA, separates AFR, EUR, SAS, and EAS into different 
quadrants. SIGDA also produces sharper linear structures. 
 
SIGDA also provides EC coordinates and a scale coordinate for each column (variant; see Figure 
5 A,B,D). In this SNV data, and under the simplifying assumption that the more frequent (major) 
allele is ancestral while the less frequent is derived, SIGDA’s scale values are directly 
proportional to variant minor allele frequency (MAF). As discussed above (see Methods), MAF 
is a proxy for allele age, and to the extent that EC coordinates reflect elements of population 
structure (the previous paragraph demonstrated that they do in a manner similar to PC 
coordinates), an Espalier plot therefore depicts an aspect of population structure specific to the 
chosen EC plotted against a proxy for evolutionary time. We therefore examined the meaning of 
a population structure Espalier plot in more detail. 
 
It is not possible to make a direct comparison between Espalier plots produced by these two 
methods: PCA neither singles out scale as a separate dimension, nor are principal components 
scale-invariant dimensions. Espalier plots are specific to SIGDA’s analysis methodology. We 
nevertheless compared plots of variant loadings against MAF (Figure 5C) as the most direct 
analogue of SIGDA’s Espalier plots provided by PCA. 
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Figure 5. Organization of columns (SNVs).​  Both PCA and SIGDA produce coordinates for columns (SNVs) as 
well as rows (samples). In a SIGDA biplot (upper right), both rows (large points; located and colored as in Figure 4) 
and columns (small points) are represented as points in the same coordinate system (Espalier Coordinates, ECs). 
Column points have been added to the PCA biplot (upper left) for comparison; in PCA, these values are interpreted 
as loadings (weights) that relate the new component axes (PCs) to the original column axes (SNVs). Thus, in PCA 
the column coordinates correspond to geometric vectors rather than points as they are shown here. The color of each 
column point representing a variant (all four plots) is determined by the distribution of the minor allele of the 
corresponding SNV among the five continental areas (AFR, AMR, EAS, EUR, and SAS; see Methods). Column 
point colors are computed so that a SNV whose minor alleles are only observed in AFR samples is pure red (R=1, 
G=0, B=0); only observed in EAS is pure green (R=0, G=1, B=0); only observed in EUR, pure blue (R=0, G=0, 
B=1); only observed in AMR, yellow (R=1, G=1, B=0); only observed in SAS, purple (R=1, G=0, B=1). The lower 
plots show the organization of SNVs by PCA (lower left) and SIGDA (lower right) on PC​2​ (x-axis, shared with 
upper plot) by minor allele frequency (y-axis, logarithmic scaling). Rare minor alleles are low on the y-axis, 
common minor alleles are above. The dashed line indicates a minor allele frequency of 5%; SNVs with a frequency 
below 5% are often excluded from population structure analyses by PCA. Only the EC or PC coordinate of the rows 
are indicated in the lower plots (vertical lines near x-axes; compare to dots of same color in upper plots).  
 
In the Espalier and Espalier-like plots (Fig. 5D, 5C) the position of each sample along the x-axis 
is shown (colored vertical lines near the x-axis) in the same population-specific colors shown in 
the color bar accompanying Figure 4. The points representing SNVs, which do not belong to 
annotated populations, are assigned roughly corresponding colors according to the frequency 
with which the minor allele was observed among individuals from the five continental areas 

10 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 3, 2018. ; https://doi.org/10.1101/431585doi: bioRxiv preprint 

https://doi.org/10.1101/431585


Scale-invariant genometric data analysis (SIGDA) 
September 2018 

(AFR, AMR, EAS, EUR, and SAS) as an <R, G, B> color value determined as follows: R is the 
fraction of the SNV’s minor alleles observed among samples from AFR, AMR, or SAS; G is the 
fraction among samples from AMR or EAS; and B is the fraction among samples from EUR or 
SAS. This has the effect that pure red (<1, 0, 0>) corresponds to AFR samples alone, and 
likewise yellow (<1, 1, 0>) represents AMR, green EAS, blue EUR, and purple SAS, with SNVs 
observed on multiple continents assigned intermediate colors. 
 
These two color schemes expose scale-invariant (vertical) patterns in the SIGDA Espalier plot 
(Fig. 5D): samples from each continent are vertically aligned with monochromatic “cones” of 
rare variants whose minor alleles are only observed among samples from the aligned continent, 
confirming that the SNVs are organized horizontally by population information. It is 
well-accepted that MAF provides a rough estimate of allele age (how long a derived allele has 
been segregating in a population ​[6] ​, with rare variants (more precisely, rare derived alleles) 
expected to have arisen more recently than common variants. Thus, the vertical dimension in the 
Espalier plots shown here, MAF, can be considered a proxy for time. We defer further 
interpretation of the vertical and diagonal patterns apparent in Fig. 5D to the Discussion section. 
 
The EC values SIGDA provides for each individual variant support an analysis similar to a 
previously described “chromosome painting” strategy ​[12] ​, but with MAF as an additional 
dimension. As a proof of principle, we therefore identified the minor alleles present on 
Chromosome 2 of selected individuals, and visualized them in the context of the full variant 
sample (Figure 6). In accordance with our observations in Figure 5, we painted the chromosome 
with only rare variants (MAF < 5%; lower 3 figures), with the corresponding Espalier plots for 
reference (upper figures). We found that different ECs provided separation of rare variants 
apparently inherited from distinct genetic backgrounds by an admixed individual (NA19657 
from population MXL), whose genome contains sets of rare variants shared predominantly 
among distinct genetic backgrounds (red, African ancestors; yellow, likely Native American 
ancestors; blue, European ancestors). We note that the same kind of analysis is not 
well-supported by PC coordinates produced by PCA, as variant loadings are confounded 
mixtures of scale and population-related information. We note that the sample of SNVs analyzed 
here are only 2% of those available, and even restricting variants to MAF < 5%, this analysis 
could be done at 50x the resolution along the chromosome if all available variants were used. 
 
In addition to the direct application of providing information about the location and size of 
chromosomal segments on Chromosome 2 this individual likely inherited from different 
ancestral populations, Figure 6 clearly demonstrates the time-dependent, multi-dimensional 
nature of population structure, as well as the value of accounting for the age of the derived allele, 
even through a proxy such as minor allele frequency, in the assessment of population structure 
via genetic variation. 
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Figure 6. “Chromosome painting” visualization of admixture in a single individual along Chromosome 2. 
Variants for which MXL sample NA19657 bears the minor allele (colored points) are shown on SIGDA’s first three 
principal axes (EC​1​, EC​2​, EC​3​), providing a map of the differing origin of chromosomal segments in a recently 
admixed individual. All analyzed variants are shown for context (gray points). The color of each variant encodes the 
relative association of the minor allele with individuals from the different continental areas (see Methods), minor 
alleles found only in AFR individuals are red; exclusively AMR alleles are yellow; EAS, green; EUR, blue; SAS, 
purple. These colors are broadly consistent with thematic organization of colors assigned to individuals in each 
population (colored vertical bars near the x-axis, upper plots). ​Upper plots: ​ all analyzed variants are shown by minor 
allele frequency (MAF, y-axis). ​Lower plots: ​ recent variants (MAF < 5%) on Chr. 2 are shown by position along the 
chromosome (y-axis). Each EC shown correlates with a historical separation of populations: EC​1​ (left) correlates 
with the out-of-Africa event (out-of-AFR < AFR); among the non-AFR populations, EC​2​ (center) correlates with 
separation of the indo-European populations (EUR, SAS) from EAS;  EC​3​ (right) correlates with separation within 
the indo-European populations (AMR+EUR vs. SAS). In the lower plots, horizontal position correlates with alleles 
common in AFR, EUR, and AMR (colors) in contiguous segments. Diagonal patterns (upper plots) represent 
variants present in a chromosomal segment that is common in a (source) population, but rare in a (destination) 
population. In such a segment, common variants (high MAF) are present in many individuals in the source 
population, but few in the destination population; rare variants (low MAF) were present in a smaller fraction of the 
source population but in the same number of recipients in the destination population as common variants in the same 
chromosomal segment, and are therefore more equally represented in the source versus destination populations, 
leading to a gradual shift in horizontal position correlated to MAF. 
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Discussion 
We have introduced SIGDA, a general-purpose, scale-invariant approach to exploratory data 
analysis of numerical matrix data more similar to PCA, CA, and other geometric ordination 
techniques ​[13–16] ​ than to other dimensionality reduction techniques ​[17–21] ​. This method 
applies directly to non-negative data matrices, including but not limited to contingency tables, 
genetic marker data, measurements of absolute physical quantities such as pressure, temperature, 
volume, mass, and a wide variety of other scientific measurements. We illustrated SIGDA’s 
behavior and usefulness on genetic marker data, an excellent example of high-dimensional data 
set contain a rich set overlapping and hierarchical patterns with direct interpretations. We have 
applied SIGDA to a variety of other measured datasets, and have observed that the advantages of 
SIGDA highlighted here are relevant in many different settings. 

The goal of exploratory data analysis is to separate and expose for analysis the patterns contained 
in a set of data early in the analysis of the data, when those patterns may not yet be known. 
While PCA, CA, and SIGDA use similar mathematical tools for this common purpose, we 
believe a brief comparison of the goals of each method will clarify the settings in which SIGDA 
can be most effective. Briefly, PCA was originally introduced (by Pearson ​[1] ​ and Hotelling ​[2] ​) 
as a method for aligning coordinate axes along mutually independent linear trends in the data. 
Geometrically, PCA treats the rows of a data matrix as points, and both the columns and the 
linear trends (principal axes or components) as lines. In contrast, CA ​[3] ​ is frequently used in 
ecology to compare two categorizations, one into rows and one into columns, of a set of counted 
observations (a contingency table). CA represents each row and each column as a geometric 
point in an abstract space; points representing corresponding categories have corresponding 
coordinates, while contrasting categories are separated to distant regions of space. 

SIGDA synthesizes ideas present in CA and PCA, bringing the geometric correspondence 
strategy of CA to the broader class of datasets typically analyzed with PCA. SIGDA achieves 
this synthesis through its focus on scale and scale invariance, which is embodied in 
normalization by projective decomposition. SIGDA also takes advantage of connections between 
scale invariance and projective geometry to project the correspondences among and between 
rows and columns into a more familiar Euclidean space, greatly increasing the relevance of our 
geometric intuition and providing an interpretation of the resulting visualizations as 
high-dimensional perspective drawings. 

Each of the examples we have provided illustrate novel, unique analytical capabilities provided 
by SIGDA: multipoint perspective visualization of high-dimensional data; visualization of 
geometric, rather than statistical relationships; enhanced interpretation of row-row, row-column, 
and column-column relationships; and a familiar geometric framework to guide interpretations. 
In population structure analysis, where PCA is already a standard method, we have highlighted 
two particular advantages: (1) by placing the column points in the same coordinate system as the 
row points, SIGDA organizes the SNVs by population in a manner directly comparable to the 
organization of samples, allowing the population information carried by SNVs to be interpreted 
in the same way population information for samples is currently understood; and (2) improving 
the interpretability of both scale-independent population information (populations which endure 
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over time) and the scale dependence of population information (changes in population structure 
over time) by separating scale from scale-independent axes. 

It is important to note that both of these advantages generalize to other settings: placing rows and 
columns in the same coordinate system enriches our ability to interpret both irrespective of the 
field from which the data is drawn, and it is difficult to imagine a dataset in which our notion of 
scale, the average values in each row and column, will fail to represent some directly 
interpretable aspect of the phenomenon under study. We therefore anticipate that SIGDA will be 
a useful, general purpose approach to exploratory data analysis. 
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Supplementary Materials: 

Table S1: Coordinates of a cube with edges aligned to the coordinate axes. 
 

“x” “y” “z” 

“1”  4  3  2 

“2” 14  3  2 

“3”  4 13  2 

“4” 14 13  2 

“5”  4  3 12 

“6” 14  3 12 

“7”  4 13 12 

“8” 14 13 12 
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Table S2: Linear combinations of three 6D vectors. 
 
         “x1”  “x2”  “x3”  “x4”  “x5”  “x6” 

“a”     0.413 0.501 0.570 0.041 0.470 0.934 

“b”     0.009 0.447 0.029 0.489 0.237 0.007 

“c”     0.819 0.904 0.141 0.325 0.811 0.996 

“a+3b”  0.440 1.842 0.657 1.509 1.180 0.955 

“2a+b”  0.834 1.449 1.169 0.572 1.177 1.875 

“a+b”   0.422 0.948 0.599 0.531 0.707 0.941 

“4b+c”  0.856 2.692 0.257 2.281 1.758 1.025 

“b+c”   0.828 1.351 0.170 0.814 1.048 1.003 

“b/2+c” 0.824 1.128 0.156 0.569 0.930 1.000 

“3a+c”  2.057 2.408 1.851 0.449 2.222 3.797 

“a/3+c” 0.956 1.071 0.331 0.338 0.968 1.307 
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Table S3: Simulated data conforming to the Ideal Gas Law. 
 
See PVnRT.txt at https://github.com/PriceLab/SIGDA. 
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