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Abstract

Motivation: Although secondary structure predictors have been de-
veloped for decades, current ab initio methods have still some way to go
to reach their theoretical limits. Moreover, the continuous effort towards
harnessing ever expanding data sets and more sophisticated, deeper Ma-
chine Learning techniques, has not come to an end.
Results: Here we present Porter 5, the latest release of one of the best
performing ab initio secondary structure predictors. Version 5 achieves
84% accuracy (84% SOV) when tested on 3 classes, and 73% accuracy
(77% SOV) on 8 classes, on a large independent set, significantly outper-
forming all the most recent ab initio predictors we have tested.
Availability: The web and standalone versions of Porter5 are available
at http://distilldeep.ucd.ie/porter/.
Contact: gianluca.pollastri@ucd.ie

1 Introduction

The prediction of protein Secondary Structure (SS) has been a central
topic of research in Bioinformatics for many decades [1]. In spite of this,
even the most recent and sophisticated ab initio SS predictors are not able
to reach the theoretical limit of three-state prediction accuracy (88-90%),
while only a few predictors are currently able to generate eight-state SS
predictions.

2 Approach

Similarly to its previous versions [2], Porter 5 is based on ensembles of
Bidirectional Recurrent Neural Networks (BRNN). Our implementation
consists of two similar cascaded stages, both of which contain a classic
BRNN layer followed by a convolutional layer. We have determined the
hyperparameters of the system through extensive testing in five-fold cross-
validation. The resulting optimal hyperparameters have been used to train
the final predictor on the full training set, while the results we report are
obtained on a completely independent set. The novel elements of Porter
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5 are the use of HHblits [3] in its pipeline alongside PSI-BLAST [4], a
more informative encoding of the inputs, larger models, deeper training
and the reliance on a larger training set than in the previous versions.

3 Methods

3.1 Datasets

The selection and preparation of datasets to adopt has a central role in any
machine learning method [5]. To build the training set we started from the
Protein Data Bank (PDB) [6] from December 11, 2014 and redundancy-
reduced it at a 25% sequence identity threshold. For testing purposes we
started from the PDB released on June 14, 2017, redundancy-reduced it
at a 25% sequence identity threshold against the training set, and then
against itself to remove internal redundancy. Finally, we removed all pro-
teins with at least 10 undetermined amino acids (AA) from both datasets.
The training set contains 15,753 proteins and the test set 3,154 proteins,
among the largest ever used to either train or test a SS predictor to the
best of our knowledge.

3.2 Evolutionary information

The second key aspect of any SS predictor developed since the early 90’s is
harnessing evolutionary information [7] in the form of profiles or position-
specific substitution matrices extracted from multiple aligned sequences.
PSI-BLAST [8] has been widely used to find remote homologues, and a key
component of Porter since its first release [2]. More recently, HHblits [3]
has distinguished itself for fast iterations and high quality results. Porter
5 relies on both algorithms, iterating them 3 times with an e-value of
0.001. PSI-BLAST is run on the Jun 3, 2016 version of UniRef90 [9].
HHblits is run on the February, 2016 version of UniProt20. Our empirical
tests show similar results when a model is trained with either PSI-BLAST
or HHblits, but significantly improved results when both are used, either
via an ensemble or by concatenating the resulting profiles.

3.3 Input Encoding

Although the size of the training set is large, our experiments confirm a
positive correlation between number of alignments found, and quality of
the prediction [10]. We do not limit the number of alignment reported by
either PSI-BLAST or HHblits, resulting in the generation of alignments
with an average of ˜14,000, and ˜1,300 proteins with PSI-BLAST, and
HHblits, respectively. We encode the alignments as frequency profiles. In
particular we have 20 frequencies for the standard AA, 1 frequency for
unknown or non-standard and one for gaps. Frequencies for AA and gaps
are computed separately, that is: AA frequencies are computed ignoring
gaps, while the gap frequency is equal to the total number of gaps di-
vided by the total number of sequences aligned. Aligned sequences are
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weighed by the information they carry with respect to the unweighed fre-
quency profile [11], which in our test results in a significant performance
improvement. Moreover, the frequency for the AA appearing in the query
sequence is artificially ”clipped” to 1. This does not reduce the infor-
mation of the profile, as any one of the values in the initial (unclipped)
profile is equal to 1 minus the sum of the others, while encoding into the
input the identity of the query sequence. We have found this simple trick
to be very beneficial in our tests, leading to significant performance im-
provements. We also build a version of the predictor which outputs the 8
SS classes produced by the DSSP program [12]. In this case three more
numbers, representing the output of the three-state Porter 5, are added
to the input.

3.4 Model and Training

We conducted preliminary experiments to identify optimal hyperparame-
ters using only the training set in 5-fold cross-validation. In this phase we
also extensively tested many types of neural network, including convolu-
tional networks of increasing depths and simple windowed neural networks
with up to 17 hidden layers, but our two-stage BRNN/CNN model [2]
performed over 1% better than any of the alternatives we tried. The hy-
perparameters selected for the BRNNs trained on PSI-BLAST appeared
close to optimal for both the BRNN trained on HHblits, and the BRNN
trained on the concatenation of the inputs created with HHblits and PSI-
BLAST. Only a slight increase of the hyperparameters was needed when
switching from three-state to eight-state SS. Purely based on the training
set we settled on an ensemble of 7 BRNN: 3 trained on PSI-BLAST, 3
trained on HHblits, and 1 trained on both (44 concatenated inputs rather
than 22). These 7 BRNN were then trained on the full training set (on
either three-state, or eight-state targets). The relatively small scale of
the ensemble and the modest size of the individual models (on average
39k free parameters for the 3-class networks, 58k for 8 classes) ensure high
speed at prediction time without affecting the accuracy or SOV score (Ta-
ble 1). The test set was only used at the final stage, to obtain unbiased
performance estimates for Porter 5 and other recent SS predictors [5].

4 Results

We tested Porter 5 against Porter 4 [13], SPIDER3 [14], SSpro 5.2 [15],
PSIPRED 4.01 [16], RaptorX-Property [17] and DeepCNF-SS [18] on the
test set we created, containing 3,154 proteins. However we were limited in
this by the fact that SPIDER3 rejects proteins containing undetermined
(X) amino acids (562 in the test set contain at least one), and that when we
use the parameters required by SPIDER3, either PSI-BLAST or HHblits
do not return a valid result for 129 proteins. Because of this we report
performance results on two sets: one where we exclude the proteins on
which we could not obtain a valid response from SPIDER3, containing
2,463 entries in total (Table 1); the full set of 3,154 proteins (Table 2) on
which SPIDER3 is not assessed.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 5, 2018. ; https://doi.org/10.1101/289033doi: bioRxiv preprint 

https://doi.org/10.1101/289033


Method Q3 SOV’99 SOV refine Q3 SOV’99 SOV refine
per AA per AA per AA per protein per protein per protein

Porter 5 83.81% 80.41% 75.73% 84.32% 81.05% 76.45%
SPIDER3 83.15% 79.43% 74.68% 83.42% 79.79% 75.07%
Porter5 (HHblits only) 83.06% 79.49% 74.71% 83.68% 80.26% 75.58%
SSpro 5 with templates 82.58% 78.54% 74.02% 83.94% 80.29% 76.15%
PSIPRED 4.01 81.88% 77.36% 72.33% 82.48% 78.22% 73.31%
RaptorX-Property 81.86% 78.08% 72.99% 82.57% 78.99% 74.03%
Porter 4 81.66% 78.05% 72.89% 82.29% 78.61% 73.55%
SSpro 5 ab initio 81.17% 76.87% 72.03% 81.10% 76.92% 72.12%
DeepCNF 81.04% 76.74% 71.47% 81.16% 76.99% 71.7%

Table 1: Performances on the set for which SPIDER3 generates predictions,
sorted by Q3 accuracy.

Method Q3 SOV’99 SOV refine Q8 SOV8’99 SOV8 refine
Porter 5 84.19% 81.19% 76.72% 73.02% 69.91% 72.09%

Porter 5 (HHblits only) 83.39% 80.19% 75.59% 71.8% 68.87% 71.16%
SSpro 5 with templates 82.62% 79% 74.58% 71.91% 68.68% 70.72%

PSIPRED 4.01 82.06% 77.83% 72.95% N.A. N.A. N.A.
RaptorX-Property 82.04% 78.57% 73.66% 70.74% 67.59% 69.65%

Porter 4 82% 78.85% 73.89 N.A. N.A. N.A.
DeepCNF 81% 79.96% 71.84% 69.76% 66.42% 68.5%

SSpro 5 ab initio 80.7% 76.85% 72% 68.85% 65.33% 67.54%

Table 2: Q3/Q8 accuracy and SOV’99 and SOV refine score per AA on the full
test set.

Porter 5 is the most accurate predictor in our tests with 3-class accu-
racy just shy of 84% on the smaller testing set and 84.2% on the larger set,
0.7% better than SPIDER3, 1.2% and 1.6% better than SSpro with tem-
plates, and at least 2% more accurate than all the other predictors. Porter
5 is also very fast compared to the alternatives given the relatively small
size of its models and the fact that it is built on in-house, heavily pro-
filed code. For instance, once the alignments by PSI-BLAST and HHblits
are present, Porter 5.0 runs 2 orders of magnitude faster than SPIDER3,
although SPIDER3 is able to predict backbone angles, contact numbers,
and solvent accessibility at the same time as secondary structure. To fully
exploit its speed, we also assessed, and make available, a version of Porter
5 which is roughly three times faster depending on HHblits only.

It should be noted that our test set is redundancy reduced only against
our training set, so our assessment of other recent SS predictors might be
somewhat optimistic, as the test set may contain proteins similar to those
they were trained on. Porter 5 is the best three-state and eight-state SS
predictor according to all the measures observed on this set. Porter 5 with
HHblits only performs better than SSpro 5 with templates, at least 1.2%
better than RaptorX-Property (the only other predictor based on HHblits
only), and has similar performances to SPIDER3.

We have also analysed the performance of Porter 5 separately on
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Method Q3 SOV Q8 SOV
NMR 81.61% 78.23% 67.52% 70.71%
X-ray 84.65% 85.08% 74% 77.93%

Table 3: Porter 5 on NMR vs X-ray crystallography proteins

proteins resolved by Nuclear Magnetic Resonance (NMR) and by X-ray
crystallography. NMR proteins are predicted at a significantly lower Q3
(81.6%), possibly because of their different statistics (e.g. average length
and composition) or less certain determination of SS. The X-ray only sec-
tion of the test set, which is roughly 90% of the total, is predicted at an
average Q3 of 84.65% (Table 3).

5 Conclusion

We have built a state-of-the-art 3- and 8-state predictor of protein SS,
Porter 5. In our tests it improves by roughly 2% accuracy on its previous
version, and outperforms all the most recent predictors of secondary struc-
ture, including a template based one. Porter is freely available as a web
server at http://distilldeep.ucd.ie/porter/ and also as a standalone pro-
gram at the same address, alongside with all the datasets, and alignments
generated.
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