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Abstract: 

Detecting object boundaries is crucial for recognition, but how the process unfolds in visual cortex 

remains unknown.  To study the problem faced by a hypothetical boundary cell (BC), and to predict 

how cortical circuitry could produce a BC from a population of conventional “simple cells” (SCs), we 

labeled 30,000 natural image patches and used Bayes’ rule to determine how an SC should affect a BC 

depending on its offset in receptive field position and orientation.  We identified three types of cell-cell 

interactions: monotonic excitatory and inhibitory, with various thresholds, slopes, and amplitudes, and 

a spectrum of non-monotonic (U-shaped) interactions. Using simple models we show a common 

cortical circuit motif consisting of monosynaptic excitation and disynaptic inhibition – an arrangement 

we call "incitation" – can produce the entire spectrum of SC-BC interactions found in our dataset.  

Moreover, we show that the synaptic weights that parameterize the incitation circuit can be learned by 

a simple (1-layer) gradient descent learning rule.  We conclude that trainable incitatory 

interconnections may be a general computational mechanism used by the cortex to help solve difficult 

natural classification problems. 
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Significance statement: 

Simple cells in primary visual cortex (V1) respond to oriented edges, and have long been supposed to 

detect object boundaries, yet the prevailing model of a simple cell -- a divisively normalized linear filter 

-- is a surprisingly poor-performing boundary detector.  To understand why, we analyzed image 

statistics on and off object boundaries, allowing us to characterize the neural-style computations 

needed to perform well at this difficult natural classification task.  We show that a simple decoding 

circuit known to exist in V1 is easily capable of computing a high-quality boundary probability signal 

from a local population of simple cells.  Our findings suggest a new and more general way of 

conceptualizing cell-cell interconnections in the cortex. 

 

 

Main text:  

 
The primary visual cortex (area V1) is a complex, poorly understood, multi-purpose image processing 

computer optimized to extract information from natural images – which are themselves complex, 

poorly understood, multi-purpose signals.  Thus, understanding how V1 operates presents a 

challenging reverse engineering problem. A longstanding hypothesis is that V1 cells somehow 

participate in object boundary detection, a core process in biological vision (Biederman, 1987; Gilbert 

& Wiesel, 1990; Heydt & Peterhans, 1989; Hubel & Wiesel, 1962a; Kapadia, Ito, Gilbert, & Westheimer, 

1995a) that is crucial for the functions of both ventral and dorsal streams (Biederman, 1987; Hoffman, 

2000; Rust & Dicarlo, 2010; Theys, Romero, van Loon, & Janssen, 2015). However, little progress has 

been made in refining or testing this hypothesis, in part due to our lack of understanding of the 

structure of natural object boundaries, and particularly, what distinguishes boundaries from non-
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 3 
boundaries.   This uncertainty has made it difficult to form specific computational hypotheses as to 

how V1 circuits could perform this particular behaviorally-relevant classification task.  Previous work 

has analyzed natural image statistics to determine how local boundary segments are arranged in 

images, and how these arrangements relate to human contour grouping performance (W. S. Geisler, 

Perry, Super, & Gallogly, 2001; Sigman, Cecchi, Gilbert, & Magnasco, 2001). However, no study has yet 

addressed the issue of how boundary elements should ideally be detected in the first place 

(independent of the brain), nor what types of neural circuits are capable of doing so. With the goal to 

better understand the V1 computations underlying object boundary detection (Figure 1A), we began 

with a known cell type – orientation-tuned “simple cells” (as defined by Hubel & Wiesel, 1962b), and 

typically modeled as divisively normalized oriented linear filters Carandini & Heeger, 2012) – and asked 

how the responses of a population of simple cells (SCs) of all orientations, whose receptive fields (RFs) 

densely cover a region of the image, should be combined to produce a “boundary cell” (BC) whose 

response signals the probability that an object boundary is present within its RF (Figure 1B).  When 

framed in this way, Bayes’ rule tells us what data to extract from natural images to obtain an answer to 

the question (Figure 1C). In a previous study (Ramachandra & Mel, 2013), we noted that under an 

important simplifying assumption (i.e. class conditional independence; see methods for detailed 

discussion), SC-BC interactions are captured by the log-likelihood ratios (LLRs) embedded in Bayes’ rule 

(colored expressions in Figure 1C), which represent the evidence that a given simple cell provides 

about the presence of an object boundary within the BC’s receptive field (Figure 1D). We found that 

that the SC-BC interactions were diverse, and in some cases involved mixed excitatory and inhibitory 

effects. However, since only a small number of neighboring cells were analyzed in that study, and the 

results were heterogeneous, we could not come to general conclusions about types of interactions 
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 4 
between cells needed to compute boundary probability, making it difficult to evaluate or compare 

candidate neural mechanisms.  

To develop a more complete picture of the cell-cell interactions needed for natural boundary 

detection, in this study we collected and labeled 30,000 natural image patches, with scores ranging 

from 5, indicating high confidence that a boundary was present at a “reference location” (RL, indicated 

by a dashed box in Figure 1A), to 1, indicating high confidence that a boundary was not present at the 

RL.  From these labeled patches, we histogrammed oriented linear filter values (representing simple 

cell responses) separately in “yes” (scores of 4-5) and “no” (scores of 1-2) categories (red and blue 

histograms in Figure 2A, respectively) and computed LLRs for all 300 neighboring simple cells at 12 

orientations on a 5x5 pixel lattice centered on the RL.  Examples of LLRs are shown in Figure 2B, and 

the full set is shown in Figure 2C grouped across 5 horizontal shifts at each orientation and vertical 

position.  Given that neurons do not fire at negative rates, the curves to the left and right of the origin 

in each plot can be considered as the LLRs for two distinct simple cells in an opponent pair, that is, with 

identical RFs but with their ON and OFF subfields reversed.  

 For many neighboring cells, the SC-BC interaction was monotonic, that is, as the SC’s visually 

driven response increased, the evidence it provided to the BC, whether positive or negative, increased 

monotonically in strength. In other cases, however, the LLRs representing SC-BC interactions were non-

monotonic “bumps” for one of the two simple cells in each opponent pair.  This pattern was observed 

most often for neighbor cells whose RFs overlapped heavily with the RL (i.e. in the central three 

columns in Figure 2C). When we generated LLRs for simple cells of different scales and shapes (2x6, 

4x6, 4x8, and 6x8 pixel filters) we found a very similar pattern of results, suggesting that the spectrum 

of SC-BC interactions that includes both monotonic excitatory and inhibitory as well as non-monotonic 

effects, may be a general feature of the boundary detection problem in natural images (Figure 3).  
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To gain intuition about the bump-shaped interactions, wherein the evidence that a simple cell provides 

to a boundary cell grows at first more positive and then less positive (or more negative) as the SC’s 

firing rate increases, we analyzed natural image patches eliciting low, medium, and high responses 

from a specific neighboring filter, for the same (fixed) filter response at the RL (Figure 4). Patches 

eliciting low neighbor responses often contained disorganized, smooth, or defocused surfaces with low 

oriented energy (e.g. sky), and rarely contained a boundary at the RL, leading to low or negative 

"evidence" from the neighbor cell. Patches eliciting high neighbor responses often contained a 

boundary through the neighbor’s receptive field, rather than at the RL, also leading to low or negative 

evidence values from the neighbor cell. Only in the medium range, where the neighbor cell’s response 

suggests that the patch contains some structure, but is not so strong as to “steal” the boundary from 

the RL, does the neighbor cell deliver its maximum evidence value. 

  

We next asked what type of neural interconnection circuit is capable of producing both monotonic and 

non-monotonic functional connections between nearby cells.   Monotonic excitation and inhibition are 

straightforward, but non-monotonic cell-cell interactions require a compound excitatory-inhibitory (E-

I) interconnection scheme. One candidate mechanism is the ubiquitous circuit motif in which a cortical 

cell both directly excites and disynaptically inhibits other cells in its neighborhood (Buzsáki, 1984; 

Isaacson & Scanziani, 2011; Klyachko & Stevens, 2006; McBain & Fisahn, 2001; Pfeffer, Xue, He, Huang, 

& Scanziani, 2013; Pouille & Scanziani, 2001; Swadlow, 2002; Wehr & Zador, 2003) (Figure 5A, 

rightmost case). If the excitatory effect dominates at low firing rates and the inhibitory effect 

dominates at high rates, the neighbor cell’s net effect on its target can be non-monotonic. When the 

circuit is simplified to consist of only the direct excitatory or indirect inhibitory pathway, the cell-cell 
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 6 
interaction reduces to conventional monotonic excitation or inhibition (Figure 5A, left and middle 

cases).  To determine whether this circuit motif can produce the full range of LLR interactions found in 

our data set, we assumed that both the direct excitatory and indirect inhibitory pathways exert a 

sigmoidal effect on the boundary cell, and fit each LLR function with the difference of an excitatory and 

an inhibitory sigmoid.  Each of the sigmoids  was allowed to vary in threshold, gain, and amplitude 

(Figure 5B). The fits are shown in Figure 5C, confirming that the range of cell-cell interactions needed 

to calculate boundary probability in natural images, including non-monotonic interactions, can be 

produced by a simple circuit motif known to be present in V1 (Buzsáki, 1984; George, Lyons-Warren, 

Ma, & Carlson, 2011; Isaacson & Scanziani, 2011; Klyachko & Stevens, 2006; McBain & Fisahn, 2001; 

Pfeffer et al., 2013; Pouille & Scanziani, 2001; Swadlow, 2002; Wehr & Zador, 2003).  To determine 

whether the successful fitting of LLRs depended on our particular choice of sigmoidal E and I basis 

functions, we repeated the fitting procedure using 3 different sets of E and I basis functions and 

obtained similar results (Figure 6), indicating that the cell-cell interactions needed to detect object 

boundaries in natural images are easily produced by this general type of compound E-I, or “incitatory” 

circuit. 

 
We next looked for regularities in the progression of excitatory-inhibitory curve pairs used to fit the 

LLRs as a function of a neighbor cell's offset in position and orientation from the RL (Figure 5D).   We 

observed the following patterns.  First, as the neighbor's orientation offset from the RL increases and 

approaches 90 degrees (indicated by lightness changes within each plot), excitation becomes weaker, 

and inhibition becomes both stronger and lower in threshold, resembling cross-orientation 

suppression (a staple function of V1 (Bishop, Coombs, & Henry, 1973; DeAngelis, Robson, Ohzawa, & 

Freeman, 1992; Wilson S. Geisler & Albrecht, 1992); though see Priebe & Ferster, 2006).  Second, we 

observed a gradual weakening of both excitation and inhibition as a neighbor cell moves further from 
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 7 
the RL in the direction perpendicular to the boundary orientation (different plot columns), reflecting 

the expected decline in informativeness as a neighbor cell moves further from the boundary cell in 

question.  To probe this effect further, we characterized each excitatory and inhibitory curve by its gain 

parameter and plotted the gains separately as a function of a neighbor's orientation difference and 

spatial offset relative to the RL (Figure 5E). These surfaces confirm that the strength of excitation and 

inhibition vary systematically for different neighbor cells, but in a non-obvious way that if uncovered 

experimentally, would be difficult to interpret without an underlying theory of boundary detection and 

the natural image data to support it.  

 

Learning the parameters of the incitation circuit 

We showed that the incitatory interconnection circuit of Figure 5A is capable of producing the diverse 

forms of simple cell-boundary cell interactions needed to compute boundary probability. However, the 

circuit contains parameters that would need to be set, presumably during development, to allow each 

simple cell to exert the appropriate effect on every surrounding boundary cell.  We asked whether 

these cell-cell interactions could be learned by a simple, biologically plausible synaptic learning rule 

operating in the slightly elaborated incitation circuit shown in Figure 7A. In particular, we assumed that 

each of the 300 oriented receptive fields surrounding a boundary cell is represented by a population of 

100 simple cells, all sharing the same underlying linear filter, but each having a different firing 

threshold and gain reflecting natural variations in neuron size, morphology, firing dynamics, etc.  Three 

examples of filters (pink, blue and green) and their associated simple cell variants are depicted 

schematically in Figure 7A. Labeled image patches containing boundaries and non-boundaries were 

presented to the 30,000 simple cells, ground-truth labels from our natural image dataset were 

presented to the boundary cell (1 for boundary, 0 for no boundary), and the synapses between the 
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 8 
simple cells and the boundary cell and its associated inhibitory neuron were adjusted using a single-

layer “delta” rule (Widrow & Hoff, 1960). We then performed virtual neurophysiology to probe the net 

effect of each underlying oriented filter on the boundary cell’s response, induced by that filter’s 100 

simple cell variants each acting through its learned synaptic weight. These learned “LLR-like functions” 

(Figure 7B) again included monotonic excitatory and inhibitory as well as non-monotonic mixed E-I 

effects whose overall pattern was similar to the explicitly calculated LLRs in Figure 2; the averaged LLRs 

from Figure 2 are included as black dashed curves in Figure 7B.   To assess whether the learning of LLR-

like functions from natural images depended on having so many (i.e. 100) simple cell variants per 

receptive field, we repeated the learning experiment with just 10 simple cell variants per RF, in this 

case differing only in their firing thresholds (rather than both threshold and gain). The resulting LLR-like 

curves showed signs of the threshold discretization, but were otherwise essentially the same (Figure 8).  

Thus, the incitatory interconnection scheme depicted in Figure 7A can learn to produce the spectrum 

of SC-BC interactions needed for boundary detection using a small number of neurons covering each 

receptive field location.  

 

In one interesting difference between the learned SC-BC interaction functions compared to the 

explicitly calculated LLRs, we noted that the learned LLR-like functions also included rightside up U-

shaped interactions (e.g. see purple curves in lower right corner of Figure 7B). This and other more 

subtle differences relative to the literal LLRs can be attributed to the fact that a delta rule attempts to 

compensate for statistical dependencies between input features, whereas the literal LLRs shown in 

Figure 2 reflect the simplifying assumption that each oriented filter contributes independently to the 

response of a boundary cell.   The overall similarity of the pattern of learned cell-cell interactions 

compared to the literal LLRs, however, validates the Bayesian-inspired reverse-engineering approach 
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 9 
to study cell-cell interactions in V1, in that Bayes rule allows us to convert intuitive labels assigned to 

natural images into predictions as to how cortical neurons should influence each other to solve a 

particular task (Figure 1).   

 

Comparing boundary detection performance of five models 

As an additional performance-based approach to evaluating the trained incitation circuit as a model of 

boundary detection in V1, we compared the Precision-Recall curves of 5 different boundary detectors: 

(1) the “null hypothesis”, consisting of a single conventional simple cell centered at the RL (Figure 7C, 

blue curve); (2) a straight (unweighted) sum of 7 carefully chosen literal LLRs (Figure 7C, cyan curve) – 

this is essentially a direct application of Bayes rule as shown in Figure 1D (see Ramachandra and Mel 

2012); (3) a weighted sum of 300 literal LLRs (again corresponding to the model of Figure 1D, but 

augmented with weights optimized by the above learning rule), and (4, 5) two learned neuromorphic 

classifiers as illustrated in Figure 7A with either 100 or 10 simple cell variants per oriented RF (Figure 

7C, green and purple curves, respectively). We note that learning is possible even when all modifiable 

weights are constrained to be positive, so that the model does not require either that weights change 

sign, or that inhibitory weights are modifiable, both of which are difficult to justify biologically. The 

results lead us to 4 conclusions: (1) the superior performance of all 4 multi-input classifier variants 

compared to a single conventional simple cell reinforces the point that individual simple cells are poor 

quality boundary detectors, but can be significantly improved upon using neurally plausible local circuit 

computations; (2) the superior performance of all 3 classifier variants that exploit populations of input 

(300, 3000, or 30000) cells with optimized weights, compared to a classifier with a few carefully chosen 

unweighted inputs (Figure 7C, cyan curve), points to the value of exploiting information from all 

around the boundary cell’s receptive field – as long as a learning mechanism is available to customize 
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 10 
the interaction between the lower order cells that provide the evidence, and the higher order cell that 

performs the classification; (3) the similar performance of the 2 learned neuromorphic classifiers 

compared to a weighted sum of literal LLRs (Figure 7C, red curve) reinforces the point made above 

regarding the close connection between Bayes rule and the circuit of Figure 7A; and (4) the similar 

performance of the two learned neuromorphic classifiers to each other, despite one having an order of 

magnitude more cells than the other, indicates that the incitation circuit of Figure 7A can extract the 

critical information already from relatively few neurons (Figure 7C, green and purple curves). 

 

In light of these comparisons, we conclude that the requirements for developing a cortical circuit that 

significantly improves boundary detection performance compared to a lone simple cell are modest, 

including mainly (1) a compound E-I circuit motif known to exist in V1; (2) natural variation in firing 

thresholds across the population of simple cells; and (3) a single-layer synaptic learning rule to adjust 

the circuit parameters. In the cortex, the modifiable parameters could be the strengths of synaptic 

contacts on the dendrites of different boundary cells and/or interneurons, as shown here, or perhaps 

the dendritic locations of those synaptic contacts22–25, and/or a choice among interneurons having 

different gains and thresholds (Druckmann, Hill, Schürmann, Markram, & Segev, 2013; Markram et al., 

2004). 

 

Experimentally distinguishing boundary cells from conventional simple cells  

Having shown above that V1 circuitry is capable of producing boundary cells from simple cells in 

principle, we next addressed the question as to how BCs could be detected experimentally, and 

distinguished from conventional simple cells (or the simple cell-like subunits of complex cells – Hubel & 

Wiesel, 1962b; Movshon, Thompson, & Tolhurst, 1978; Ohzawa, DeAngelis, & Freeman, 1997). 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2018. ; https://doi.org/10.1101/436949doi: bioRxiv preprint 

https://doi.org/10.1101/436949
http://creativecommons.org/licenses/by-nc/4.0/


 11 
 

To determine how BCs would respond to conventional stimuli, we first presented drifting sine wave 

gratings covering a BC's "classical receptive field", leading to the unremarkable orientation tuning 

curve shown in Figure 9A. When gratings were added to the surround at varying orientations while the 

center grating was held at the preferred orientation, the overall effect on the boundary cell's response 

was suppressive, as indicated by the small circle at the preferred orientation.  This suppressive effect 

arose mainly from the divisive normalization operation applied to every image patch prior to 

evaluating boundary probability: the presence of the surround grating increased the normalizer value, 

which, post-normalization, led to a reduced effective contrast at the RF center.  This in turn lowered 

the BC’s estimate of boundary probability.  Beyond showing this generally suppressive effect of the 

surround, we were not in a position to make specific predictions regarding the orientation tuning of 

surround suppression in BCs, since any such tuning would flow directly from the orientation tuning of 

the normalizer we used in our model, which was neutral and built in by assumption. (The mechanisms 

of divisive normalization were not our focus in the work). We were likewise unable to generate 

contrast response curves using conventional grating stimuli, or to explore contrast-invariance of 

orientation tuning, since gratings of any contrast are identical up to a scaling factor, and that factor 

would have been perfectly cancelled by the simple normalization scheme we used.  On the other hand, 

we were able to use labeled natural edges selected from a fixed normalizer bin (i.e. in which all labeled 

edge patches had the same normalizer score) to explore the effect of increasing center contrast on 

orientation tuning curve width.  (This was not a perfectly controlled experiment because variations in 

center contrast in a fixed normalizer bin would have led to anti-variations in surround contrast, but 

given the filter value at the RF center was only one of 100 filters of many orientations used to compute 

the normalizer value, this effect was likely to be small).  Subject to this limitation, as shown in Figure 
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9B, the boundary cell's tuning width is essentially constant across a roughly 2-fold change in center 

contrast (the limit of analysis allowed by our labeled database).  In an additional experiment using 

labeled natural edges, this time with center contrast held fixed, but drawing the image patches from 

two different normalizer bins separated by a factor of 2 in the normalizer value, we saw that the effect 

of increasing surround contrast was again to suppress boundary probability, just as in Figure 9A.  

Unlike the case in Figure 9A where sinusoidal gratings were used, the natural image patches evaluated 

by the boundary cell in this case all had identical center contrast values after normalization.  Thus, the 

suppressive effect of the surround in this case was a bona fide probability effect flowing from natural 

image statistics, rather than resulting from an overt reduction of center contrast by the divisive 

normalization operator. 

 

To summarize our predictions using oriented edges and gratings with and without surrounds, boundary 

cells behave similarly to conventional simple cells in that they are (1) orientation tuned, (2) show 

surround suppression, and (3) have tuning curves whose widths are roughly contrast invariant (Alitto & 

Usrey, 2004).  It is therefore possible that boundary cells have classified as conventional simple cells in 

previous experiments using simplified stimuli. Among the multiple types of V1 cells that have been 

previously described, boundary cells share most in common with double opponent cells, which are 

orientation tuned,  have mostly odd-symmetric receptive field profiles as would be expected for 

boundary detecting cells (Ringach, 2002), and respond to boundaries whether defined by luminance or 

color (Johnson, Hawken, & Shapley, 2008).      

 

In future neurophysiological studies, an efficient means of dissociating conventional simple cells, which 

respond to oriented contrast independent of boundary probability, from boundary cells, which 
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 13 
respond to boundary probability independent of oriented contrast, would be to use natural image 

stimuli drawn from the four corners of the oriented contrast – boundary probability space (Figure 10A).  

Image patches with low oriented contrast and low boundary probability scores (purple dots) tend to be 

flat, unstructured image regions; patches with low contrast and high probability (green dots) tend to 

be well-structured, faint edges; patches with high contrast but low probability (blue dots) tend to 

consist of contrasty noise or misaligned edges; and regions with high contrast and high probability (red 

dots) are typically well-structured, strong edges (Figure 10B).  This factorial stimulus set would make it 

possible to identify pure simple cells, pure boundary cells, as well as cells of intermediate type. 

 

 

 

DISCUSSION 

In the 60 years since Hubel and Wiesel first discovered orientation-tuned simple cells in V1, it has been 

generally assumed that these cells contribute in some way to the detection of object boundaries 

(Angelucci et al., 2002; Field, Hayes, & Hess, 1993; Grosof, Shapley, & Hawken, 1993; Kapadia, Ito, 

Gilbert, & Westheimer, 1995b; Kapadia, Westheimer, & Gilbert, 2000a; Polat, Mizobe, Pettet, 

Kasamatsu, & Norcia, 1998; Sceniak, Ringach, Hawken, & Shapley, 1999). Consistent with this idea, 

virtually every modern object recognition system, whether designed by hand or trained from natural 

image data, includes simple cell-like filtering in its early stages of processing (Fukushima, Miyake, & Ito, 

1983; Krizhevsky, Sutskever, & Hinton, 2012; Lades et al., 1993; Lecun, Bottou, Bengio, & Haffner, 

1998; Mel, 1997; Riesenhuber & Poggio, 1999). Surprisingly, however, the quantitative relationship 

between simple cell responses, typically modeled as divisively normalized linear filters (Carandini & 

Heeger, 2012), and object boundary probability in natural images has been little explored (though see 
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Ramachandra & Mel, 2013), making it difficult to know whether or how V1 circuits contribute to this 

behaviorally relevant natural computation.  It is important to emphasize that a simple cell on its own is 

a poor detector of natural object boundaries within its receptive field (see also Arbelaez, Maire, 

Fowlkes, & Malik, 2011): as shown in Figure 7C (see blue curve), if we use a simple cell's response as an 

indicator of the presence of an object boundary within its RF, even when the threshold for detection is 

raised to such a high value (moving upward and leftward along the PR curve) that half of all true 

boundaries are missed (corresponding to a Recall score of 50%), more than 60% of the “detected” 

edges at that threshold  will be false positives (corresponding to a Precision score of 40%).  The reason 

a simple cell is such an unreliable edge detector is that true object boundaries are rare, and when they 

do occur, they are mostly of low contrast. Much more common are high contrast non-edge structures 

(e.g. textures) that contain sufficient oriented energy to strongly drive simple oriented filters. 

 

The poor boundary detection performance of a lone simple cell leads to the hopeful conjecture that V1 

also contains "smarter" cells that compute boundary probability by combining the responses of 

multiple simple cells covering a local neighborhood.  In a previous study, we suggested that the 

appropriate strategy for constructing a boundary cell from a local population of simple cells was to (1) 

select a small set of simple cells (e.g. 6 cells) that were both individually informative and class-

conditionally independent (CCI; see methods for discussion of the CCI assumption); (2) evaluate the 

log-likelihood ratios for each of the participating simple cells, which describe the functional 

connections between each simple cell and the boundary cell; and (3) sum the LLRs and pass the total 

through a sigmoidal nonlinearity to compute boundary probability (Ramachandra & Mel, 2013) (Figure 

1B).  The present study extends that previous work in four ways: (1) here we collected and analyzed 

LLRs for all of the simple cells at all orientations covering a 5x5 pixel neighborhood in the vicinity of a 
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boundary cell’s RF (300 cells total); (2) we show that the functional connections between SCs and the 

BC depend systematically on the relative position and orientation of the SC and BC receptive fields, and 

come in a variety of forms including monotonic excitation and inhibition and various bump-shaped 

functions;  (3) we show that a mixed excitatory-inhibitory, or “incitatory”, circuit motif that is known to 

exist in V1 is capable of producing the entire spectrum of simple cell–boundary cell interactions that 

we catalogued, and (4) we show that the synaptic weights that parameterize the incitation circuit can 

be learned by one of the simplest known developmental/plasticity rules: a 1-layer “delta” rule. 

 

Relationship to previous work on natural image statistics 

A number of previous studies have attempted to explain receptive field properties of cells in the retina, 

LGN and primary visual cortex in terms of natural image statistics and principles such as efficient 

coding, sparse coding, and independent components analysis (Barlow, 1981; Bell & Sejnowski, 1995; 

Laughlin, 1989; Olshausen & Field, 1996; Schwartz & Simoncelli, 2001).  These studies have been 

mainly concerned with neural representation, where the goal is fast/accurate information transmission 

through a noisy channel, and eventually faithful image reconstruction.   In contrast, our work is 

primarily concerned with neural computation, where the goal is to transform the image into a more 

abstract boundary representation that is more directly useful for guiding behavior. 

 

From a different perspective and with a different goal, Geisler et al. (2001) collected co-occurrence 

statistics of pre-detected local boundary elements in natural scenes, with the goal to predict human 

contour grouping performance.  Their measurements on natural images included the probability of 

finding a second boundary element in the vicinity of a first boundary element depending on the 

relative offsets in position and orientation of the two elements, or whether two spatially offset 
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boundary elements were more likely to belong to the same or different object.  Sigman et al. (2001) 

also studied the co-occurrence statistics of pre-detected boundary elements, coming to the conclusion 

that boundary elements in natural scenes tend to lie on common circles.   The goal to characterize the 

spatial distribution of pre-detected boundary elements in natural scenes in both of these studies 

contrasts with our focus here on the problem of discriminating object boundaries from non-boundaries 

based on hundreds of simple cell responses collected from a local neighborhood of an image. 

Furthermore, all of the grouping statistics collected by Geisler et al. and Sigman et al. were represented 

as scalar values linking pairs of locations/orientations.  In contrast, our natural image data consists of 

functions linking pairs of locations/orientations, which describe how a given simple cell should 

influence a nearby boundary cell as a part of the boundary detection computation.  Also unlike these 

previous studies, we use our data to constrain and to benchmark cortical circuit models. 

Non-monotonic cell-cell interactions have been reported 

One of our findings is that among the different types of local cell-cell interactions needed for object 

boundary detection in natural images, many cannot be described as "excitatory" or "inhibitory", or 

represented by scalar synaptic weights, but are instead U-shaped functions wherein cell 1 might excite 

cell 2 at low firing rates, reach its peak excitatory effect at intermediate firing rates, and inhibit cell 2 at 

high firing rates.  U-shaped functions of the opposite polarity can also occur (Figure 7B).   Should we 

find the idea surprising that nearby cells in the cortex act on each other non-monotonically?   

 

From one perspective, one might argue that whenever there are excitatory and inhibitory cells wired 

together in a circuit motif, perhaps we should be surprised if we did not find non-monotonic 

interactions between cells.  For example, in the "inhibition-stabilized network" model (M. P. Jadi & 

Sejnowski, 2014; Ozeki, Finn, Schaffer, Miller, & Ferster, 2009), which accounts for a number of V1 cell 
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response properties, "non-binary" interactions between cells would be expected to occur.  

Nevertheless, there has been a historical tendency to think about cell-cell interactions in the cortex as 

being of a defined polarity, often subject to simple geometric rules. The notion of "surround 

suppression", for example, reflects both of these tendencies (Adesnik, Bruns, Taniguchi, Huang, & 

Scanziani, 2012; Cavanaugh, Bair, & Movshon, 2002; Schwabe, Ichida, Shushruth, Mangapathy, & 

Angelucci, 2010).  Even as the geometric constraints governing cell-cell interactions become more 

intricate, such as where interconnection strength and polarity depend on distance or relative 

orientation, the notion that cell-cell interactions have a defined polarity often persists.  For example, 

K.D. Miller's models of map development include short range excitation and medium-range inhibition 

(Miller, 1994); Angelucci and Bressler's models include near and far suppressive surrounds (Angelucci & 

Bressloff, 2006); and several studies support the idea that cortical cells affect each other laterally 

through bowtie-shaped "extension fields" consisting of patterned arrays of positive and negative 

coefficients (e.g. Bosking, Zhang, Schofield, & Fitzpatrick, 1997; Field et al., 1993; W. S. Geisler et al., 

2001; Kapadia, Westheimer, & Gilbert, 2000b; Li, 1999; Sigman et al., 2001).  In all of these cases, one 

neuron's effect on another neuron are described in terms of its scalar connection "strength". 

 

Not all functional interconnections that have been described in the cortex fit such simple descriptions, 

however.  Examples of activity-level-dependent interactions have been reported, where the strength 

and even polarity of the connection between cells depends on the activity levels of the sending and/or 

receiving cells. For example, the responses of amplitude-tuned neurons in the auditory cortex grow 

stronger as the sound pressure level increases up to an optimal intensity level, and then are 

progressively inhibited as the sound grows louder (Suga & Manabe, 1982); in V1, surround modulation 

can switch from facilitating to suppressive with increasing center contrast (Ichida, Schwabe, Bressloff, 
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& Angelucci, 2007; Nauhaus, Busse, Carandini, & Ringach, 2009; Polat et al., 1998; Schwabe, 

Obermayer, Angelucci, & Bressloff, 2006; Somers et al., 1998); length-tuned neurons respond best to 

an oriented stimulus up to a certain length, but are then progressively inhibited as the stimulus grows 

longer (Anderson, Lampl, Gillespie, & Ferster, 2001); and non-monotonic modulatory interactions 

between a neuron’s classical and extra-classical receptive fields have been reported (Polat et al., 1998). 

These data, though unaccompanied by normative explanations, reinforce the idea that the sign and 

magnitude one neuron's effect on another can depend not only on the relative position and 

orientation of their receptive fields (in the case of vision), but also on their relative activity levels. 

 

Our paper represents a fleshing out of this type of effect, and is to our knowledge the first normative 

theory, parameterized by natural images, that specifies how low-order cells should affect higher-order 

cells in the cortex to solve a specific, biologically-relevant classification problem.  By analyzing natural 

image data on and off object boundaries, we showed that the local cell-cell interactions needed to 

solve this classification problem are in general nonlinear functions that depend on "all of the above" – 

relative location, relative orientation, and relative activity levels of the sending and receiving cells.  And 

while such connections cannot (except in special cases) be described by scalar weights, we showed 

that they are easily produced by a compound E-I circuit motif (see Figure 5) that is known to exist in 

the cortex (Buzsáki, 1984; Isaacson & Scanziani, 2011; Klyachko & Stevens, 2006; McBain & Fisahn, 

2001; Pfeffer et al., 2013; Pouille & Scanziani, 2001; Swadlow, 2002; Wehr & Zador, 2003), and that the 

synaptic weights that control the net effect of the "incitation" motif are easily learned.  Future 

experiments will be needed to establish whether trainable incitation circuits are actually used to help 

solve the difficult natural classification problems faced by neurons in V1 and other areas of the cortex.  
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Materials and methods: 
 
Data gathering 
 
We used a modified version of the COREL database for boundary labeling in natural images. Several 
image categories, including sunsets and paintings were removed from the original COREL database 
since their boundary statistics differed markedly from that of typical natural images. Custom code was 
used to select ~30,000 20x20 pixel image patches for labelling. To minimize filter pairwise correlations, 
the selection was restricted to patches with a certain fixed “energy” score, calculated by summing the 
absolute values of 100 simple cell-like linear filters surrounding the edge location (see below for filter 
specifications). An elongated box was then drawn on each patch, representing the “reference 
location”, and human labelers were asked to answer the question, “On a scale from 1 to 5, with 1 
meaning extremely unlikely and 5 meaning extremely likely – how likely is it that there is an object 
boundary passing through the reference box?” Responses were recorded, and patches with scores of 1 
or 2, were classified as “no” patches, while patches with scores of 4 or 5 were classified as “yes” 
patches. Our informal observations, based in part on occasions when two labelers worked together, 
was that the agreement was very high. Rare ambiguous patches that could cause labeler disagreement 
were often conservatively labelled as 3 and consequently excluded from later analyses. After labeling, 
the dataset was doubled by adding left-right flipped versions of each patch, and assigning the same 
label as the unflipped counterpart.  
 
Extracting the LLRs 
 
The original color image patches were first converted to single-channel intensity images 
(0.29	𝑅 + 0.59	𝐺 + 0.11	𝐵). Simple cell-like filters at multiple orientations were created by rotating a 
2x4 pixel rectangular filter (see f1 in Figure 1B) in 15° increments from 0 to 165°. Interpolation was 
bilinear. The intensity images were filtered at those 12 orientations over all positions on a 5x5 pixel 
lattice centered at the reference location. This resulted in 25 positions x 12 orientations = 300 total 
simple cell responses for each patch. (Given the symmetric form of the filter mask, filter values for 
orientations from 180° to 345° were the negatives of the first 12 orientations so did not need to be 
explicitly computed). Patches with a negative reference filter score were vertically flipped so that the 
reference filter score was positive. Histograms were collected for each of the 300 filters separately for 
“yes” patches (using 8 to 20 evenly spaced bins depending on the smoothness of the histogram) and 
“no” patches (using 50 evenly spaced bins).  The “yes” and “no” histograms for each filter were 
normalized to probability distributions. LLRs were then computed as log	 12345

267
8 , where 𝑝:;< and 𝑝=> 

are the boundary and non-boundary pdfs, respectively. To control noise, for each filter, LLR analysis 
was restricted to a central set of filter values where 𝑝:;< > 0.005 and 𝑝=> > 0.002. Only data inside 
this region is plotted in Figs. 2-4, Figure 6.  The same procedure was repeated with different filters 
(2x6, 2x8, 4x8, 6x8) to generate the LLR curves shown in Figure 3. 
 

Class-conditional independence (CCI)  

The assumption of class-conditional independence between nearby filters does not hold in general in 
natural images, so that the strict application of a naive Bayesian approach that assumes CCI among 
filters is not expected to perform very well – and in our experiments, if filters are chosen randomly, the 
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approach performs poorly (often worse than using a single filter). However, either of two simple 
strategies, both biologically plausible, can mitigate the problems arising from the violation of CCI, 
allowing a local population of filter outputs mapped through their respective LLRs to be combined 
linearly to form a much better boundary classifier than a single simple cell. The first strategy is to select 
small subsets of filters from the neighborhood whose responses are relatively uncorrelated with each 
other; this was the approach taken in Ramachandra and Mel (2013). In that earlier paper, in addition to 
selecting de-correlated filters, we used additional ad hoc criteria, such as that the filters should be 
individually informative about the presence of an object boundary, and that the resulting classifier 
should be sharply oriented tuned. In principle, a neural learning rule could have been used to select for 
these criteria, but in that earlier paper a neural model was not defined, a learning rule was not tried, 
and boundary detection performance was not quantitatively measured. The second strategy, and the 
one that we pursue in this paper, is to use a learning rule to modify a single layer of excitatory weights 
in an incitatory circuit, without need for any filter pre-selection (Figure 7A).  

 
Sigmoid modeling 
 
Filter LLRs were fit by a difference of 2 sigmoids of the form 𝑠(𝑥) = 	 C

DEFGH[JK(LJM)]
	 using a semi-

automatic approach. For each LLR, an approximate amplitude 𝐴, gain 𝑔, and threshold 𝑡 for the two 
sigmoids was chosen automatically, and the parameters were then adjusted by hand so that the 
difference of the two sigmoids visually matched the LLR as closely as possible.  We found visually-
guided optimization better captured the essential shape structure of the LLR compared to generic 
simple error measures such as MSE.  A similar fitting procedure was used for the three models in Figure 
6 (model details shown in figure). The risk that human visually-guided optimization of curve shape 
would alter our conclusions was minimal since (1) human visually-guided optimization is based on a 
much more sophisticated shape-based metric than, say, MSE, and can therefore be reasonably 
considered as “ground truth”; (2) our conclusions do not depend on quantitative comparisons of fit 
quality for different models; and (3) the ability to precisely match individual LLR shapes using a 
difference of two simple functions is mainly of didactic interest; the more practically significant 
question is whether a weighted sum of simple E and I functions (which will in general involve more 
than two curves) can produce the LLR-like interactions needed to drive down classification errors 
during learning (see Figure 7).  For the surfaces in Figure 5E, and Figure 6, excitatory gain was 
computed by measuring the excitatory component’s average slope between f = 0 and f = 10. Inhibitory 
gain in Figure 5 was computed in the same way. In Figure 6, each of the inhibition familes had only a 
single parameter; this parameter is what is plotted in the inhibitory gain surface plots.  
 
Learning experiments 
 
For each patch, each filter value was passed through 100 different sigmoidal nonlinearities (using the 
sigmoid functional form as above, taking a grid of 10 sigmoid thresholds x 10 sigmoid gains = a total of 
100 sigmoids) (or 10; see Figure 8), simulating the responses of 100 simple cells with identical receptive 
fields but slightly different “F-I curves” (i.e. output nonlinearities). The result was 300 filters x 100 
nonlinear variants = 30,000 model simple cell responses per patch. We then used logistic regression to 
train a linear classifier to distinguish boundary from non-boundary patches using the simple cell 
responses. A subset of the data (25,000 of the ~30,000 labeled patches) was used for training. During 
training, data was balanced by duplicating boundary-containing patches such that boundary and non-
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boundary exemplars were equal in number. Training was done using batch gradient descent with a 
learning rate of 𝜂 = 0.1, performed for 1,000 iterations. The resulting parameter fits were visualized in 
Figure 7B by systematically increasing a filter value (x axes) while holding all other filters constant, and 
plotting the changes in linear classifier score resulting from that filter’s 100 nonlinear simple cells 
combined using the learned weights (y axes). In order to allow shape comparison of the filters’ learned 
interactions with the corresponding LLR function, we scaled the colored interactions within each plot. 
Each plot has one scaling factor that applies to all 5 colored curves in the plot. The inverse of this 
scaling factor, which can be thought of equivalently as the weight that the classifier puts on the curves 
drawn in the subplot, is shown by the grey bars.  
 
Precision-Recall curves 
 
Precision-Recall (PR) curves were generated for the learned boundary cell classifier, as well as for the 
sum of filter LLRs used as a classifier (Figure 1).  A classifier consisting of a single linear filter provided 
the PR baseline (Figure 7). To generate a PR curve, a classifier was applied to each of the 5,000 labeled 
(untrained) test patches, and the patches were sorted by their boundary probability (BP) scores. A 
threshold was set at the lowest BP value obtained over the entire test set, and was systematically 
increased until the highest boundary probability score in the test set was reached. For every possible 
threshold, above-threshold patches were called putative boundaries and below-threshold patches 
were called putative non-boundaries,  (1) “Precision” was calculated by asking what fraction of patches 
identified as putative boundaries contained true boundaries (according to their human assigned 
labels), and (2) “Recall” was calculated by asking what fraction of true boundaries were identified as 
putative boundaries. As the threshold increased, the P-R values swept out a curve in Precision-Recall 
space. Perfect performance would be 100% Precision and Recall simultaneously, corresponding to the 
top right corner of the PR graph. The aqua curve labelled “Sum of 7 random filter LLRs” was generated 
using the following procedure: 1000 random sets of 7 filters were created. For each set, a single PR 
curve was generated for a boundary detector consisting of the literal sum of the 7 filter LLR scores on 
each patch. After all 1000 curves had been generated, the alpha curve was plotted showing the 99th 
percentile of precision over all PR curves for each recall.  
 
Stimulus response curves 
 
Grating stimuli were generated by sampling a sinusoidal grating wave on a 20x20 pixel grid. Frequency 
was chosen at 0.25 cycles/pixel because it led to relatively artifact-free stimuli and evoked robust 
boundary cell responses. Gratings were then windowed to a 2 pixel radius around the center of the 
patch. Gratings were presented to the boundary cell at every 15° of orientation. At each orientation, 
response was averaged over all phases of the grating. Surround stimuli were created by adding a 
second grating outside the 2 pixel radius window. Suppression was measured as the average response 
to the surround stimulus over all phases of the inside and outside gratings, and the orientation of the 
surround (Figure 9A).  
 
To measure the effects of center and surround contrast on boundary cell response in natural images 
(Figure 9B), we collected patches with fixed surround contrast and varying center contrast (first plot) 
and fixed center contrast and varying surround contrast (second plot). Center contrast was taken to be 
the value of the central reference filter. Surround contrast was taken to be the patch energy used to 
normalize patches in earlier experiments (see Methods section Data Gathering). Stimuli were rotated 
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in increments of 15° and presented to the boundary cells. Individual tuning curves are plotted, along 
with the average tuning curve and its standard error.  
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Figure 1. Calculating boundary probability from natural images using Bayes’ rule. (A) The boundary 

detection problem can be encapsulated by the question and answers shown; ~30,000 natural image 

patches were classified in this way.  Dashed box indicates a “reference location” where a boundary 

might appear. (B) 3 (of many) oriented linear filters with responses f1, f2, f3 are shown in the vicinity of 

the RL. (C) Under the assumption that filters are class-conditionally independent (see Methods), Bayes’ 

rule gives an expression for boundary probability in terms of individual filter log-likelihood ratios (LLRs) 

(colored terms in denominator). (D) Measured filter values are passed through their respective LLR 

functions, and the results are summed and passed through a sigmoidal “f-I curve” to yield boundary 

probability. 
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Figure 2. Computing LLRs from natural images. (A) Filter responses from 30,000 labeled image patches 

potentially containing boundaries at the RL (dashed box) were separately histogrammed for “yes” (red) 

and “no” (blue) cases. Yes (no) cases were those with confidence scores of 4 and 5 (1 and 2).  A subset 

of filter histograms is shown for 7 orientations and 5 vertical positions (centered horizontally). (B) By 

dividing the yes and no distributions and taking logs, one obtains the LLRs. (C) Full set of 300 LLRs 

reveals a regular pattern over orientation and location. Cases grouped within each subplot are for 5 

horizontal shifts (indicated by black dots at top). Most LLRs are non-monotonic functions of the filter 

values. 
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Figure 3.  The pattern of LLRs does not depend sensitively on the parameters of the filters. Related to 

Figure 2. LLRs were generated for each of the filter profiles shown on the left (2x6, 2x8, 4x8, and 6x8 

pixels). The LLRs followed the same general pattern for all of the filter profiles and were similarly non-

monotonic.  
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Figure 4. Why a neighbor cell’s evidence for a boundary at the RL changes non-monotonically as its 

response level increases. Related to Figure 2. A low neighbor filter response, as in the patch of sky at 

left, often signals there is little structure in the image patch, leading to weak or negative evidence for a 

boundary in the vicinity – including at the RL.  A high neighbor filter response, as in the rightmost 

patch, often signals an object boundary is present in the neighbor’s receptive field, rather than at the 

RL, again leading to weak or negative evidence for a boundary at the RL. When the neighbor cell 

responds strongly enough to indicate the patch contains some structure, but not so strongly as to be 

competitive with the RL, the neighbor’s LLR delivers maximum/positive evidence to the RL, as in the 

middle patch. 
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Figure 5. Fitting simple cell–boundary cell interactions (LLRs) with a difference of sigmoids 

representing separate E and I effects. (A) Circuit motif includes monosynaptic excitation (left stream) 

and disynaptic inhibition (middle stream) as special cases, and a combined E-I effect capable of 

generating non-monotonic “incitatory” interactions (right stream). LLRs are shown shifted vertically to 

emanate from the origin (hence sLLR; combined offsets from all LLRs could be summed to form a single 

bias term); same in panel (C). (B) E (red) and I (blue) sigmoidal curves were optimized by manipulating 

their thresholds, slopes and asymptotes so that their difference fit the corresponding LLR shown in (C). 

(C) LLR fits are shown in color, on top of the 5-curve groups from Figure 2C shown in light grey. (D) E 

and I sigmoids from b are collected across orientations within each subplot, showing smooth 

progressions of sigmoid parameters.  (E) Plots show gains for the E and I interaction components.  For 

groups of simple cells horizontally centered at the RL, excitation delivered to the boundary cell 

becomes weaker and inhition grows stronger as the neighbor’s orientation deviates from the reference 

orientation.  
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Figure 6. Circuit-level predictions depend only weakly on the choice of parameters representing the 

excitatory and inhibitory component curves. Related to Figure 5. Three roughly similarly performing 

models are shown. (A) Excitatory (red) and inhibitory (blue) curve components (left) and resulting LLR 

fit (right) are shown for each model. Fit quality is comparable across all three models, and the original 

model shown in Figure 5c. (B) Despite having different E-I curve shapes, all three models show the 

same basic trends in the progression of excitation and inhibition as a function of orientation and 

vertical offset from the RL.  (C) Summarizing each E and I curve with a single gain parameter shows a 

similar pattern for the three models.   
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Figure 7. Simple cell-boundary cell interactions can be learned by a biologically plausible synaptic 

plasticity rule. (A) Each oriented filter was represented by a population of 100 simple cells, each with a 

different fixed i/o nonlinearity. Nonlinearities were sigmoids, 𝑦 = D
DE;UV(WUX)

	,	with gain 𝑔 between 0.13 

and 4.5 and threshold 𝑡 between -6 and 16. A “delta” rule was used to adjust the weights from each 

simple cell onto the boundary cell: 𝛥𝑤[ = 𝜂(𝑡 − 𝑦)𝑥[, where 𝑡 is the “training signal” (1 for boundary, 

0 for no boundary), 𝑦 is the response of the boundary cell, 𝑥[  is the response of the 𝑖M^ simple cell, and 

𝜂 is the learning rate. In the context of our model, this learning rule is mathematically equivalent (up to 

a transient initial difference in the learning rate parameter 𝜂) to a learning rule which constrains all 

weights to be positive. (B) To determine the net effect of each filter on the boundary cell (for 

comparison to the LLRs), the underlying linear filter value was increased from 0 to 1 while holding all 

other inputs constant, and the weighted sum of the 100 associated simple cells was plotted (colored 

curves).  Black dashed curves are averaged LLRs from Figure 2C. The gray bar in each plot represents 

the weight that the BC puts on that group of 5 colored curves (C) Precision-recall curves (on held out 

data) for the learned boundary cell (green) and weighted sum of LLRs (essentially the explicit Bayesian 

approach illustrated in Figure 1B and C) (red) are very similar, indicating that the learned neural circuit 

behaves in accordance with the theoretical prediction. A pure sum of 7 filter LLRs (99th percentile of 

randomly selected sets of 7 filters) is shown in turqoise. The lower blue PR curve shows that by 

comparison, a single oriented simple cell at the RL is a poor detector of natural object boundaries. 
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Figure 8. Filter effects on the boundary cell were similar when only 10 nonlinear variants per filter 

were used. Related to Figure 7. See Figure 7 for explanation.  
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Figure 9. Boundary cell responses to parametric and natural stimuli resemble simple cell responses. 

To compute BC responses, the weighted sum of LLRs model (red PR curve in Figure 7C) was used. (A) 

Orientation tuning curve to a sinusoidal grating in a 2 pixel radius window around the receptive field 

center. At each orientation, responeses were averaged over all phases of the grating. The resulting 

tuning curve is similar to those obtained for simple cells in V1. Surround suprression was tested by 

adding a surround grating to a horizontal center grating, and averaging the response over all center 

and surround phases, and surround orientations. (B) Patches with fixed surround contrast and varying 

center contrast were selected and presented at 15° increments to the boundary cell. For a fixed 

surround contrat, center contrast increases cell response without increasing tuning width, a hallmark 

of contrast invariant orientation tuning found in V1 simple cells. (C) Holding center contrast fixed while 

increasing surround contrast has the opposite effect.  
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Figure 10. Distinguishing linear filter responses from boundary probability responses. To determine 

whether a given cell is computing linear contrast or boundary probability, it is necessary to use a 

stimulus set which dissociates these two measures. Roughly speaking, what is needed are stimuli 

whose linear filter and boundary probability scores are “well spread” throughout linear filter-boundary 

probability space. (A) Plotting the two scores for all labelled patches shows that they are highly 

correllated, and that randomly selected patches are likely to lie at the lower left and upper right 

corners of this space – where linear contrast and boundary probability are either both low or high 

together. Therefore, if only these stimuli were presented to the cell, it would be difficult to know 

whether high cell responses were being driven by linear contrast or boundary probability. It would be 

better to present stimuli that are well spread over the space of the two scores (colored dots) so that 

cell responses to each variable can be assessed separately. (B) Examples of these stimuli are shown. 

They include low contrast non-edges (purple cases), high contrast non-edges (blue cases), low contrast 

edges (green cases), and high contrast edges (red cases).  
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