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Abstract 
 

Understanding the regulatory landscape of human cells requires the integration of genomic and 

epigenomic maps, capturing combinatorial levels of cell type-specific and invariant activity states.  

Here, we segmented whole-genome bisulfite sequencing-derived methylomes into consecutive 

blocks of co-methylation (COMETs) to obtain spatial variation patterns of DNA methylation (DNAm 

oscillations) integrated with histone modifications and promoter-enhancer interactions derived from 

promoter capture Hi-C (PCHi-C) sequencing of the same purified blood cells.  

Mapping DNAm oscillations onto regulatory genome annotation revealed that enhancers are 

enriched for DNAm hyper-oscillations (>30-fold), where multiple machine learning models support 

DNAm as predictive of enhancer location. Based on this analysis, we report overall predictive 

power of 99% for DNAm oscillations, 77.3% for DNaseI, 41% for CGIs, 20% for UMRs and 0% for 

LMRs, demonstrating the power of DNAm oscillations over other methods for enhancer prediction. 

Methylomes of activated and non-activated CD4+ T cells indicate that DNAm oscillations exist in 

both states irrespective of activation; hence they can be used to determine the location of latent 

enhancers. 

Our approach advances the identification of tissue-specific regulatory elements and outperforms 

previous approaches defining enhancer classes based on DNA methylation. 
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Background 
 

Enhancers are regulatory DNA elements that can increase the transcription of genes under their 

control in a cell type-specific manner in conjunction with transcription factors, chromatin states and 

a variety of cofactors. They were discovered over 30 years ago in simian virus 40 and today 

account for the majority of regulatory sequences in mammalian genomes [1,2]. There are multiple 

classes of enhancers [1] and new ones are still being identified, including the recently described 

latent [3] and super [4] enhancers as well as a class of as yet unknown function defined by 

acetylation of histone globular domains (H3K64ac and H3K122ac) rather than histone tails [5]. 

Because of their fundamental role in gene regulation, one of the key questions has been how to 

identify all enhancers using either computational or experimental approaches [6]. Towards this aim, 

genome-wide approaches have been developed based on DNA sequence conservation, profiling 

of histone modifications, transcription factors, transcription coactivators, chromatin states, 

enhancer RNAs (eRNA) and chromosome conformation capture [reviewed by 7].  

 

DNA methylation is the most ubiquitous and stable epigenetic mark and is known to exert both 

positive and negative control over gene expression [8]. Here, we assessed the predictive potential 

of DNA methylation marks for identifying enhancers. We leveraged 24 whole-genome bisulfite 

(WGBS) methylomes generated by the BLUEPRINT Project for 9 purified haematopoietic cell 

types, including activated and non-activated CD4+ T cells, to address three fundamental questions: 

[i] Can enhancers be predicted based on DNA methylation data only? [ii] How do the results 

compare to those obtained with traditional predictions using histone modifications (H3K4me1, 

H3K4me3, H3K27ac, H3K36me3), chromatin states (ChromHMM) and more recent methods that 

analyse chromosomal interactions between promoters and enhancers such as PCHi-C [9-12] ? [iii] 

Based on comparative methylome analysis before and after cell activation [13], can latent 

enhancers be predicted prior to their activation? In the context of the immune cells analysed here, 

the latter would for instance allow assessment of how well in vitro activation mimics an in vivo 

immune response.  

 

In on our previous work [14] we found that certain patterns of DNA methylation could be used to 

infer the location of enhancers. By segmenting methylomes into consecutive blocks of 

comethylation (COMETs), we observed spatial oscillatory methylation signatures that associated 

with regulatory regions. These oscillatory signatures, termed harmonics or DNAm oscillations can 

be estimated using the the COMETgazer algorithm [14] as a continuous CpG density-independent 

K-period percentage difference series based on the continuous smoothed methylation level 

estimate. While sudden breaks in oscillation patterns can be used to define COMETs, in this study 

we used high levels of oscillations (hyperoscillatory patterns) to analyse methylomes specifically 

for enhancers in the context of the questions posed above.  
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Methods 

 

Datasets 

 

The BLUEPRINT DNA methylation and ChIPSeq data EGA numbers are summarized in 

Supplementary Table 1. Raw sequencing reads for PCHi-C data have been submitted to EGA 

(http://www.ebi.ac.uk/ega), accession number EGAS00001001911. DNA methylation and ChIPseq 

data for the CD4+ T cell activation are available as raw sequencing reads (submission to EGA in 

progress). 

 

Genome segmentations 

 

The 2014 Blueprint segmentations were generated using ChromHMM version 1.12 

(http://compbio.mit.edu/ChromHMM/) by the Centro Nacional de Investigaciones Oncológicas 

(CNIO). They were only run on samples with full reference epigenome histone modification set and 

matched input on GRCh37 (http://dcc.blueprint-

epigenome.eu/#/md/secondary_analysis/Segmentation_of_ChIP-Seq_data_20150128).  

 

The Ensembl Regulation team has run the Ensembl Regulatory Build on the 2015 BLUEPRINT 

segmentations merging in data from ENCODE segmentations, DNase and CTCF peaks [15] 

(http://dcc.blueprint-

epigenome.eu/#/md/secondary_analysis/Ensembl_Regulatory_Build_20150128). The Blueprint 

segmentation pipeline using ChromHMM requires the existence of all the individual specific 

reference epigenome ChIP-seq histone modifications (H3K3me1, H3K4me3, H3K9me3, H3K27ac, 

H3K27me3, H3K36me3) and Input (Control). The Regulatory Build was run using the resulting 

segmentations. 

 

The GRCh37 segmentations are available at: 

ftp://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20150128/homo_sapiens/secondary_analysis/

Segmentation_of_ChIP-Seq_data/ and the builds at: 

ftp://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20150128/homo_sapiens/secondary_analysis/

Ensembl_Regulatory_Build/ . 

 

For the PCHi-C analysis, we ran 2015 Blueprint segmentations with additional states, as we could 

not identify any poised states from the CNIO segmentations, and we ran the Regulatory Build 

again using these segmentations. The segmentation data are available from: 

ftp://ftp.ebi.ac.uk/pub/contrib/pchic/Blueprint/  
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BLUEPRINT DNA methylation pipeline 

 

The BLUPRINT methylation pipeline is available at: 

http://ftp.ebi.ac.uk/pub/databases/blueprint/releases/20140811/homo_sapiens/README_bisulphite

_analysis_CNAG_20140811 

 

LMR and UMR were defined using the Bioconductor tool methylSeekR 

(https://bioconductor.org/packages/release/bioc/html/MethylSeekR.html). DNAase clusters from 

125 cell types was obtained from UCSC at 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeRegDnaseClustered/ 

including DNase clusters (V3) from UW and Duke ENCODE data uniformly processed by the 

ENCODE Analysis Working Group. 

 

Harmonic analysis 

 

For the exploratory analysis (ROADMAP and BLUEPRINT segmentations), fixed genome windows 

of 1000 bp and 10% oscillations in DNA methylation were used. For ROADMAP analyses, we 

defined enhancers as PCHi-C regions overlapping with histone mark signal (+/- 500 bp) with the 

following definitions: active (strong H3K4me1, strong H3K27ac), poised enhancer (strong 

H3K4me1 and weak H3K27ac), promoter-proximal (near region with strong H3K4me3, H3K27ac 

and depleted in H3K4me1), transcribed (strong H3K36me3) and quiescent (no noticeable active 

histone marks). The quiescent regions were used for background, in order to calculate the 

enrichment ration of oscillation counts.  

 

DNAm oscillations (harmonics) were defined as a continuous CpG density-independent K-period 

percentage difference series based on the continuous smoothed methylation level estimate. The 

quantile distribution of DNAm methylation values is analysed independently for each chromosome. 

Most of the oscillations are around zero, and these define regions of co-methylation. 

Fragmentation in the methylome structure is defined as significant deviations in the quantile 

distribution used to call individual regions of co-methylation. This is as described in Libertini et al. 

[16] (http://www.nature.com/articles/ncomms11306). By counting the number of significant DNAm 

oscillations, the total number of counts was defined as harmonics count per genomic window. 

Throughout the manuscript, harmonics refer to the number of DNAm oscillation counts per region 

of interest. The analysis used 2015 BLUEPRINT segmentations 

(http://www.ensembl.org/info/genome/funcgen/regulatory_segmentation.html) and the ENSEMBL 

regulatory build (http://www.ensembl.org/info/genome/funcgen/regulatory_build.html). This was run 

using fixed windows of 3000bp with oscillations of at least 1% to define harmonics [16]. 

HMM_state, PCHi-C and histone_mark regions were defined by overlap, for this region some 
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windows are transitions and are assigned to more than one category.  Regions of high, medium 

and low harmonics were defined using > 10 (high) and < 3 (low) harmonics per genomic window as 

a hard threshold for all samples. The medium harmonics are between 3 and 10. Regions of highest 

oscillatory signal (hyperoscillatory regions) were defined as the 99th quantile of the harmonics 

distribution in each sample. Putative regions were defined as devoid of any PCHi-C or histone 

mark signal with the exception of H3K36me3, in order to capture transcribed regions which may 

also have a regulatory function. 

 

BLUEPRINT ChIP-Seq analysis pipeline 

 

The details of the pipeline are available at: http://dcc.blueprint-

epigenome.eu/#/md/chip_seq_grch37 

 

ChIP-Seq analysis (CD4+ T cells) 

 

ChIP-seq reads for histone modifications and control assays were mapped to the reference 

genome using BWA-MEM (https://arxiv.org/abs/1303.3997). Samtools 

(http://bioinformatics.oxfordjournals.org/content/25/16/2078.short) was employed to remove 

secondary and low-quality alignments (PHRED score <= 40 or no bits matching the SAM octal flag 

3 or some bits matching the octal flag 3840). Remaining alignments were sorted and 

indexed.macs2 (https://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-9-r137) was 

used to call peaks on each histone modification sample. Its broad peak mode was used for 

H3K27me3, H3K36me3, H3K9me3 and H3K4me1. In all cases, the fragment size parameter was 

estimated with PhantomPeakQualTools (http://www.g3journal.org/content/4/2/209.long). 

Differential peaks for each paired non-activated vs activated histone mark on CD4 T cells were 

obtained with THOR (http://nar.oxfordjournals.org/content/early/2016/08/01/nar.gkw680.full). 

 

PCHi-C analysis pipeline 

 

Interaction confidence scores were computed using the CHiCAGO pipeline (Cairns et al., 2016). 

Briefly, CHiCAGO calls interactions based on a convolution background model reflecting both 

‘Brownian’ (real, but expected interactions) and ‘technical’ (assay and sequencing artefacts) 

components. The resulting p-values are adjusted using a weighted false discovery control 

procedure that specifically accommodates the fact that increasingly larger numbers of tests are 

performed at regions where progressively smaller numbers of interactions are expected. The 

weights were learned based on the decrease of the reproducibility of interaction calls between the 

individual replicates of macrophage samples with distance. Interaction scores are then computed 

for each fragment pair as –log-transformed, soft-thresholded, weighted p-values. Interactions with 
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a CHiCAGO score ≥ 5 in at least one cell type were used for further analysis as in Javierre et al (in 

press). Raw sequencing reads have been submitted to EGA (http://www.ebi.ac.uk/ega), accession 

number EGAS00001001911.  High-confidence interactions (CHiCAGO score >= 5 in at least one 

cell type) are available via the CHiCP browser, where they can be visualised alongside GWAS 

data (http://www.chicp.org) and as custom tracks for the Ensembl browser 

(ftp://ftp.ebi.ac.uk/pub/contrib/pchic/CHiCAGO).  The regulatory build annotations and 

segmentations of the BLUEPRINT datasets are available as a track hub for the Ensembl browser 

(ftp://ftp.ebi.ac.uk/pub/contrib/pchic/hub.txt). Further processed datasets, including TAD definitions, 

regulatory region annotations, specificity scores and gene prioritization data, are available via 

Open Science Framework (https://osf.io/u8tzp). 

 

Machine learning 

 

Partial Least Squares (PLS), Generalized Linear Models (GLM), and Elastic Net (SN) machine 

learning methods incorporating a cross-validation framework were build in order to assess the 

predictive power of features including PCHi-C targets, four histone marks and DNAm oscillations. 

Although more generally labelled as ‘regression’, the approaches used here may be naturally 

extended to classification problems. The three approaches here differ in the way they capture 

model parameters and feature importance. For PLS, features are combined into latent variables. 

GLM uses stepwise addition/removal of features to identify what is considered to be an optimal 

subset. EN performs shrinkage and variable selection to improve predictive performance and 

interpretation of the model. 

 

Performance was assessed using area under the ROC curve (AUC) computed by a cross-

validation procedure in which features to be selected were taken into account. Logistic regression 

was used for forward selection in order to rank the features. Elastic net regression was also run 

and features were ranked based on the final model coefficients.  

 

Partial least squares regression 

 

A machine learning model was built using partial least squares (PLS) regression [17]. PLS 

regression is a powerful method for building predictive models with many factors that are highly 

collinear and functions by constructing a multivariate linear regression model by projecting a set of 

predictor variables and a response variable onto a new space. This constructs a matrix of latent 

components that are linear transformations of the original predictor variables and maximize the 

explained multidimensional variance direction in the response variable space. These latent 

variables are then used for prediction in place of the original variables [18]. In our scenario in which 

the response variable was categorical, a variant of PLS regression termed PLS-DA (discriminant 
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analysis) was used. The predict function from the caret package was used to train PLS classifiers.  

 

Generalized Linear Models 

 

Forward stepwise regression using a generalized linear model (GLM) [19] was used to model the 

relationship between the predictor and response variables. The GLM framework provides for 

Normal, Binomial, Poisson and Multinomial likelihoods, with a variety of link functions. Here, since 

the response variable was categorical, a binomial model and the logit link function was used 

(logistic regression). The model started with no variables and the effect of the addition of each 

variable was estimated at each step. Variables were added to the model according to their ranked 

t-statistic until no further improvement was seen. Here, performance was assessed using the AUC  

 

Elastic Net 

 

Elastic net (EN) [20] was additionally used to build predictive models in a classification setting. 

Least-squares estimates of regression coefficients may be highly unstable, especially in cases of 

correlated predictor variables, leading to low prediction accuracy. Shrinkage methods (setting 

some of the regression coefficients to zero) e.g. lasso regression [21] may result in estimates with 

smaller variance and improved accuracy. Additionally, EN facilitates variable selection by 

encouraging a sparse solution and thus retaining only important predictor variables in the model. In 

addition to a sparse solution, EN can encourage group selection amongst correlated variables 

(which may be considered an advantage in a biological setting). EN requires parameters alpha and 

lambda to be defined. Alpha sets the degree to which the penalization is more towards the L2 

(ridge regression) and L1 (lasso regression). Lambda is the shrinkage parameter and controls how 

strongly the coefficients are shrunk (where 0 would result in no shrinkage). In this study both alpha 

and lambda were optimized through an inner CV loop where for each of the CV runs performed, an 

additional 5 fold CV was performed to tune these parameters using a grid search. 

 

Cross Validation 

 

To enable for an accurate estimate of model performance, the analysis was performed using a 

balanced (stratified) nested cross-validation where the proportion of positive and negative controls 

was maintained during each iteration. In the inner loop of the cross-validation, we performed 

feature selection using recursive feature elimination approach. In the outer loop, we tested 

performance of the resulting classifiers after training them on the best performing feature set from 

the inner loop. Both the outer and the inner loops represented 5-fold cross-validations. 

 

Negative controls were defined as a random subset of all genome locations that were not positive 
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controls (enhancers). This allowed for avoiding a strong imbalance between the number of positive 

and negative controls during the learning process. The negative controls were defined in each fold 

of the outer loop independently, so the effect of random selection was averaged out across the 

cross-validation. The number of negative controls was set to 10 times the number of positive 

controls. 

 

The entire cross-validation – from splitting samples in the outer folds up to the integrative scoring – 

was repeated 10 times. PLS scores were converted into genome-wide ranks within each repeat. 

The ranks were finally averaged across the repeats to produce a final region ranking. 

 

Recursive feature elimination 

 

Feature selection was performed within the inner loop of the cross-validation as follows. For a 

given outer cross-validation fold: 

• execute an inner cross-validation based on 80% of samples and the complete feature set: 

– Determine an optimal number of PLS components (ncomp) 

– For the model with the optimal ncomp, store feature weights and PLS 

performance  

• remove 10% features with lowest weights  

• re-run the inner cross-validation using remaining features 

– Determine an optimal ncomp  

– For the model with the optimal ncomp, store feature weights and PLS 

performance  

• repeat until only one feature remains  

• determine the feature set at which best performance was achieved during the cross-

validation 

 

We then applied the model with best performance to the left-out samples from the outer loop to 

measure the model performance. Feature selection was performed 50 times: 10 repeats multiplied 

by 5 outer folds. For each feature, we tracked the number of times it was selected in the final 

model (a value from 0 to 50). This measure reflected feature importance during the modeling 

process. 

 

Estimation of variability in DNAm oscillations between cell types 

 

Using the same count data which was used to generate Figures 2 and 3 (i.e. distribution of DNAm 

oscillation counts across the genome at a 3000 bp resolution), we used a negative binomial model 

to estimate consistent differences between samples using replicates (Supplementary Table 1) 
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using DESeq2 [22] with adjusted p-value < 0.1 (BH) and absolute logFC > 0. The software 

estimates low counts and outliers, which may influence the results.. 

 
Enrichment analysis  

 

Enrichment analysis methods have become commonplace tools applied to the analysis and 

interpretation of biological data. The goal is to discover pathways or processes associated with the 

gene list of interest. The significance of enrichment is defined by using the hypergeometric test 

[23], using the following parameters:  

 

N – number of network objects covered by the whole ontology  

R – number of network objects in a list under analysis  

n – number of network objects associated with a particular category from the ontology  

r – number of gene from input list intersecting with genes from a particular category  

 

As a result, all terms from the ontology are ranked according to calculated p-values. Ontology 

terms with p-values less than the p-value threshold 0.05 are defined as statistically significant and 

therefore relevant to the studied list of genes. In other words, the gene list is associated with a 

quantitatively ranked list of pathways and processes summarizing its effects at a systems-biology 

level. 

 

For this part of the project, we used Pathway Maps ontologies (maps) along with process 

networks, and three levels of canonical gene ontologies (biological process, molecular functionsm, 

cell localizations) Clarivate analytics canonical pathway maps represent images of signaling 

pathways describing a particular biological mechanism. Pathway maps comprehensively cover 

human, mouse and rat signaling and metabolism. 

 

Annotations were based on the Clarivate Analytics priorietory database Metabase which underlies 

the integrated software suite MetaCore for functional analysis of Next Generation Sequencing, 

gene expression, CNV, metabolic, proteomics, microRNA, and screening data. MetaCore is based 

on a high-quality, manually-curated database of molecular interactions, molecular pathways, gene-

disease associations, chemical metabolism and toxicity information 

(http://clarivate.com/?product=metacore). 

 

Metabase relations between molecular entities: interactions, associations, reactions 

An interaction in MetaBase describes an influence an object has on another object. There are a 

few main types of interactions between molecular entities: 

 Protein-protein interactions. This type of interaction constitutes the majority of signaling 

networks 
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 RNA – protein interactions. A variety of interactions mostly describing protein translation, 

RNA degradation, and interactions of miRNA with its protein targets 

 RNA – RNA interactions. Interactions between different types of RNA (for instance, in the 

ribosome). Also includes micro RNA – target mRNA interactions 

 Compound – protein interactions. Interactions of small molecular endogenous and 

xenobiotic ligands with proteins leading to modulation of proteins activity 

 Compound – DNA, RNA interactions. Mostly unspecific interactions of planar or highly 

reactive compounds leading to interruptions in gene expression 

 Compound-compound interactions. These are indirect interactions between bioactive 

compounds: drug-drug interactions and endogenous ligand – synthetic ligand interactions 

 

In MetaBase, all interactions are attributed with a 1) direction, indicating signal transduction, 2) 

effect, depicting character of influence (e.g. inhibition, activation), 3) mechanism, showing how the 

effect has been reached, 4) experimental details from literature source, confirming the interaction, 

and 5) trust, given by an expert and indicating the probability of the interaction’s existence. Based 

on the mechanism, interactions are divided on direct interactions meaning that physical contact 

between interacting objects occurs and indirect interactions, when observing effect between the 

objects is mediated by omitted interactions or a whole pathway. 

 

In MetaBase, the vast majority of interactions are directional, i.e. depict “from – to” relations. This is 

characteristic for individual interactions such as microRNA – target inhibition, as well as 

interactions linked into multi-step linear signaling or metabolic pathways. It initiates with a ligand – 

receptor interaction on the cellular membrane and is transmitted via several signal transduction 

interactions to the transcription factor, followed by its binding to the promoter of a target “effector” 

gene such as endogenous metabolic enzymes. Information on the direction of interaction is not 

always available from experimental literature. For instance, yeast-2-hybrid or co-

immunoprecipitation assays can only establish the fact of binding but not the direction of 

interaction. In such cases, the direction can be established by its relative position in the signaling 

pathway. When no additional data on the pathways is available (typical case for recently annotated 

proteins), the direction is not marked until more data establishes it. 

 

Segmentation with MethylSeekR 

 

Unmethylated and low methylated regions were estimated with MethylSeekR [24] with 5% FDR 

cutoff and m=0.5 as input parameters. 
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Results 

 

The data used in this study comprised matched samples of whole-genome bisulfite sequencing 

(WGBS) and histone mark ChIP-seq (H3K4me1, H3K4me3, H3K27ac, H3K36me3) for 24 healthy 

donors and target regions (promoter interacting) from promoter capture Hi-C (PCHi-C) for 9 

primary haematopoietic cell types, including neutrophils, monocytes, CD4+ naïve T cells, CD8+ 

naïve T cells, erythroblasts, megakaryocytes and macrophages (Supplementary Table 1) 

(Methods). We also analyzed methylomes of activated and non activated CD4+ T cells from 

Burren et al. [13]. Using these datasets, we tested the hypothesis that patterns in the spatial 

oscillations of DNA methylation (DNAm oscillations) may be used to predict enhancers discriminate 

them from different types of the genomic regions, showing that enhancers display a 

hyperoscillatory pattern. In order to establish the predictive power of DNA methylation, we 

compared the methylome oscillatory signature (harmonics) [14] using three different genome 

segmentations, which were used as reference sets. One set was based on criteria established by 

Roadmap Epigenomics Project [25] (Methods), and two were internal BLUEPRINT analyses 

(Methods). 

 

Enhancers are enriched in DNAm oscillations 

 

Initially, we used enhancer definitions established by the Roadmap epigenomics project [25,26]. 

Using these criteria, we defined a benchmark set of different region types using histone marks and 

PCHi-C data (Methods). Using this set, we investigated the predictive nature of DNA methylation 

by defining genomic classes based on the frequency of DNAm oscillations (harmonics).  

 

Across all 24 samples, we found the genome coverage of enhancers to be on average 4% [26], 

with 1% of regions covering promoter proximal, 15% to be transcribed regions, 66% defined as 

quiescent regions and 24% of the genome being devoid of signal. Given these genomic 

segmentations, we found striking differences in the pattern of DNAm oscillation differences 

between them. Indeed, on average 30% of harmonics were in enhancer regions, 10% in promoter 

proximal, 45% in transcribed regions and 15% in quiescent regions, though their frequency (i.e. the 

number of harmonics per window) varied across genomic region types (Supplementary Table 2). 

We found that different region types had distinct DNAm oscillation profiles (Supplementary Table 

2). Based on this, we speculated that the frequency of oscillations is informative and it may be a 

predictor of region type, a hypothesis which we later tested using various machine learning 

algorithms (see Methods and machine learning section).  

 

Using Roadmap enhancer regions definitions, we found enrichment (>30 fold) of harmonics 

(hypergeometric test, P < 0.001), with oscillations of magnitude of at least 10% in DNA methylation 
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levels as defined in [14] within enhancer regions across all cell types, where quiescent regions had 

very little signal (Supplementary Table 2). Here, the different types of regions had distinct 

oscillatory profiles, where active enhancers and promoter proximal regions showed the highest 

number of harmonics in every cell type, while transcribed regions and quiescent regions showed 

the lowest number of harmonics (Supplementary Table 2). Interestingly, poised enhancers 

showed fewer harmonics than active enhancers, but on average twice as many as transcribed 

regions (Supplementary Table 2).  

 

As a second analysis, we investigated the harmonics content of methylomes by using genomic 

region definitions based on the BLUEPRINT genome segmentations (Methods). These 

segmentations were run using the collective set of BLUEPRINT data with the ChromHMM software 

with the purpose of partitioning the genome based on predicted genomic region function. This 

dataset included a predicted range of different enhancer classes that we used as benchmark for 

our analysis (Methods). As in the first analysis, we found that the harmonics signature of 10% 

oscillations could be used to discriminate different classes of enhancers (Supplementary Figure 

1). Here, each of the described categories displayed a distinct distribution of harmonics. This test 

set validated our initial observations of hyperoscillatory patterns in enhancers. For this reason, we 

proceeded to test whether harmonics could be employed as a predictive tool for enhancer 

characterization using several other datasets to support this model.   

 

 

Predicting genomic regions using DNAm oscillations in comparison to genome 

segmentations, PCHi-C and histone marks 

 

The focus of our third analysis was based on the BLUEPRINT segmentations integrated in 

conjunction with the ENSEMBL Regulatory Build [27] with additional states with respect to the 

previous analysis shown in Supplementary Figure 1. Here we used DNAm oscillations at a higher 

level of resolution, with differences of 1% being used to define harmonics (Methods).  

 

In this setting, genome segmentations were taken from the recently published ENSEMBL 

Regulatory Build [27,28], which comprises  publicly available data from different large epigenomic 

consortia (including ENCODE, Roadmap Epigenomics and BLUEPRINT) and includes 

BLUEPRINT chromatin segmentations 

(http://www.ensembl.org/info/genome/funcgen/regulatory_segmentation.html) The ENSEMBL 

Regulatory Build includes 8 chromatin states, including heterochromatin, repressed, gene 

(genic), weak (weak enhancers), distal (distal enhancers of moderate signal), proximal (proximal 

enhancers of moderate signal), poised (which are in fact enhancers of strong active signal) and 

tss (transcription start sites). The regions defined as poised in this classification include H3K27ac 
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signal (i.e. active enhancers). For simplicity, we have retained the same nomenclature for the 

labels used to functionally annotate the states as designated in the Regulatory Build 

(http://www.ensembl.org/info/genome/funcgen/regulatory_build.html) [27,28]. 

 

We investigated the harmonics of each of the region types based on three reference sets, which in 

turn were based on three different types of overlaps. At the most basic level (first reference set), 

region definitions were based on the genome segmentations (regions α). As a second reference 

set, we took the overlap of these with regions where PCHi-C signal [28] existed for targets 

(enhancers; regions β) (Methods). As a third reference set, we took a further subset of regions 

where both PCHi-C and specific patterns of histone marks signal existed (regions γ) (see PCHi-C 

section in Methods). Based on these three reference sets, we expected regions α to have the 

least confidence for predicting enhancers, because they were only based on a computational 

model. Conversely, we expected the regions γ to have the strongest confidence because they 

were based on the overlap of all reference datasets.  

 

Indeed, across over all 24 samples the overall enrichment of harmonics over the background 

(heterochromatin regions) improved when comparing the three reference sets (Figure 1A). This is 

particularly true for enhancers of strong signal (termed poised by Cunningham et al. [27]) and tss.  

When comparing the three reference sets, each genomic region type has distinct harmonics, 

enrichment and genome coverage (Supplementary Figures 2-3). In general, enhancer regions 

show low coverage and high enrichment of harmonics while heterochromatin regions show the 

opposite pattern (Supplementary Figures 2-3). The three reference sets show comparable levels 

of harmonic content, with the exception of poised regions, where using three sets of overlap 

(regions α, β and γ) greatly increases the ratio of harmonics enrichment (Figure 1A). Taken 

together, these results show that high frequency oscillations are associated with different enhancer 

and promoter proximal classes, even as these have lower genome coverage (Supplementary 

Figure 2).  

 

Across all samples, the genome-wide Pearson correlation between harmonics frequency and the 

position of the poised class is 0.4 (p < 0.001), with tss 0.5 (p < 0.001), distal 0.25 (p < 0.001), 

proximal 0.1 (p < 0.001), heterochromatin -0.2 (p < 0.001), repressed 0 (p < 0.001) and gene 0 

(p < 0.001). By randomizing the class labels as a negative control, this association is lost (p > 

0.05).  

 

The high confidence reference set (regions γ) showed a clear discrimination in the harmonics 

pattern (Figure 1B), supporting our hypothesis that harmonics content can be used to discriminate 

different classes of genomic regions, and that enhancers show elevated levels of DNAm 

oscillations. This pattern is particularly evident when assessing quantile distributions of harmonics 
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content, where the differences in distribution were associated to different enhancer types. This is a 

striking pattern which seems to be reproducible in each cell type analysed (Figure 2A). This 

phenomenon is also reproducible across all samples, as evident from an overall analysis (Figure 

2B).  

 

Using these quantile distributions in order to quantify the oscillatory effect, we calculated the 

differences between the integrals. Across all the cell types, the integrals of the areas under the 

curve are distinct for each region type. Our data show a larger effect for the poised (~34.9) and 

tss (~35.7), while distal is the second largest (~15.1), then weak (~7.8), repressed (~5.5), gene 

(~3.4) and heterochromatin (~1.4). With this numerical scale, it was possible to quantify and rank 

the oscillatory signature of each of the enhancer classes and associate it with an area size. 

According to this analysis, enhancer and tss regions show a harmonics signature (i.e. integral) 

which is 30-fold greater than the background, supporting our earlier claim (Figure 2B).  

 

Strong recovery of enhancers using DNAm oscillations only 

 

Next, we investigated how many of the high confidence regions (histone_marks) could be 

recovered with DNAm oscillations alone. We found that using high and medium harmonic signal 

(Methods) we could on average recover 90% of poised, 85% of tss, 57% of distal, and 60% of 

proximal enhancer regions (Figure 3). The oscillatory signature of weak enhancer regions was 

too subtle to be effectively used, even if it was statistically different (Mann-Whitney U, P< 0.001) 

from heterochromatin, repressed and gene regions (Figure 1B). The weak enhancer regions 

were on average too many for the signal to be strong enough (Supplementary Figure 2).  

 

We found some variation in recovery among different cell types, depending on the base oscillatory 

signature of the background, where neutrophils and monocytes had the strongest signal, and CD8+ 

naive T cells and megakaryocytes the weakest (Supplementary Figure 4), with the lowest number 

of high harmonic counts and 0 oscillations in the background (Supplementary Table 3). It is 

interesting to note that variability between cell types showed DNAm oscillations to have the 

greatest difference between neutrophils and monocytes. In this regard, we estimate the effects of 

variability of DNAm oscillations between cell types at individual loci (Methods). The analysis 

represents consistent variability among cell types using biological replicates (Supplementary Table 

1). Using the same count data which was used to generate Figures 2 and 3 (i.e. distribution of 

DNAm oscillation counts across the genome at a 3000 bp resolution), we established that within 

the lymphoid lineage, DNAm oscillations predicting enhancers varied 11% between CD4+ naive T 

cells and cytotoxic CD8+ T naive cells. Within the myeloid lineage, DNAm oscillations 

megakaryocytes and erythroblasts varied 27%. Subtle differences between resting (M0), activated 

(M1) and alternatively activated (M2) macrophages were also reported at ~0.03% variability in 
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DNAm oscillations, showing the high resolution potential of this method.  The full results of this 

analysis are shown in supplementary Table 9.   

 

Putative enhancers defined by methylation alone 

 

Regions of high harmonics (> 99th quantile) with no identifiable histone marks or PCHi-C signal 

were hypothesized to carry enhancer signal, and these were quantified for each of the samples. 

On average 1% of hyperoscillatory regions was not assigned to any known enhancer category 

based on chromatin segmentation (Supplementary Table 1), amounting to a sum of 1630 putative 

enhancers across cell types. In addition, we found 238 regions devoid of histone marks, not 

assigned to any category, and with a hyperoscillatory signature which overlapped with the targets 

(enhancers in PCHi-C promoter enhancers interactions) (Supplementary Table 1). Using the 

PCHi-C data, we found the associated genes by overlap of +/-2500 bp of the associated promoter. 

While 62% of genes where found to be inside the regions thus defined, 10% of genes where found 

to be downstream, 18% to partially overlap and 10% to be upstream of these regions, where the 

median distance from the TSS was 10,000 bp. In absence of any gene expression data, and in 

order to ascribe a biological signature to these regions by categorizing genes into groups, we ran 

functional overview analyses using Clarivate Analytics tools for pathway analysis and gene 

ontology enrichments (http://clarivate.com/life-sciences/discovery-and-preclinical-

research/metacore/). By doing so, we identified enriched pathways associated to this global 

signature across cell types (Supplementary Table 4). In addition, we ran a cell specific analysis 

for macrophages which had the largest number of samples (Supplementary Table 1). 

Interestingly, these analyses yielded significant results for enriched pathways. Results included 

pathways specific to the immune response such as IL-4 signalling (Supplementary Figure 5), as 

well pathways specific to blood cell types (Supplementary Figure 6-8). While gene ontology 

analyses confirmed that the most significant biological processes are associated with transcription 

(Supplementary Table 5), the genes associated with this signature counted enrichment for protein 

kinases and microRNAs. Among these, microRNAs involved in epithelial-to-mesenchymal 

transition were identified as bearing hyperoscillatory signatures in their promoter regions which are 

devoid of histone marks (Supplementary Figure 6). In addition to these, one of the most 

significantly enriched pathways relates the immune response in macrophages, where several of 

the kinases bear this epigenetic signature (Figure 4). Putative enhancers from macrophage 

samples were associated to genes in macrophage-specific pathways (Figure 4), showing a degree 

of cell-type specificity.  

 

CD4 activation patterns can be recapitulated by DNA methylation 

 

We explored the DNAm oscillatory signature of activated and non activated CD4+ T cells, which, as 
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already discussed, bear strong transcriptional and epigenetic differences [13]. DNAm oscillations in 

CD4+ T cells recovered ~90% of enhancer regions in both non-activated cells and activated cells, 

when using previously established histone mark definitions as reference set and 1% DNAm 

oscillations and 3000bp windows (Table 1). 

Given the accuracy (ACC = 0.90), sensitivity (TPR = 0.91) and specificity (SPC = 0.99), calculated 

over both activated and non activated enhancers, this is statistically significant result 

(hypergeometric test, P < 0.001), which implies that DNAm oscillations alone may be used as a 

predictor of enhancer regions, and that these regions are defined by the methylome irrespective of 

the activation state.  

 

Based on the validation using histone marks, we also found that 67% of active enhancers defined 

by DNA-methylation were found in both activated and non-activated states. We hypothesize that 

the latter regions may participate in changing toward an activated phenotype, as well defining 

CD4+ T cell lineage. Analogously, based on histone marks validation, we found that 51% of 

methylation-defined poised enhancers were found in both states, as well as 73% of promoter 

proximal regions. At the same time 86% of regions defined by methylation alone (not confirmed by 

histone marks) were found in both activated and non-activated CD4+ T cell methylomes. Based on 

the DNAm oscillation prediction (Table 1), 5596 regions switch from inactive to active in activated 

CD4+ T cells, 93% of which (5252) are predicted by methylation. Likewise, 7622 switch to poised 

in non-activated CD4+ T cells, of which 6699 (88%) are predicted by methylation. Also, 372 

regions were marked by DNAm only prior to activation and 109 regions were marked by DNAm 

only prior to deactivation. According to our methylome analysis of CD4+ activation, 86% of regions 

which are switched on (from poised to active) upon activation are predicted to become active 

enhancers, and 76% of the regions which are switched off (from active to poised) are predicted to 

become poised enhancers in activated CD4+ T cells. Taken together, these results lead us to 

hypothesize that methylation alone can be used to predict the location of latent enhancers, 

previous to their activation. 

 

Machine learning models support DNAm as predictive of enhancer location 

 

Using enhancers with strong signal as defined by BLUEPRINT segmentations and ENSEMBL 

regulatory build as reference set, we used an array of machine learning algorithms to test the 

hypothesis that DNAm oscillations may be informative for predicting enhancers using genome-wide 

data for each of the predictive categories at the resolution used for the enrichment analyses 

(Methods). As input, we used the data employed for the third analysis (BLUEPRINT 

segmentations integrated in conjunction with the ENSEMBL Regulatory Build) where the rows of 

the matrix represent genomic coordinates, and columns represent features. The response variable 

to be predicted was a class label of 0 (negative controls) and 1 (enhancers). To summarize model 
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performance, we estimated the % of times in which each feature was estimated to be informative 

for predicting enhancers. In the first instance, we built a partial least squares regression model with 

recursive feature elimination. In this analysis, we found DNAm oscillations to be selected as an 

informative feature for predicting enhancers 100% of the times, with histone marks also being very 

informative (Supplementary Table 7). Crucially, H3K4me3 marks are useful for sorting promoters 

from enhancers when using models agnostic to gene location. In this context, it is important to note 

that absence of a mark can be just as informative as a presence, as H3K36me3 marks are 

inversely related to enhancer location (r = -0.1, p < 0.001). Collectively, all features are informative, 

as error decreases when the number of features increases, with four features being sufficient 

(Supplementary Figure 8). ROC analysis showed the model to be of high performance (AUC = 

0.90, Supplementary Figure 9). 

 

We estimated the informative nature of DNAm oscillations to be predictive of enhancer locations 

based on additional machine learning algorithms, including generalized linear models (Methods) in 

conjunction with forward feature selection (AUC = 0.92). This analysis highlighted the predictive 

value of DNAm oscillations where it was always selected as the more informative feature 

(Supplementary Figure 10), here a total of four features were also found to be best suited for 

predicting enhancers (Supplementary Figure 11).  

 

The results of the elastic nets model (Methods) also ranked DNAm oscillations to be predictive, 

though this was only run on a subset of the data (AUC =0.88, Supplementary Table 8). All in all, 

DNAm oscillations were found to be informative by all the methods employed (Supplementary 

Table 7). Interestingly, H3K4me3, H3K4me1 and target regions from PCHi-C regions are less 

informative than the other features, when taken individually (Supplementary Table 7).  

 

 

In order to include positive and negative controls, and account for additional features related to 

enhancer prediction and include other features related to DNA methylation, we repeated the 

analysis by adding four more features, namely CpG islands (CGI), low-methylated regions (LMR) 

and unmethylated regions (UMR) using an established DNAm segmentation algorithm based on 

Hidden Markov Models (Methods) and DNaseI Hypersensitivity Clusters in 125 cell types from 

ENCODE (DNAase_cluster). Given the new input variables, this 10-feature analysis confirmed the 

overall ranking and informative levels of individual features as measured by the three models 

(Supplementary Table 7). In addition, we estimated the overall informative levels of the 

DNAase_cluster to be at 73.3%, CGI at 41.3%, UMR at 20% and LMR at 0% (Supplementary 

Table 7). 
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Discussion 

 

In eukaryotes, enhancers control the activation of gene expression. Importantly, the activity of 

enhancers can be restricted to a cell type, a time point, or a specific condition [6]. For example, the 

activation of CD4+ T cells is a pronounced epigenetic and transcriptional event that has been 

described after four hours [13]. In this context, understanding the dynamic interaction between 

genomic and epigenomic signals is key for identifying such regions and inferring their function 

[6,8]. While there is no single enhancer mark, histone modifications and chromatin structure have 

long been associated with the search of candidate enhancers [6]. These regions can be defined as 

elements that increase transcription level independently of their orientation, position and distance 

to a promoter and can be characterized with histone modification profiles, open chromatin 

information, transcription factor binding sites and other types of data with increased accuracy in a 

cell-type specific context [7]. Long-range interactions between promoters and enhancers have also 

been identified using chromosome conformation capture techniques, such as promoter capture Hi-

C (PCHi-C). For example this method has recently been applied to 17 human primary 

haematopoietic cell types, including the ones described here [29]. In our work, we use target 

(enhancer) regions from this study in conjunction with a whole compendium of BLUEPRINT 

histone mark data matched to whole genome bisulfite sequencing methylomes in multiple blood 

cell types to estimate the power of DNAm oscillations to predict enhancers. 

 

Using the above mentioned data types as reference sets, we show that DNA methylation is a 

genomic signal [8] and epigenomic marker whose spatial patterns (DNAm oscillations, as 

frequency of harmonics) [14] can be used to infer the location of enhancer regions. Having 

observed that increased frequency of harmonics can be used to discriminate different types of 

genomic regions in a test set (Figure 1), we observed a 30-fold difference in oscillatory patterns 

between background and enhancers based on multiple analyses (Supplementary Table 2, Figure 

2). 

 

Having established the enrichment of DNAm in enhancers based on reference regions identified 

with other data, we set out to study the percentage of recovery of enhancers using DNAm 

oscillations alone. We were able to recover 90% of enhancers of strong signal using DNAm 

oscillations alone across all 9 cell types (Figure 3). Using multiple machine learning models 

(Methods, Results), we estimated the predictive power of DNAm oscillations for estimating 

enhancer types when compared to the other datasets employed in this study. DNAm oscillations 

were found to be informative for estimating enhancer locations alongside histone marks 

(Supplementary Table 7), with DNAm oscillations were found to be the most consistently 

informative individual feature across all models.  
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The power of DNAm oscillation in predicting enhancers was confirmed when we tested the 

hypothesis that DNA methylation alone is sufficient for inferring the genome regulatory backbone. 

In this case, CD4+ T cell activation methylomes were generated in the context of a parallel study 

[13], where the experimental design was such that within four hours, the activation of CD4+ T cells 

gave rise changes in the activity of regulatory elements and in the transcription of enhancer RNAs 

that corresponded to changes in the expression of their interacting target genes identified by PCHi-

C [12,13]. In this setting, we used enhancer regions defined in [12,13] as a reference set, and our 

DNAm data supports the evidence that 90% of activated enhancers can be recovered using DNAm 

oscillations alone (Table 1). 

 

Enhancer properties such as cell specificity, redundancy and plasticity [1] are the background 

against which we set our hypothesis. Indeed, we hypothesize DNAm oscillations to be a cell-

specific long-term [8] marker laying out the epigenetic landscape against which multiple chromatin 

events may occur, with DNA binding proteins reading the CpG signal [8], and in turn activating or 

repressing enhancer regions. Our results on the methylomes of activated and non-activated CD4+ 

T cells indicate that DNAm oscillations exist in both states, irrespective of activation, whereas 

histone marks may become detached in non-activated states. Latent were originally identified upon 

activation by stimulation of differentiated cells [3]. As such, DNAm oscillations could be used to 

glean the location of latent enhancers even before the activation of such regions.  

 

This work highlights the reproducibility of DNAm oscillations as predictor of enhancers across 

multiple cell types, even in the context of cell specificity and variability among samples. Our results 

indicate that these regions are identifiable by DNA methylation alone irrespective of the epigenetic 

state. Based on this, it is possible to hypothesize that DNA methylation may act as an epigenetic 

backbone which marks regions which are later used as genome occupancy regions for histone 

marks at any stage of development. This work is the first to suggest that DNA methylation alone 

may be used to define enhancers, based on its spatial oscillatory patterns, and not dynamic CpG 

regions or differentially methylated regions. Also, we suggest that this epigenomic mark defining 

regulatory regions is stable across cell lineage and activation.  
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Figure Legends   

 

Figure 1. (A) Enrichment of harmonics over the background (heterochromatin regions) based on 

BLUEPRINT segmentations integrated in conjunction with the ENSEMBL Regulatory Build [27]. 

Region definitions are based on the genome segmentations (regions α), overlap of these with 

regions where PCHi-C signal existed for targets (regions β), a further subset of regions where both 

PCHi-C and histone mark signal exists (regions γ).  (B) Number of harmonics in high confidence 

regions based on histone marks using BLUEPRINT segmentations integrated in conjunction with 

the ENSEMBL Regulatory Build [27] (Methods). 

 

Figure 2. (A) Quantile plots of harmonics distributions showing distinguishable patterns in 

harmonics content, where each region is defined by a different incline and this pattern is 

reproduced in each cell type. (B) Quantile plots of harmonics distributions: each type of region is 

defined by a different incline, specific to oscillatory content, where regulatory regions are enriched 

in harmonics. 

 

Figure 3. Recovery of enhancers using DNAm oscillations alone. We found that using high and 

medium harmonic signal, we could on average recover 90% of poised, 85% of tss, 57% of distal, 

and 60% of proximal enhancer regions. The data is represented with boxplots as mean +/- 95% 

confidence interval.  

 

Figure 4. Immune response_MIF - the neuroendocrine-macrophage connector pathway. Genes 

highlighted with red bar are associated with putative enhancers identified with DNAm oscillations. 
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Table Legend 

 

Table 1. Prediction of CD4
+
 T cell activation enhancers based on DNAm oscillations, as validated by 

enhancer definitions based on corresponding histone mark data.  

NAC_histones: enhancer regions as defined by histone marks only (non-activated CD4
+
 T 

cells).NAC_methylation: enhancer regions as defined by DNA methylation only (non-activated CD4
+
 T 

cells). NAC.Methylation.prediction: prediction rate of enhancer regions as defined by DNA methylation only 

divided by enhancer regions as defined by histone marks only (non-activated CD4
+
 T cells), 

overlap.NAC.AC: number of DNA methylation predicted regions that are overlapping between activated and 

non-activated CD4
+
 T cells. 

AC_histones: enhancer regions as defined by histone marks only (activated CD4
+
 T cells). 

AC_methylation: enhancer regions as defined by DNA methylation only (activated CD4
+
 T cells). 

AC.Methylation.prediction: prediction rate of enhancer regions as defined by DNA methylation only divided 

by enhancer regions as defined by histone marks only (activated CD4
+
 T cells), % switch: the percentage of 

DNA methylation predicted regions that are found in CD4
+
 T cells switching from a non-activated to an 

activated state. 

OFF(NAC).TO.ON(AC): the number of DNA methylation predicted regions that are found in activated CD4
+
 T 

cells (absent in non-activated).  

ON(NAC).TO.OFF(AC): the number of DNA methylation predicted regions that are found in non-activated 

CD4
+
 T cells (absent in activated).  

OFF(NAC).TO.ON(AC) %: the percentage of DNA methylation predicted regions that are found in activated 

CD4
+
 T cells (absent in non-activated).  

ON(NAC).TO.OFF(AC) %: the percentage of DNA methylation predicted regions that are found in non-

activated CD4
+
 T cells (absent in activated). 

The % within brackets corresponds to the % of verified states predicted by methylation based on the histone 

gold standard. 
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Figure 3. 
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Figure 4. 
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Table 1. 

 

Enhancer NAC_histones NAC_methylation NAC.Methylation.prediction overlap.NAC.AC 

Active 6189 5848 0.94 3932 

Poised 7778 6822 0.88 123 

promoter_proximal 245 222 0.91 163 

putative  NA 789 NA 680 

Total 14212 13681 0.91 4898 

Enhancer AC_histones AC_methylation AC.Methylation.prediction % switch 

Active 9912 9184 0.93 0.67 

Poised 274 239 0.88 0.51 

promoter_proximal 565 522 0.92 0.73 

Putative NA 1052 NA 0.86 

Total 10751 10997 0.91 0.69 

Enhancer OFF(NAC).TO.ON(AC)* ON(NAC).TO.OFF(AC)* OFF(NAC).TO.ON(AC) % 
ON(NAC).TO.OFF(AC) 

% 

Active 

5252 (93%)* switch to 
active in activated CD4+ 

T cells 

1916 (97%)*switch to 
active in non-activated 

CD4+ T cells 86 22 

Poised 

116 (98%)* switch to 
poised in activated 

CD4+ T cells 

6699 (88%)* switch to 
poised in non-activated 

CD4+ T cells 2 76 

promoter_proximal 359 (94%) 59 (94%) 6 1 

latent (methylation) 372 109 6 1 

Total 6099 8783 100 100 
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