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Abstract18

Human viruses (those that infect human cells) have been associated with many cancers, largely due to19

their mutagenic and functionally manipulative abilities. Despite this, cancer microbiome studies have almost20

exclusively focused on bacteria instead of viruses. We began evaluating the cancer virome by focusing21

on colorectal cancer, a primary cause of morbidity and mortality throughout the world, and a cancer linked22

to altered colonic bacterial community compositions but with an unknown association with the gut virome.23

We used 16S rRNA gene, whole shotgun metagenomic, and purified virus metagenomic sequencing of24

stool to evaluate the differences in human colorectal cancer virus and bacterial community composition.25

Through random forest modeling we identified differences in the healthy and colorectal cancer virome. The26

cancer-associated virome consisted primarily of temperate bacteriophages that were also predicted to be27

bacteria-virus community network hubs. These results provide foundational evidence that bacteriophage28

communities are associated with colorectal cancer and potentially impact cancer progression by altering the29

bacterial host communities.30

Importance31

Colorectal cancer is a leading cause of cancer-related death in the United States and worldwide. Its risk and32

severity have been linked to colonic bacterial community composition. Although human-specific viruses have33

been linked to other cancers and diseases, little is known about colorectal cancer virus communities. We34

addressed this knowledge gap by identifying differences in colonic virus communities in the stool of colorectal35

cancer patients and how they compared to bacterial community differences. The results suggested an indirect36

role for the virome in impacting colorectal cancer by modulating their associated bacterial community. These37

findings both support a biological role for viruses in colorectal cancer and provide a new understanding of38

basic colorectal cancer etiology.39
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Introduction40

The human gut virome is the community of all viruses found in the gut, including bacteriophages (viruses41

that only infect bacteria), eukaryotic viruses (viruses that only infect eukaryotic cells), and human-specific42

viruses (viruses that only infect human cells). Due to their mutagenic abilities and propensity for functional43

manipulation, human viruses are strongly associated with, and in many cases cause, cancer (1–4). Because44

bacteriophages are crucial for bacterial community stability and composition (5–7), and members of those45

bacterial communities have been implicated as oncogenic agents (8–11), bacteriophages have the potential46

to indirectly impact cancer as well. The gut virome therefore has a potential to be associated with, and47

potentially impact, human cancer. Altered human virome composition and diversity have already been48

identified in diseases including periodontal disease (12), HIV (13), cystic fibrosis (14), antibiotic exposure (15,49

16), urinary tract infections (17), and inflammatory bowel disease (18). The strong association of bacterial50

communities with colorectal cancer, the previous identification of human-specific viruses that cause cancer,51

and the precedent for the virome to impact other human diseases suggest that colorectal cancer may be52

associated with altered virus communities.53

Colorectal cancer is the second leading cause of cancer-related deaths in the United States (19). The54

US National Cancer Institute estimates over 1.5 million Americans were diagnosed with colorectal cancer55

in 2016 and over 500,000 Americans died from the disease (19). Growing evidence suggests that an56

important component of colorectal cancer etiology may be perturbations in the colonic bacterial community57

(8, 10, 11, 20, 21). Work in this area has led to a proposed disease model in which bacteria colonize the58

colon, develop biofilms, promote inflammation, and enter an oncogenic synergy with the cancerous human59

cells (22). This association also has allowed researchers to leverage bacterial community signatures as60

biomarkers to provide accurate, noninvasive colorectal cancer detection from stool (8, 23, 24). While an61

understanding of colorectal cancer bacterial communities has proven fruitful both for disease classification62

and for identifying the underlying disease etiology, bacteria are only a subset of the colon microbiome.63

Viruses are another important component of the colon microbial community that have yet to be studied in64

the context of colorectal cancer. We evaluated disruptions in virus and bacterial community composition65
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in a human cohort whose stool was sampled at the three relevant stages of cancer development: healthy,66

adenomatous, and cancerous.67

Colorectal cancer progresses in a stepwise process that begins when healthy tissue develops into a68

precancerous polyp (i.e., adenoma) in the large intestine (25). If not removed, the adenoma may develop69

into a cancerous lesion that can invade and metastasize, leading to severe illness and death. Progression to70

cancer can be prevented when precancerous adenomas are detected and removed during routine screening71

(26, 27). Survival for colorectal cancer patients may exceed 90% when the lesions are detected early and72

removed (26). Thus, work that aims to facilitate early detection and prevention of progression beyond early73

cancer stages has great potential to inform therapeutic development.74

Here we begin to address the knowledge gap of whether virus community composition is altered in colorectal75

cancer and, if it is, how those differences might impact cancer progression and severity. We also aimed76

to evaluate the virome’s potential for use as a diagnostic biomarker. The implications of this study are77

threefold. First, this work supports a biological role for the virome in colorectal cancer development and78

suggests that more than the bacterial members of the associated microbial communities are involved in the79

process. Second, we present a supplementary virus-based approach for classification modeling of colorectal80

cancer using stool samples. Third, we provide initial support for the importance of studying the virome as a81

component of the microbiome ecological network, especially in cancer.82

Results83

Sample Collection and Processing84

Our study cohort consisted of stool samples collected from 90 human subjects, 30 of whom had healthy85

colons, 30 of whom had adenomas, and 30 of whom had carcinomas (Figure 1). Half of each stool sample86

was used to sequence the bacterial communities using both 16S rRNA gene and shotgun sequencing87

techniques. The 16S rRNA gene sequencing was performed for a previous study, and the sequences were88
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re-analyzed using contemporary methods (8). The other half of each stool sample was purified for virus89

like particles (VLPs) before genomic DNA extraction and shotgun metagenomic sequencing. In the VLP90

purification, cells were disrupted and extracellular DNA degraded (Figure 1) to allow the exclusive analysis91

of viral DNA within virus capsids. In this manner, the extracellular virome of encapsulated viruses was92

targeted.93

Each extraction was performed with a blank buffer control to detect contaminants from reagents or other94

unintentional sources. Only one of the nine controls contained detectable DNA at a minimal concentration of95

0.011 ng/µl, thus providing evidence of the enrichment and purification of VLP genomic DNA over potential96

contaminants (Figure S1 A). As expected, these controls yielded few sequences and were almost entirely97

removed while rarefying the datasets to a common number of sequences (Figure S1 B). The high quality98

phage and bacterial sequences were assembled into highly covered contigs longer than 1 kb (Figure S2).99

Because contigs represent genome fragments, we further clustered related bacterial contigs into operational100

genomic units (OGUs) and viral contigs into operational viral units (OVUs) (Figure S2 - S3) to approximate101

organismal units.102

Unaltered Diversity in Colorectal Cancer103

Microbiome and disease associations are often described as being of an altered diversity (i.e. “dysbiotic”).104

Therefore, we first evaluated the influence of colorectal cancer on virome OVU diversity. We evaluated105

differences in communities between disease states using the Shannon diversity, richness, and Bray-Curtis106

metrics. We observed no significant alterations in either Shannon diversity or richness in the diseased states107

as compared to the healthy state (Figure S4 C-D). There was no statistically significant clustering of the108

disease groups (ANOSIM p-value = 0.6, Figure S4). Notably, there was a significant difference between109

the few blank controls that remained after rarefying the data and the other study groups (ANOSIM p-value110

< 0.001, Figure S5), further supporting the quality of the sample set. In summary, standard alpha and beta111

diversity metrics were insufficient for capturing virus community differences between disease states (Figure112

S4). This is consistent with what has been observed when the same metrics were applied to 16S rRNA gene113

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/152868doi: bioRxiv preprint 

https://doi.org/10.1101/152868
http://creativecommons.org/licenses/by/4.0/


sequences and metagenomic samples (8, 23, 24) and points to the need for alternate approaches to detect114

the impact of colorectal cancer disease state on these community structures.115

Virome Composition in Colorectal Cancer116

As opposed to the diversity metrics discussed above, OTU-based relative abundance profiles generated117

from 16S rRNA gene sequences are effective for classifying stool samples as originating from individuals118

with healthy, adenomatous, or cancerous colons (8, 23). By using classification models instead of attempting119

to identify single differentially abundant OTUs, these and other studies have been successful in capturing120

complex community relationships in which differences in taxonomic relative abundance are considered in121

the context of other taxa. The exceptional performance of bacteria in these classification models supports a122

role for bacterial functionality in colorectal cancer. We built off of these findings by evaluating the ability of123

virus community signatures to classify stool samples and compared their performance to models built using124

bacterial community signatures.125

To identify the altered virus communities associated with colorectal cancer, we built and tested random forest126

models for classifying stool samples as belonging to individuals with either cancerous or healthy colons. We127

confirmed that our bacterial 16S rRNA gene model replicated the performance of the original report which128

used logit models instead of random forest models (Figure 2 A) (8). We then compared the bacterial OTU129

model to a model built using OVU relative abundances. The viral model performed as well as the bacterial130

model (corrected p-value = 0.6), with the viral and bacterial models achieving mean area under the curve131

(AUC) values of 0.768 and 0.775, respectively (Figure 2 A - B). To evaluate the ability of both bacterial and132

viral biomarkers to classify samples, we built a combined model that used both bacterial and viral community133

data. The combined model did not yield a statistically significant performance improvement beyond the viral134

(corrected p-value = 0.08) and bacterial (corrected p-value = 0.1) models, yielding an AUC of 0.807 (Figure135

2 A - B).136

We compared viral metagenomic methods to bacterial metagenomic methods by building a viral model and137

a model built using OGU relative abundance profiles from bacterial metagenomic shotgun sequencing data.138
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This bacterial model performed worse than the other models (mean AUC = 0.458) (Figure 2 A - B). To139

determine the cause of the discrepancy between the two bacterial sequencing methods, we attempted to140

compare the approaches at a common sequencing depth. This revealed that the bacterial 16S rRNA gene141

model was strongly driven by sparse and low abundance OTUs (Figure S6). Removal of OTUs with a142

median abundance of zero resulted in the removal of six OTUs, and a loss of model performance down143

to what was observed in the metagenome-based model (Figure S6 A). The majority of these OTUs had a144

relative abundance lower than 1% across the samples (Figure S6 B). Although the features in the viral model145

also were of low abundance (Figure S8 F), the coverage was sufficient for high model performance, likely146

because viral genomes are orders of magnitude smaller than bacterial genomes.147

The association between the bacterial and viral communities and colorectal cancer was driven by a few148

important microbes. Fusobacterium was the primary driver of the bacterial association with colorectal cancer,149

which is consistent with its previously described oncogenic potential (Figure 2 C)(22). The virome signature150

also was driven by a few OVUs, suggesting a role for these viruses in tumorigenesis (Figure 2 D). It is also151

important to note that while these viruses were driving the signature, the magnitude of their importance and152

the significance of those values was noticibly less than the bacterial 16S signature, suggesting that unlike153

what is observed in the bacteria, there are many viruses that are associated with the cancerous state. The154

identified viruses were bacteriophages, belonging to Siphoviridae, Myoviridae, and phage taxa that could155

not be confidently identified beyond their broad phage identification (i.e. “unclassified”). Viruses, which156

were confirmed to not have genomic similarity to known bacterial genomes, were unidentifiable (denoted157

“unknown”). This is common in viromes across habitats; studies have reported as much as 95% of virus158

sequences belonging to unknown genomic units (14, 28–30). When the bacterial and viral community159

signatures were combined, both bacterial and viral organisms drove the community association with cancer160

(Figure 2 E).161
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Phage Influence Between CRC Stages162

Because previous work has identified shifts in which bacteria were most important at different stages163

of colorectal cancer (8, 20, 22), we explored whether shifts in the relative influence of phages could be164

detected between healthy, adenomatous, and cancerous colons. We evaluated community shifts between165

the disease stage transitions (healthy to adenomatous and adenomatous to cancerous) by building random166

forest models to compare only the diagnosis groups around the transitions. While bacterial OTU models167

performed equally well for all disease class comparisons, the virome model performances differed (Figure168

S7 A-B). Like bacteria (Figure S7 F-H), different virome members were important between the healthy to169

adenomatous and adenomatous to cancerous stages (Figure S7 C-E).170

After evaluating our ability to classify samples between two disease states, we performed a three-class171

random forest model including all disease states. The 16S rRNA gene model yielded a mean AUC of 0.784172

and outperformed the viral community model, which yielded a mean AUC of 0.654 (p-value < 0.001, Figure173

S8 A-C). The microbes important for the healthy versus cancer and healthy versus adenoma models were174

also important for the three-class model (Figure S8 D-E). The most important bacterium in the two and three175

class models was the same Fusobacterium (OTU 4) (Figure 2 C, Figure S8 D). The viruses most important176

to the three-class model were identified as bacteriophages (Figure 2 D, Figure S8 E), but not all important177

OVUs were of increased abundance in the diseased state (Figure S8 F).178

Phage Dominance in CRC Virome179

Differences in the colorectal cancer virome could have been driven by eukaryotic (human) viruses or by180

bacteriophages. To better understand the types of viruses that were important for colorectal cancer, we181

identified the virome OVUs as being similar to either eukaryotic viruses or bacteriophages. The most182

important viruses to the classification model were identified as bacteriophages (Figure S8). Overall, we183

were able to identify 78.8% of the OVUs as known viruses, and 93.8% of those viral OVUs aligned to184

bacteriophage reference genomes. It is important to note that this could have been influenced by our185
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methodological biases against enveloped viruses (more common of eukaryotic viruses than bacteriophage),186

due to chloroform and DNase treatment for purification.187

We evaluated whether the phages in the community were primarily lytic (i.e. obligately lyse their hosts after188

replication) or temperate (i.e. able to integrate into their host’s genome to form a lysogen, and subsequently189

transition to a lytic mode). We accomplished this by identifying three markers for temperate phages in the190

OVU representative sequences: 1) presence of phage integrase genes, 2) presence of known prophage191

genes, according the the ACLAME (A CLAssification of Mobile genetic Elements) database, and 3) nucleotide192

similarity to regions of bacterial genomes (29, 31, 32). We found that the majority of the phages were193

temperate and that the overall fraction of temperate phages remained consistent throughout the healthy,194

adenomatous, and cancerous stages (Figure 3). These findings were consistent with previous reports195

suggesting the gut virome is primarily composed of temperate phages (13, 18, 31, 33).196

Community Context of Influential Phages197

Because the link between colorectal cancer and the virome was driven by bacteriophages (as opposed198

to non-bacterial viruses), we tested a potential hypothesis that the virome signal was a mere reflection of199

the bacterial signal, and thus highly correlated with the bacterial signal. If this hypothesis were true, we200

would expect a correlation between the relative abundances of influential bacterial OTUs and virome OVUs.201

Instead, we observed a strikingly low correlation between bacterial and viral relative abundances (Figure 4202

A,C). Overall, there was an absence of correlation between the most influential OVUs and bacterial OTUs203

(Figure 4 B). This evidence supported our null hypothesis that the influential viral OVUs were not primarily204

reflections of influential bacteria.205

Given these findings, we posited that the most influential phages were acting by infecting a wide range of206

bacteria in the overall community, instead of just the influential bacteria. In other words, we hypothesized207

that the influential bacteriophages were community hubs (i.e. central members) within the bacteria and208

phage interactive network. We investigated the potential host ranges of all phage OVUs using a previously209

developed random forest model that relies on sequence features to predict which phages infected which210
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bacteria in the community (Figure 5 A) (34). The predicted interactions were then used to identify phage211

community hubs. We calculated the alpha centrality (i.e. measure of importance in the ecological network) of212

each phage OVU’s connection to the rest of the network. The phages with high centrality values were defined213

as community hubs. Next, the centrality of each OVU was compared to its importance in the colorectal cancer214

classification model. Phage OVU centrality was significantly and positively correlated with importance to the215

disease model (p-value = 0.004, R = 0.176), suggesting that phages that were important in driving colorectal216

cancer also were more likely to be community hubs (Figure 5 B). Together these findings supported our217

hypothesis that influential phages were hubs within their microbial communities and had broad host ranges.218

Discussion219

Because of their propensity for mutagenesis and capacity for modulating their host functionality, many220

human viruses are oncogenic (1–4). Some bacteria also have oncogenic properties, suggesting that221

bacteriophages, a component of the human virome in addition to human-specific viruses, may play an222

indirect role in promoting carcinogenesis by influencing bacterial community composition and dynamics223

(8–10). Despite their carcinogenic potential and the strong association between bacteria and colorectal224

cancer, a link between virus colorectal communities and colorectal cancer has yet to be evaluated. Here225

we show that, like colonic bacterial communities, the colon virome was altered in patients with colorectal226

cancer relative to those with healthy colons. Our findings support a working hypothesis for oncogenesis by227

phage-modulated bacterial community composition.228

Based on our findings, we have developed a conceptual model to be tested in our future studies aimed at229

elucidating the role the colonic virome plays in colorectal cancer (Figure 6 A). We found that basic diversity230

metrics of alpha diversity (richness and Shannon diversity) and beta diversity (Bray-Curtis dissimilarity)231

were insufficient for identifying virome community differences between healthy and cancerous states. By232

implementing a machine learning approach (random forest classification) to leverage inherent, complex233

patterns not detected by diversity measures, we were able to detect strong associations between the colon234
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virus community composition and colorectal cancer. The dsDNA virome of colorectal cancer was composed235

primarily of bacteriophages. These phage communities were not exclusively predators of the most influential236

bacteria, as demonstrated by the lack of correlation between the abundances of the bacterial and phage237

populations. Instead, we identified influential phages as being community hubs, suggesting phages influence238

cancer by altering the greater bacterial community instead of directly modulating the influential bacteria. Our239

previous work has shown that modifying colon bacterial communities alters colorectal cancer progression and240

tumor burden in mice (10, 20). This provides a precedent for phages indirectly influencing colorectal cancer241

progression by altering the bacterial community composition. Overall, our data support a model in which242

the bacteriophage community modulates the bacterial community, and through those interactions indirectly243

influences the bacteria driving colorectal cancer progression (Figure 6 A). Although our evidence suggested244

phages indirectly influenced colorectal cancer development, we were not able to rule out the role of phages245

directly interacting with the human host (35, 36).246

In addition to modeling the potential connections between virus communities, bacterial communities, and247

colorectal cancer, we also used our data and existing knowledge of phage biology to develop a working248

hypothesis for the mechanisms by which this may occur. This was done by incorporating our findings into a249

current model for colorectal cancer development (Figure 6 B) (22), although it is important to note that there250

are also many other alternative hypotheses by which the system could be operating. We hypothesize that251

the process begins with broadly infectious phages in the colon lysing, and thereby disrupting, the existing252

bacterial communities. This shift opens novel niche space that enabled opportunistic bacteria (such as253

Fusobacterium nucleatum) to colonize. Once the initial influential founder bacteria establish themselves in254

the epithelium, secondary opportunistic bacteria are able to adhere to the founders, colonize, and establish255

a biofilm. Phages may play a role in biofilm dispersal and growth by lysing bacteria within the biofilm, a256

process important for effective biofilm growth (37). The oncogenic bacteria may then be able to transform the257

epithelial cells and disrupt tight junctions to infiltrate the epithelium, thereby initiating an inflammatory immune258

response. As the adenomatous polyps developed and progressed towards carcinogenesis, we observed a259

shift in the phages and bacteria whose relative abundances were most influential. As the bacteria enter their260

oncogenic synergy with the epithelium, we conjecture that the phages continue mediating biofilm dispersal.261
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This process would thereby support the colonized oncogenic bacteria by lysing competing cells and releasing262

nutrients to other bacteria in the form of cellular lysates. In addition to highlighting the likely mechanisms by263

which the colorectal cancer virome is interacting with the bacterial communities this model will guide future264

research investigations of the role the virome plays colorectal cancer.265

Our working hypothesis represents a conceptualization of areas for future work, which will be required266

to characterize the colorectal cancer microbiome at the functional, mechanistic level. There are many267

different ways in which this system may operating, and our working hypothesis is one. For example, it is268

possible that the bacterial communities cause a change in the virome instead of the virome altering the269

bacterial communities. To better understand this system, future studies will include larger cohort human270

studies, further in vitro and in vivo mechanistic experimentation, and attempts at community studies using271

absolute abundance values instead of relative abundance, which would allow for more accurate community272

dynamic modeling. Overall, this study provides a conceptual foundation to direct future characterization of273

the colorectal cancer microbiome at the functional, mechanistic level.274

In addition to the diagnostic ramifications for understanding the colorectal cancer microbiome, our findings275

suggest that viruses, while understudied and currently under-appreciated in the human microbiome, are276

likely to be an important contributor to human disease. Viral community dynamics have the potential to277

provide an abundance of information to supplement those of bacterial communities. Evidence has suggested278

that the virome is a crucial component to the microbiome and that bacteriophages are important players.279

Bacteriophage and bacterial communities cannot maintain stability and co-evolution without one another (6,280

38). Not only is the human virome an important element to consider in human health and disease (12–18),281

but our findings support that it is likely to have a significant impact on cancer etiology and progression.282

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/152868doi: bioRxiv preprint 

https://doi.org/10.1101/152868
http://creativecommons.org/licenses/by/4.0/


Materials and Methods283

Analysis Source Code & Data Availability284

All study sequences are available on the NCBI Sequence Read Archive under the BioProject ID285

PRJNA389927.286

All associated source code is available at the following GitHub repository:287

https://github.com/SchlossLab/Hannigan_CRCVirome_mBio_2018288

Study Design and Patient Sampling289

This study was approved by the University of Michigan Institutional Review Board and all subjects provided290

informed consent. Design and sampling of this sample set have been reported previously (8). Briefly, whole291

evacuated stool was collected from patients who were 18 years of age or older, able to provide informed292

consent, have had colonoscopy and histologically confirmed colonic disease status, had not had surgery,293

had not had chemotherapy or radiation, and were free of known co-morbidities including HIV, chronic viral294

hepatitis, HNPCC, FAP, and inflammatory bowel disease. Healthy subjects entered the clinic for the study295

and did not present as a result of co-morbities. Samples were collected from four geographic locations:296

Toronto (Ontario, Canada), Boston (Massachusetts, USA), Houston (Texas, USA), and Ann Arbor (Michigan,297

USA). Ninety patients were recruited to the study, thirty of which were designated healthy, thirty with detected298

adenomas, and thirty with detected carcinomas.299

16S rRNA Gene Sequence Data Acquisition & Processing300

The 16S rRNA gene sequences associated with this study were previously reported (8). Sequence (fastq)301

and metadata files were downloaded from:302

http://www.mothur.org/MicrobiomeBiomarkerCRC303
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The 16S rRNA gene sequences were analyzed as described previously, relying on the mothur software304

package (v1.37.0) (39, 40). Briefly, the sequences were de-replicated, aligned to the SILVA database (41),305

screened for chimeras using UCHIME (42), and binned into operational taxonomic units (OTUs) using a 97%306

similarity threshold. Abundances were normalized for uneven sequencing depth by randomly sub-sampling307

to 10,000 sequences, as previously reported (23).308

Whole Metagenomic Library Preparation & Sequencing309

DNA was extracted from stool samples using the PowerSoil-htp 96 Well Soil DNA Isolation Kit (Mo Bio310

Laboratories) using an EPMotion 5075 pipetting system. Purified DNA was used to prepare a shotgun311

sequencing library using the Illumina Nextera XT library preparation kit according to the standard kit protocol,312

including 12 cycles of limited cycle PCR. The tagmentation time was increased from five minutes to ten313

minutes to improve DNA fragment length distribution. The library was sequenced using one lane of the314

Illumina HiSeq4000 platform and yielded 125 bp paired end reads.315

Virus Metagenomic Library Preparation & Sequencing316

Genomic DNA was extracted from purified virus-like particles (VLPs) from stool samples, using a modified317

version of a previously published protocol (29, 31, 43, 44). Briefly, an aliquot of stool (~0.1 g) was318

resuspended in SM buffer (Crystalgen; Catalog #: 221-179) and vortexed to facilitate resuspension. The319

resuspended stool was centrifuged to remove major particulate debris then filtered through a 0.22-µm filter320

to remove smaller contaminants. The filtered supernatant was treated with chloroform for ten minutes321

with gentle shaking, so as to lyse contaminating cells including bacteria, human, fungi, etc. The exposed322

genomic DNA from the lysed cells was degraded by treating the samples with 5U of DNase for one hour323

at 37C. DNase was deactivated by incubating the sample at 75C for ten minutes. The DNA was extracted324

from the purified virus-like particles (VLPs) using the Wizard PCR Purification Preparation Kit (Promega).325

Disease classes were staggered across purification runs to prevent run variation as a confounding factor.326
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As for whole community metagenomes, purified DNA was used to prepare a shotgun sequencing library327

using the Illumina Nextera XT preparation kit according to the standard kit protocol. The tagmentation time328

was increased from five minutes to ten minutes to improve DNA fragment length distribution. The PCR329

cycle number was increased from twelve to eighteen cycles to address the low biomass of the samples, as330

has been described previously (29). The library was sequenced using one lane of the Illumina HiSeq4000331

platform and yielded 125 bp paired end reads.332

Metagenome Quality Control333

Both the viral and whole community metagenomic sample sets were subjected to the same quality control334

procedures. The sequences were obtained as de-multiplexed fastq files and subjected to 5’ and 3’ adapter335

trimming using the CutAdapt program (v1.9.1) with an error rate of 0.1 and an overlap of 10 (45). The FastX336

toolkit (v0.0.14) was used to quality trim the reads to a minimum length of 75 bp and a minimum quality score337

of 30 (46). Reads mapping to the human genome were removed using the DeconSeq algorithm (v0.4.3) and338

default parameters (47).339

Contig Assembly & Abundance340

Contigs were assembled using paired end read files that were purged of sequences without a corresponding341

pair (e.g. one read removed due to low quality). The Megahit program (v1.0.6) was used to assemble contigs342

for each sample using a minimum contig length of 1000 bp and iterating assemblies from 21-mers to 101-mers343

by 20 (48). Contigs from the virus and whole metagenomic sample sets were concatenated within their344

respective groups. Abundance of the contigs within each sample was calculated by aligning sequences345

back to the concatenated contig files using the bowtie2 global aligner (v2.2.1), with a 25 bp seed length and346

an allowance of one mismatch (49). Abundance was corrected for contig reference length and the number of347

contigs included in each operational genomic unit. Abundance was also corrected for uneven sampling depth348

by randomly sub-sampling virome and whole metagenomes to 1,000,000 and 500,000 reads, respectively,349
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and by removing samples with fewer total reads than the threshold. Thresholds were set for maximizing350

sequence information while minimizing numbers of lost samples.351

Operational Genomic Unit Classification352

Much like operational taxonomic units (OTUs) are used as an operational definition of similar 16S rRNA353

gene sequences, we defined closely related bacterial contig sequences as operational genomic units (OGUs)354

and virus contigs as operational viral units (OVUs) in the absence of taxonomic identity. OGUs and OVUs355

were defined with the CONCOCT algorithm (v0.4.0) which bins related contigs by similar tetra-mer and356

co-abundance profiles within samples using a variational Bayesian approach (50). CONCOCT was used357

with a length threshold of 1000 bp for virus contigs and 2000 bp for bacteria.358

Diversity359

Alpha and beta diversity were calculated using the operational viral unit abundance profiles for each sample.360

Sequences were rarefied to 100,000 sequences. Samples with less than the cutoff were removed from the361

analysis. Alpha diversity was calculated using the Shannon diversity and richness metrics. Beta diversity362

was calculated using the Bray-Curtis metric (mean of 25 random sub-sampling iterations), and the statistical363

significance between the disease state clusters was assessed using an analysis of similarity (ANOSIM) with364

a post-hoc multivariate Tukey test. All diversity calculations were performed in R using the Vegan package365

(51).366

Classification Modeling367

Classification modeling was performed in R using the Caret package (52). OTU, OVU, and OGU abundance368

data was preprocessed by removing features (OTUs, OVUs, and OGUs) that were present in less than thirty369

of the samples. This served both as an effective feature reduction technique and made the calculations370

computationally feasible. The binary random forest model was trained using the Area Under the receiver371
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operating characteristic Curve (AUC) and the three-class random forest model was trained using the372

mean AUC. Both were validated using five-fold nested cross validation to prevent over-fitting on the tuning373

paramters. Each training set was repeated five times, and the model was tuned for mtry values. For374

consistency and accurate comparison between feature groups (e.g., bacteria, viruses), the sample model375

parameters were used for each group. The maximum AUC during training was recorded across twenty376

iterations of each group model to test the significance of the differences between feature set performance.377

Statistical significance was evaluated using a Wilcoxon test between two categories, or a pairwise Wilcoxon378

test with Bonferroni corrected p-values when comparing more than two categories.379

Taxonomic Identification of Operational Genomic Units380

Operational viral units (OVUs) were taxonomically identified using a reference database consisting of381

all bacteriophage and eukaryotic virus genomes present in the European Nucleotide Archives. The382

longest contiguous sequence in each operational genomic unit was used as a representative sequence for383

classification, as described previously (53). Each representative sequence was aligned to the reference384

genome database using the tblastx alignment algorithm (v2.2.27) and a strict similarity threshold (e-value385

< 1e-25) (54). Annotation was interpreted as phage, eukaryotic virus, or unknown. As an additional quality386

control step, these OVUs were also aligned to the bacterial reference genome set from the European387

Nucleotide Archives using the blastn algorithm (e-value < 1e-25) and OVUs with similarity to bacterial388

genomes and not viral genomes were removed from analysis.389

Ecological Network Analysis & Correlations390

The ecological network of the bacterial and phage operational genomic units was constructed and analyzed391

as previously described (34). Briefly, a random forest model was used to predict interactions between392

bacterial and phage genomic units, and those interactions were recorded in a graph database using neo4j393

graph databasing software (v2.3.1). The degree of phage centrality was quantified using the alpha centrality394
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metric in the igraph CRAN package. A Spearman correlation was performed between model importance and395

phage centrality scores.396

Phage Replication Style Identification397

Phage OVU replication mode was predicted using methods described previously (29, 31, 32). Briefly, we398

identified temperate OVUs as representative contigs containing at least one of three genomic markers: 1)399

phage integrase genes, 2) prophage genes from the ACLAME database, or 3) genomic similarity to bacterial400

reference genomes. Integrase genes were identified in phage OVU representative contigs by aligning the401

contigs to a reference database of all known phage integrase genes from the Uniprot database (Uniprot402

search term: “organism:phage gene:int NOT putative”). Prophage genes were identified in the same way,403

using the ACLAME set of reference prophage genes. In both cases, the blastx algorithm was used with an404

e-value threshold of 10e-5. Representative contigs were also identified as potential lysogenic phages by405

having a high genomic similarity to bacterial genomes. To accomplish this, representative phage contigs406

were aligned to the European Nucleotide Archive bacterial genome reference set using the blastn algorithm407

(e-value < 10e-25).408
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Figure Legends564

Figure 1: Cohort and sample processing outline. Thirty subject stool samples were collected from healthy,
adenoma (pre-cancer), and carcinoma (cancer) patients. Stool samples were split into two aliquots, the
first of which was used for bacterial sequencing and the second which was used for virus sequencing.
Bacterial sequencing was done using both 16S rRNA amplicon and whole metagenomic shotgun sequencing
techniques. Virus samples were purified for viruses using filtration and a combination of chloroform
(bacterial lysis) and DNase (exposed genomic DNA degradation). The resulting encapsulated virus DNA
was sequenced using whole metagenomic shotgun sequencing.
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Figure 2: Results from healthy vs cancer classification models built using virome signatures, bacterial 16S
rRNA gene sequence signatures, whole metagenomic signatures, and a combination of virome and 16S
rRNA gene sequence signatures. A) An example ROC curve for visualizing the performance of each of
the models for classifying stool as coming from either an individual with a cancerous or healthy colon. B)
Quantification of the AUC variation for each model, and how it compared to each of the other models based on
15 iterations. A pairwise Wilcoxon test with a false discovery rate multiple hypothesis correction demonstrated
that all models are significantly different from each other (p-value < 0.01). C) Mean decrease in accuracy
(measurement of importance) of each operational taxonomic unit within the 16S rRNA gene classification
model when removed from the classification model. Mean is represented by a point, and bars represent
standard error. D) Mean decrease in accuracy of each operational virus unit in the virome classification
model. E) Mean decrease in accuracy of each operational genomic unit and operational taxonomic unit in
the model using both 16S rRNA gene and virome features.
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Figure 3: Lysogenic phage relative abundance in disease states. Phage OVUs were predicted to be either
lytic or lysogenic, and the relative abundance of lysogenic phages was quantified and represented as a
boxplot. No disease groups were statistically significant.
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Figure 4: Relative abundance correlations between bacterial OTUs and virome OVUs. A) Pearson correlation
coefficient values between all bacterial OTUs (x-axis) and viral OVUs (y-axis) with blue being positively
correlated and red being negatively correlated. Bar plots indicate the viral (left) and bacterial (bottom)
operational unit importance in their colorectal cancer classification models, such that the most important
units are in the top left corner. B) Magnification of the boxed region in panel (A), highlighting the correlation
between the most important bacterial OTUs and virome OVUs. The most important operational units are in
the top left corner of the heatmap, and the correlation scale is the same as panel (A). C) Histogram quantifying
the frequencies of Pearson correlation coefficients between all bacterial OTUs and virome OVUs.
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Figure 5: Community network analysis utilizing predicted interactions between bacteria and phage
operational genomic units. A) Visualization of the community network for our colorectal cancer cohort. B)
Scatter plot illustrating the correlation between importance (mean decrease in accuracy) and the degree of
centrality for each OVU. A linear regression line was fit to illustrate the correlation (blue) which was found to
be statistically significantly and weakly correlated (p-value = 0.00409, R = 0.176).
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Figure 6: Final working hypothesis from this study. These panels summarize our thoughts on our results
and represent interesting future directions that we predict will build on the presented work. A) Basic model
illustrating the connections between the virome, bacterial communities, and colorectal cancer. B) Working
hypothesis of how the bacteriophage community is associated with colorectal cancer and the associated
bacterial community.
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Supplemental Figure Legends565

Figure S1: Basic Quality Control Metrics. A) VLP genomic DNA yield from all sequenced samples.
Each bar represents a sample which is grouped and colored by its associated disease group or no-DNA
negative control. B) Sequence yield following quality control including quality score filtering and human
decontamination. Dashed line indicates rarefaction level (106 reads) in which all samples with lower
sequence yields less than this level were excluded from downstream analysis. After rarefaction and removal
of samples with less than 106 reads, 27 healthy, 28 cancerous, 27 adenomatous, and 3 negative control
samples remained.
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Figure S2: Length and coverage statistics. A) Heated scatter plot demonstrating the distribution of contig
coverage (number of sequences mapping to each contig) and contig length for the virus metagenomic sample
set. B) Scatter plot illustrating the distribution of operational viral unit (OVU) length and sequence coverage for
the virus metagenomic sample set. C) Heated scatter plot demonstrating the distribution of contig coverage
and length for the whole metagenomic sample set. D) Scatter plot illustrating the distribution of operational
genomic unit (OGU) length and sequence coverage for the whole metagenomic sample set.
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Figure S3: Operational genomic unit composition stats. A) Strip chart demonstrating the length and frequency
of contigs within each operational genomic unit of the virome sample set. The y-axis is the operational
genomic unit identifier, and x-axis is the length of each contig, and each dot represents a contig found within
the specified operational genomic unit. B) Density plot (analogous to histogram) of the number of virome
operational genomic units containing the specific number of contigs, as indicated by the x-axis. C-D) Sample
plots as panels C and D, but for the whole metagenomic sample set.
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Figure S4: Diversity calculations comparing cancer states of the colorectal virome, based on relative
abundance of operational genomic units in each sample. A) NMDS ordination of community samples, colored
for cancerous (green), pre-cancerous (red), and healthy (yellow). B) Differences in means between disease
group centroids with 95% confidence intervals based on an ANOSIM test with a post hoc multivariate Tukey
test. Comparisons (indicated on y-axis) in which the intervals cross the zero mean difference line (dashed
line) were not significantly different. C) Shannon diversity and D) richness alpha diversity quantification
comparing pre-cancerous (grey), cancerous (red), and healthy (tan) states.
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Figure S5: Beta-diversity analysis comparing Bray-Curtis dissimilarity between disease state and negative
control community structures that were captured following sequence rarefaction. Differences in means
between disease group centroids with 95% confidence intervals based on an ANOSIM test with a post hoc
multivariate Tukey test. Comparisons in which the intervals cross the zero mean difference line (dashed line)
were not significantly different.
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Figure S6: Comparison of bacterial 16S rRNA classification models with and without OTUs whose median
relative abundance are greater than zero. A) Classification model performance (measured as area under the
curve) for bacteria models using 16S rRNA data both with and without filtering of samples whose median was
zero. Significance was calculated using a Wilcoxon rank sum test, and the resulting p-value is shown. The
random area under the curve (0.5) is marked with a dashed line. B) Relative abundance of the six bacterial
OTUs removed when filtered for OTUs with median relative abundance of zero. OTU relative abundance
is separated by healthy (red) and cancerous (grey) samples. Relative abundance of 1% is marked by the
dashed line.
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Figure S7: Transition of colorectal cancer importance through disease progression. A) Virus and B) 16S
rRNA gene model performance (AUC) when discriminating all binary combinations of disease types. Blue
line represents mean performance from multiple random iterations. C-E) Top ten important phage OVUs
when classifying each combination of disease state, as measured by the mean decrease in accuracy metric.
Mean is represented by a point, and bars represent standard error. Disease comparison is specified in the
top left corner of each panel. F-H) Top ten important bacterial 16S rRNA gene OTUs for classifying each
disease state combination.

39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 11, 2018. ; https://doi.org/10.1101/152868doi: bioRxiv preprint 

https://doi.org/10.1101/152868
http://creativecommons.org/licenses/by/4.0/


Figure S8: ROC curves from A) virome and B) bacterial 16S three-class random forest models tuned on mean
AUC. Each curve represents the ability of the specified class to be classified against the other two classes. C)
Quantification of the mean AUC variation for each model based on 10 model iterations. A pairwise Wilcoxon
test with a Bonferroni multiple hypothesis correction demonstrated that the models are significantly different
(alpha = 0.01). D) Mean decrease in accuracy when virome operational genomic units and E) bacterial 16S
OTUs are removed from the respective three-class classification models. Results based on 25 iterations. F)
Relative abundance of the six most important virome OVUs in the model, with the most important on the right.
Line indicates abundance mean.
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