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Abstract 
Parkinson’s disease (PD), with its characteristic loss of nigrostriatal dopaminergic neurons and 

deposition of α-synuclein in neurons, is often considered a neuronal disorder. However, in recent 

years substantial evidence has emerged to implicate glial cell types, such as astrocytes and microglia. 

In this study, we used stratified LD score regression and expression-weighted cell-type enrichment 

together with several brain-related and cell-type-specific genomic annotations to connect human 

genomic PD findings to specific brain cell types. We found that PD heritability does not enrich in global 

and regional brain annotations or brain-related cell-type-specific annotations. Likewise, we found no 

enrichment of PD susceptibility genes in brain-related cell types. In contrast, we demonstrated a 

significant enrichment of PD heritability in a curated lysosomal gene set specifically expressed in 

astrocytic and microglial subtypes. Our results suggest that PD risk loci do not lie in specific cell types 

or individual brain regions, but rather in global cellular processes to which cell types may have varying 

vulnerability. 
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Late-onset sporadic forms of neurodegenerative diseases are devastating conditions imposing an 

increasing burden on healthcare systems worldwide. Currently, 2-3% of the population over 65 years 

of age are living with Parkinson’s disease (PD), making this disorder the most prevalent late-onset 

neurodegenerative disorder worldwide after Alzheimer’s disease1. This progressive condition is 

characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta manifesting 

clinically as a tremor at rest, muscle rigidity and bradykinesia1,2. Existing symptomatic treatments do 

not alter the course of the disease and their effectiveness declines with time, which makes the 

identification of potential therapeutic targets of key importance. 

The primary focus of PD research to date has been on neurons and, more specifically, nigrostriatal 

dopaminergic neurons. This focus is driven in part because the death of dopaminergic neurons is 

primarily responsible for the motor features of PD, but also because the most prominent and 

distinctive neuropathological findings in PD are the presence of neuronal inclusions, termed Lewy 

bodies1,2. The findings that alpha synuclein (encoded by the gene SNCA) is predominantly expressed 

in neurons2,3, is the major component of Lewy bodies3,4, and mutations in SNCA give rise to autosomal 

dominant PD5–8 provide a key link between SNCA function, neurons and disease pathogenesis. 

Furthermore, the identification of risk SNPs at the SNCA locus through genome-wide association 

studies (GWAS) of sporadic PD9  provides support for the importance of SNCA-related pathways and, 

by implication, neurons in both sporadic and Mendelian forms of PD. Despite this neuronal focus, 

there is also growing evidence to suggest the involvement of other cell types in PD pathogenesis. In 

particular, astrocytes and microglia have been highlighted10,11; for instance, with a recent study 

demonstrating that blocking the microglial-mediated conversion of astrocytes to an A1 neurotoxic 

phenotype was neuroprotective in mouse models of sporadic and familial α-synucleinopathy12.   

In previous work, we applied stratified LD score regression and gene-set enrichment methods to 

determine if particular functional marks for regulatory activity and gene-set lists were enriched for 

sporadic PD genetic heritability13. We did not observe enrichment for the various brain annotations 

assessed (this did not include brain-relevant cell types) and in fact found further evidence for the 

importance of the adaptive and innate immune system.  

The increasing power of GWASs (with the most recently published PD GWAS including 20,184 cases 

and 397,324 controls, resulting in over 35 associated loci9) coupled with the increased availability of 

cell-specific gene expression data provides a new opportunity to address the potential cellular-

specificity of disease heritability, as was elegantly demonstrated for schizophrenia in a study by Skene 

et al.14. Brain regions contain a mixture of cell types, such as neurons, microglia and astrocytes, which 

may exhibit their own specific regulatory features that could be masked when averaging features 

across cell types. Resolving this question has become increasingly important; with the advent of 

induced pluripotent stem cell models of disease, modelling PD in vitro is now possible, and this implies 

some decision about the cell type of interest. In this study, we addressed cellular heterogeneity 

through the analysis of genomic regions overlapping regulatory marks or gene expression from cell 

types within the brain, including neurons. We focus on PD GWAS datasets and use schizophrenia (SCZ) 

GWAS datasets for comparisons purposes. 
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Results  
To study the cellular specificity of the heritability of sporadic PD, we compiled brain-related genomic 

annotations denoting tissue- and cell-type-specific markers of activity. We used several approaches to 

capture the expression profiles of human brain-related cell types (Figure 1, see Methods). This was 

because no single data set had all the desirable properties; namely, data that was human in origin, 

covered multiple brain regions, had high cellular detail and was derived from large numbers of 

individuals. Using the largest publicly available GWASs of PD15 and SCZ16, we applied stratified LD score 

regression (LDSC) to assess enrichment of the common SNP heritability of PD and SCZ, respectively, 

for each annotation category. SCZ heritability has been previously shown to be enriched in genes 

expressed within the central nervous system (CNS) and, more specifically, neuronal cell types14,17, and 

was therefore included as a measure of robustness. 

PD heritability does not enrich in genomic regions specifically expressed or regulated in human 
brain 
It is well recognised that regional differences in gene expression within human brain and related co-

expression modules are driven by differences in the type and density of specific cell types18. Therefore, 

we first used regional data as a means of capturing major cellular profiles.  This information, 

comprising sets of human tissue-specific genes generated by Finucane et al. with GTEx gene 

expression17,19, had the advantage of being comprehensive in terms of sampling across the human 

CNS, and being robust in that greater than 63 independent samples contributed to the generation of 

each profile. We confirmed that SCZ heritability was significantly enriched in all 13 brain regions 

relative to all other tissues, as previously demonstrated by Finucane et al.17 using the 2014 SCZ GWAS 

(Figure 2A, Supplementary Table 1). In contrast, no tissues were enriched for PD heritability, although 

spinal cord and substantia nigra approached the Bonferroni significance threshold (threshold p-value 

= 4.72 x 10-4; spinal cord (cervical c-1), p-value = 3.53 x 10-3; substantia nigra, p-value = 8.96 x 10-4). 

Our comparison of PD and SCZ GWAS iterations across the years revealed the robust nature of the 

CNS enrichment in SCZ, which was apparent in the first and smallest SCZ GWAS (Supplementary Figure 

1). Furthermore, increasing GWAS sample sizes was associated with co-efficient p-values becoming 

more significant, particularly for CNS-related tissues. Interestingly, we also observed an ordering of 

tissues, with brain regions of greater relevance to disease pathology demonstrating the most 

significant co-efficient p-values in the largest GWAS iterations (e.g. substantia nigra in PD and frontal 

cortex in SCZ). 

However, due to the way these annotations were constructed, related tissues (e.g. brain regions) have 

overlapping gene sets and therefore may appear enriched as a group. To differentiate among brain 

regions, we used fine-scale brain expression data generated by Finucane et al. from a brain-only 

analysis of the 13 GTEx brain regions17.  We confirmed significant enrichments in the cortex relative 

to other brain regions for SCZ, but saw no enrichments for PD (Figure 2B, Supplementary Table 1). 

We also compared the PD and SCZ GWAS results to sets of blood- and brain-specific eQTLs derived 

from GTEx. We demonstrated an enrichment of SCZ heritability in brain-specific eQTLs and blood-

specific eQTLs, but no enrichment of PD heritability in either eQTL annotation (Figure 3A, 

Supplementary Table 2). A comparison of eQTLs specific to each brain region revealed no preferential 

enrichment of disease heritability in one region relative to the others (Figure 3B, Supplementary Table 

2). In summary, these analyses revealed no enrichment of PD heritability brain annotations, while in 

contrast, SCZ heritability was highly enriched in both global and specific regional brain annotations. 
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PD heritability does not enrich in brain-related cell-type-specific annotations 
Given the lack of enrichment of PD heritability in global and regional brain annotations, we wondered 

whether cellular heterogeneity may be masking signals, and provided more cell-type-specific 

information the enrichment would become more apparent. Thus, to address the relative importance 

of brain cell types in PD and SCZ, we generated cell-type-specific annotations from three types of 

brain-related cell-type-specific data: bulk RNA-sequencing from the Barres group of immunopanned 

cell types from human temporal lobe cortex20; single-cell RNA-sequencing from the Linnarsson group 

of the adolescent mouse nervous system21; and finally, cell-type modules inferred from human tissue-

level co-expression networks22. Genes were assigned to cell types by fold enrichment (i.e. mean 

expression in one cell type divided by the mean expression in all other cell types) or module 

membership in the case of co-expression (module membership is a measure of how correlated a 

gene’s expression is with respect to a module’s eigengene)..  

Each of these datasets came with advantages and disadvantages, which motivated our decision to use 

all three. The Barres data was based on the analysis of human tissue; however, it covered only one 

brain region, was derived from a small number of individuals (n = 14) who all had an underlying 

neurological disorder (epilepsy, stroke, glioma), and lacked cellular detail. While the cell-type-specific 

data provided by the Linnarsson group covered both the central and peripheral nervous system, and 

contained remarkable cellular detail, it was mouse in origin. Cell-type modules also covered several 

brain regions, were based on large sample sizes, and importantly, were human in origin. Nevertheless, 

they were inferred cell types, the definition of which was strongly dependent on the quality of the 

cell-type markers used to identify them.  

Using immunopanning data, we identified a neuronal enrichment for SCZ heritability, but no cell-type 

enrichment for PD (Figure 4A, Supplementary Table 3). We questioned whether this lack of cell-type 

enrichment in PD may result from sampling a tissue which is typically affected only in the later stages 

of sporadic PD2. Thus, we analysed a subset of mouse single-cell data representing tissues affected in 

earlier stages of sporadic PD, including the enteric nervous system, the substantia nigra and the basal 

ganglia. Once again, we found no cell-type enrichment for PD heritability (Figure 4B, Supplementary 

Table 3). Conversely, we demonstrated a significant enrichment of SCZ heritability in three types of 

GABAergic medium spiny neurons (MSNs): MSN2, MSN3 and MSN5. This is consistent with the findings 

reported by Skene et al.23. Common to all three types of MSN is that they express the D2 dopamine 

receptor, a common target of antipsychotic drugs used in SCZ therapy24.  

To our knowledge, there is currently no single-cell RNA-sequencing data for human striatum or 

substantia nigra, so we sought to validate our findings using cell-type modules inferred from co-

expression networks constructed from human tissue-level expression data of the frontal cortex, 

putamen and substantia nigra. We observed no significant enrichments for PD heritability in any 

modules, while SCZ heritability was enriched in several neuronal modules, including: brown and 

turquoise modules in the frontal cortex; blue and darkmagenta modules in the putamen; and cyan 

and darkgrey modules in the substantia nigra (Figure 5, Supplementary Table 4). All of these modules 

were enriched for markers of pyramidal S1 neurons, which have previously been associated with SCZ23. 

Furthermore, some modules (brown, turquoise, darkmagenta and cyan) were enriched for markers of 

interneurons and dopaminergic neurons, both of which are implicated in SCZ23,24. 

PD susceptibility genes do not enrich in brain-related cell types 
To ensure rigour, we attempted to identify cell types of importance to PD in a separate analysis using 

expression-weighted cell-type enrichment (EWCE). This method statistically evaluates whether a set 

of genes has higher expression in one cell type than expected by chance. Using the same subset of 
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clusters from the Linnarsson single-cell RNA-sequencing, cell-type specificity values were computed 

for each gene (i.e. proportion of expression for a gene in a given cell type), and cell-type enrichments 

of PD susceptibility genes implicated by common-variant studies were estimated (Figure 6A, see 

Methods). We found no significant enrichment of PD susceptibility genes in any of the major cell-type 

classes (Figure 6B, Supplementary Table 5) or their cell subtypes (Figure 6C, Supplementary Table 5).  

In summary, our EWCE and stratified LDSC analyses would suggest that PD heritability/susceptibility 

cannot be attributed to a specific cell type (amongst those tested), unlike what has been observed 

by us and others for SCZ23, wherein a limited set of neuronal cell types have been implicated.  

PD heritability enriches in lysosomal genes sets which are specifically expressed in astrocytic 
and microglial cell subtypes 
Risk loci can operate in several manners, including: a cell-type-/tissue-specific manner, which is only 

detectable if measured in the “correct” cell type/tissue, or in a pathway-specific manner, which one 

might expect to be detectable across more than one cell type/tissue. Given our inability to implicate 

a cell type in PD, we wondered whether the latter scenario of pathway-specific risk might be applicable 

in PD.  

To address this question, we applied stratified LDSC to gene sets implicated in PD by Mendelian forms 

of PD, functional assays performed in the context of PD-associated mutations, such as the A53T 

missense mutation in SNCA, and rare-variant studies of sporadic PD25–30. In particular, we focused on 

gene sets associated with autophagy26,27, the lysosomal system28 and mitochondrial function29,30. Our 

gene sets were derived either from Gene Ontology terms (autophagy) or curated gene databases 

(lysosomal, hLGDB; mitochondrial, MitoCarta 2.0; see Methods), developed using literature curation 

(with a focus on unbiased proteomic studies) and experimental approaches. The overlap between 

these gene sets was relatively low (Supplementary Figure 6). We identified a significant enrichment of 

PD heritability in the lysosomal gene set (Figure 7A, Supplementary Table 6). As with previous 

stratified LDSC analyses, we included SCZ for comparison purposes and found no enrichment of SCZ 

heritability in any of the assessed gene sets. 

Using the same gene sets together with EWCE, we also evaluated whether these PD-implicated gene 

sets were specifically expressed in any of the Linnarsson cell-type classes and their cell subtypes. 

Autophagy and lysosomal gene sets were significantly enriched in a limited number of major cell-type 

classes, with autophagy enriched in oligodendrocytes and cholinergic/monoaminergic neurons, and 

lysosomal enriched in microglia (Figure 7B, Supplementary Table 6). The mitochondrial gene set, on 

the other hand, was significantly enriched in almost all cell-type classes, including astrocytes, 

oligodendrocytes, oligodendrocyte precursor cells, cholinergic/monoaminergic neurons and 

telencephalon projecting inhibitory neurons. As expected, analyses performed on cell subtypes 

predominantly reflected that performed on the overarching cell-type classes, with significant pathway 

enrichments observed in cell subtypes associated with the pathway-enriched cell-type classes (Figure 

7C, Supplementary Table 6). For example, all three microglial subtypes (MGL1-3, representing one 

baseline and two activated microglial subtypes), were enriched for lysosomal genes. Interestingly, the 

subtype analyses revealed a significant enrichment of the lysosomal gene set in one astrocytic 

subtype, ACNT1 (non-telencephalon astrocytes, protoplasmic), which was not reflected when using 

the major cell-type classes, suggesting there may be some pathway specificity within cellular subtypes.  

Taken together these findings provide support for the view that in contrast to the genetic structure of 

SCZ, PD risk loci operate in a more global manner, with effects on a range of cell types.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted October 16, 2018. ; https://doi.org/10.1101/442152doi: bioRxiv preprint 

https://doi.org/10.1101/442152


Discussion 
One of the most striking features of PD is the specificity of its neuropathology and clinical symptoms, 

which has implicated α-synuclein biology in dopaminergic neurons of the substantia nigra pars 

compacta as a key component of the disease1,2. This stands in stark contrast to SCZ, which has a very 

heterogeneous clinical phenotype and lacks a characteristic neuropathology31,32, with a notable 

absence of pathological lesions and no reported overall neuronal loss33. The apparent cellular 

specificity of PD has encouraged researchers to hypothesise that selective vulnerability is prompted 

by the action of risk loci in specific cell types; in other words, it is the nature of the cell type itself, 

which renders it vulnerable. However, given the interrelated nature of brain regions, apparently 

specific and reproducible patterns of abnormality could also be the result of a more global effect that 

exposes functional systems (e.g. neural networks) at different times along a disease’s natural history, 

a view now put forward by several independent groups34–36. That is, risk loci may not necessarily lie in 

cellular subtypes or individual brain regions, but in global cellular processes to which cellular subtypes 

have varying vulnerability.  

Addressing the question of cellular specificity in sporadic PD in a meaningful manner is now possible 

due to increasing GWAS sample sizes, increased availability of cell-type-specific gene expression data, 

and the recent development of robust methodologies. In this study, we used stratified LDSC and EWCE 

together with several brain-related genomic annotations to connect common-variant genetic findings 

for PD to specific brain cell types, with SCZ included for comparison purposes. We show that PD 

heritability does not enrich in global brain annotations or brain-related cell-type-specific annotations, 

as one might expect if cellular heterogeneity was masking the signal. In contrast, SCZ heritability 

significantly enriches in global and regional brain annotations and in select neuronal cell types, in line 

with previous results17,23.  

One might argue that the lack of PD heritability enrichment in any cell-type-specific categories could 

be due to PD having a relatively low estimated total heritability; PD heritability estimates range 

between 20-27% 9,37,38. However, we suggest that this is not a complete explanation as significant 

enrichments have been observed in other GWASs with relatively low overall heritability estimates. For 

example, in the original stratified LDSC paper they observe enrichment of genomic overlap of histone 

modifications for the CNS in the ever-smoked GWAS, specifically in the inferior temporal lobe, and 

they observed enrichment of fetal brain regulatory features for age at menarche39. 

Considering our inability to attribute PD heritability/susceptibility to a specific brain-related cell type, 

we also applied stratified LDSC and EWCE to gene sets implicated in PD (autophagy, lysosomal and 

mitochondrial gene sets), all of which can be considered global pathways. Here we show a significant 

enrichment of PD heritability in a lysosomal gene set, which is specifically expressed in astrocytic and 

microglial subtypes, providing support for the view that PD is a disorder of global pathways working 

across various cell types, as opposed to specific cell types themselves driving disease risk.  

With these results in mind, it is tempting to speculate that PD presents genetically as more of a 

systemic disorder, with a bias to brain pathology, as opposed to a primary brain disorder. In support 

of this view, PD-associated risk variants have been found associated with monocytes and the innate 

immune system13,40,41, in addition to lymphocytes, mesendoderm, liver- and fat-cells42. Recent work 

has also demonstrated a causal relationship between BMI and PD43, which together with the re-

purposing of exenatide (a glucagon-like peptide-1 receptor agonist currently licensed for the 

treatment of type 2 diabetes) for the potential treatment of PD44, highlights the need to look beyond 

the brain and selective neuronal vulnerability.  
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There are several caveats to this study, namely the quality of our annotations, the strategies employed 

to generate them and, perhaps most critically, the annotations we cannot account for. First, the 

quality of our annotations is especially pertinent in the case of the gene sets used to reflect various 

PD-implicated pathways. While lysosomal and mitochondrial gene sets were derived from rigorously 

curated gene databases, with a focus on unbiased proteomic and localisation studies, the autophagy 

list stemmed from Gene Ontology, which has not undergone the same meticulous curation. The noise 

introduced by potentially inaccurate annotation could affect our ability to detect heritability 

enrichments.  

Second, our strategy for creating cell-type-specific profiles primarily involved gene expression data 

and assumed disease relevance only if disease heritability enriched for SNPs within genes with high 

specific expression. This approach together with the use of GTEx eQTLs will likely capture regulatory 

SNPs in close proximity to genes of interest. However, as demonstrated in a recent study from 

Hormozdiari et al. how one chooses to construct an eQTL annotation is fraught with challenges45 and 

we recognise that our approach may have produced conservative enrichment estimates. Perhaps 

more importantly though, our strategy for creating cell-type-specific profiles does not account for the 

effect of regulatory SNPs that function at longer distances to impact upon gene expression. At present, 

our ability to address this issue is limited since detecting trans-acting eQTLs has proven to be 

challenging46, especially in human brain. 

Third, our approach accounts only for cell type and pathway and, moreover, builds on the assumption 

that cellular diversity can be sufficiently described by discrete cells classes, which a recent single-cell 

RNA-sequencing study of the hippocampal CA1 area has called into question47. In this study, it was 

suggested that characterisation of cells requires continuous modes of variation in addition to discrete 

cell classes; that is, some cell classes exist on a common genetic continuum. Inherent within this 

spectrum is cellular state, which reflects the physiological condition of a given cell, whether it be the 

degree of differentiation or activation in response to a stimulus. There may be cellular states that we 

have not assayed or captured which harbour PD heritability enrichments. Furthermore, one would 

expect preferential enrichment of pathways in specific cell types/subtypes to vary dependent on their 

physiological profile. In view of increasing evidence for the association between PD and the innate 

immune system13,40,41, we think that cellular state is likely to be an important factor, which we cannot 

fully assess at this stage. 

In conclusion, our results add to a growing body of evidence in support of the view that PD risk loci 

may not lie entirely in those cell types that display the disease’s characteristic neuropathology, but 

instead in global cellular processes to which cellular subtypes may have varying vulnerability. This view 

has significant implications for disease modelling, with a choice of model perhaps based upon the cell 

type, which best reflects the process of interest, as opposed to the cell type which demonstrates the 

highest burden of α-synuclein aggregates. Likewise, viewing PD as a systemic disorder may have 

implications for potential drug re-purposing, as in the case of exenatide. Thus, our work here may 

have wider implications in terms of understanding neurodegenerative disorders more generally as 

disorders of key cellular processes rather than disorders driven solely by specific cell types.   
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Figures 

 

Figure 1. Overview of approach and datasets used. 

This study compiled several brain-related genomic annotations reflecting tissue- and cell-type-specific 

activity, using data generated by the GTEx project19, the Barres group20 and the Linnarsson group21.  

These annotations, each of which varied in their cellular resolution, included: tissue-specific eQTLs 

(reflecting the effect of genetic variation on gene expression); tissue-specific co-expression networks 

(reflecting the connectivity of a gene to all other expressed genes in the tissue), and tissue- and cell-

type-specific gene expression. All annotations were constructed in a binary format (1 if the SNP is 

present within the annotation and 0 if not). For annotations where the primary input was a gene, all 

SNPs with a minor allele frequency > 5% within ± 100kb of the transcription start and end site were 

assigned a value of 1. For more details of how each individual annotation was generated see Methods. 
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Stratified LDSC was then used to test whether an annotation was significantly enriched for the 

common-SNP heritability of PD and SCZ. 
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Figure 2. Enrichment of PD and SCZ common-SNP heritability in tissue-specific gene expression 

annotations as used in Finucane et al.17  

A) Stratified LDSC analyses showed a significant enrichment of SCZ heritability in all GTEx brain regions 

but no enrichment of PD heritability. GTEx tissue annotations represent the top 10% most upregulated 
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genes in each tissue with respect to the remaining tissues, excluding those from a similar tissue 

category. B) Stratified LDSC analyses showed a significant enrichment of SCZ heritability in cortical 

brain regions, but no enrichment for PD heritability. GTEx brain-only annotations represent the top 

10% most upregulated genes in each brain region with respect to the remaining regions. The black 

dashed lines indicate the cut-off for Bonferroni significance (A, p < 0.05/(2 x 53); B, p < 0.05/(2 x 13)). 

Bonferroni-significant results are marked with black borders. Results for previous iterations of the PD 

and SCZ GWASs are displayed in Supplementary Figure 1 and 2. Numerical results are reported in 

Supplementary Table 1.  
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Figure 3. Enrichment of PD and SCZ common-SNP heritability in tissue-specific eQTL annotations. 

A) Stratified LDSC analyses showed a significant enrichment of SCZ heritability in brain-specific and 

blood-specific GTEx eQTLs. B) A within-brain analysis of GTEx eQTLs showed no significant enrichment 

of PD and SCZ heritability in one region relative to others. In both analyses, eQTLs were assigned to a 

tissue/brain region based on their effect size (i.e. the absolute value of the linear regression slope). 

The black dashed lines indicate the cut-off for Bonferroni significance (A, p < 0.05/(2 x 2); B, p < 0.05/(2 

x 11)). Bonferroni-significant results are marked with black borders. Results for previous iterations of 

the PD and SCZ GWASs are displayed in Supplementary Figure 3. Numerical results are reported in 

Supplementary Table 2. 
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Figure 4. Enrichment of PD and SCZ common-SNP heritability in brain-related cell-type-specific gene 

expression annotations. 

Stratified LDSC analyses using cell-type-specific annotations derived from bulk RNA-sequencing of 

immunopanned cell types from human temporal lobe cortex (A) and single-cell RNA-sequencing of the 

adolescent mouse nervous system (B) demonstrated an enrichment of SCZ heritability in neuronal cell 

types (in particular, medium spiny neurons), but no cell-type enrichment for PD. All cell-type 

annotations were generated using the top 10% of enriched genes within a cell type compared to all 

others. Bonferroni significance (A, p < 0.05/(2 x 6); B, p < 0.05/(2 x 30)). The black dashed lines indicate 

the cut-off for Bonferroni-significant results are marked with black borders. Results for previous 

iterations of the PD and SCZ GWASs are displayed in Supplementary Figure 4. Numerical results and 

cell-type abbreviations are reported in Supplementary Table 3. 
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Figure 5. Enrichment of PD and SCZ common-SNP heritability in cell-type modules inferred from 

human tissue-level co-expression networks. 

Stratified LDSC analyses using cell-type-specific co-expression modules from frontal cortex (A), 

putamen (B), and substantia nigra (C) demonstrated a significant enrichment of SCZ heritability in 

certain neuronal modules across all three tissues, but no enrichment for PD heritability. Genes were 

assigned to cell-type modules by module membership. The black dashed lines indicate the cut-off for 

Bonferroni significance (A, p < 0.05/(2 x 5); B, p < 0.05/(2 x 17); C, p < 0.05/(2 x 11)). Bonferroni-

significant results are marked with black borders. Results for previous iterations of the PD and SCZ 

GWASs are displayed in Supplementary Figure 5. Numerical results and module descriptions are 

reported in Supplementary Table 4. FCTX, frontal cortex; PUTM, putamen; SNIG, substantia nigra. 
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Figure 6. PD susceptibility genes do not enrich in brain-related cell types. 

A) PD susceptibility genes were derived from MAGMA analyses and a study attempting to prioritise 

genes in PD using TWAS and colocalisation analyses41. Genes overlapping between the two sets were 

removed, resulting in a list of 89 genes. Bootstrapping tests performed using the EWCE method 

revealed no enrichment of PD susceptibility genes in the major cell-type classes (B) or their cell 

subtypes (C) from the Linnarsson single-cell RNA-sequencing dataset. Gene lists and numerical results 

are available in Supplementary Table 5.  
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Figure 7. PD heritability enriches in lysosomal gene sets which are specifically expressed in astrocytic 

and microglial cell subtypes. 

A) Stratified LDSC analyses using gene sets implicated in PD demonstrated a significant enrichment of 

PD heritability in the lysosomal gene set. The black dashed lines indicate the cut-off for Bonferroni 

significance (p < 0.05/(2 x 3)). Bonferroni-significant results are marked with black borders. 

Bootstrapping tests performed using the EWCE method demonstrated enrichment of autophagy, 

lysosomal and mitochondrial gene sets in specific cell-type classes (B) and their cell subtypes (C) from 

the Linnarsson single-cell RNA-sequencing dataset. Asterisks denote significance at p < 0.05 after 

correcting for multiple testing with the Benjamini-Hochberg method over all gene sets and cell types 

tested. Gene lists and numerical results are reported in Supplementary Table 6. 
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Methods 

Stratified LD score regression (stratified LDSC): assessing the heritability of categories of SNPs 
We applied stratified LDSC39 (see URLs) to determine if various categories of genomic annotations 

(marking tissue- or cell-type-specific activity, as summarised in Annotation datasets) were enriched 

for heritability of various GWASs (see GWAS datasets below). LDSC exploits the expected relationships 

between true association signals and surrounding local linkage disequilibrium (LD) to correct out 

confounding biases, such as cryptic relatedness and population stratification, and arrive at unbiased 

estimates of genetic heritability within a given set of SNPs (here stratified according to whether they 

were located within genomic annotation regions). Following the procedure employed by Finucane et 

al.39, we added annotation categories individually to the baseline model (version 1.1, see URLs). We 

used HapMap Project Phase 3 (HapMap3)48 SNPs for the regression, and 1000 Genomes Project49 

Phase 3 European population SNPs for the LD reference panel. We only partitioned the heritability of 

SNPs with minor allele frequency >5%, and we excluded the MHC region from analysis due to the 

complex and long-range LD patterns in this region. To map SNPs to genes, we used the 

SNPlocs.Hsapiens.dbSNP144.GRCh37 R package (dbSNP build 144 and GRCh37 coordinates)50. 

For all stratified LDSC analyses, we report a one-tailed p-value (coefficient p-value) based on the 

coefficient z-score outputted by stratified LDSC. A one-tailed test was used as we were only interested 

in annotation categories with a significantly positive regression coefficient (i.e. the annotation 

positively contributed to trait heritability, conditional upon the baseline model, which accounts for 

the underlying genetic architecture). We looked at three versions of PD GWAS summary statistics and 

four versions of SCZ, and for each set of analyses we corrected for multiple testing of the GWASs across 

the number of annotation categories, resulting in Bonferroni significance thresholds for each set of 

analyses.  

Annotation datasets 

Tissue-specific gene expression  

Annotation files were generated by Finucane et al.17, using GTEx V6P gene expression19, and obtained 

from Alkes Price’s group data repository (see URLs). Briefly, for each GTEx tissue, genes were ranked 

by a computed t-statistic reflecting their specific expression within that tissue versus all other tissues, 

excluding those that were from a similar tissue category (e.g. expression in cortex samples was 

compared to expression in all other tissues except other brain regions; see Supplementary Table 2 

from Finucane et al.17 for t-statistic tissue categories). The top 10% of expressed genes from each 

tissue was selected and a 100-kb window was added around their transcribed regions to obtain a 

tissue-specific gene expression annotation. For the within-brain analysis, tissues were restricted to the 

13 brain regions found in GTEx, including: amygdala, anterior cingulate cortex (BA24), caudate, 

cerebellar hemisphere, cerebellum, cortex, frontal cortex (BA9), hippocampus, hypothalamus, nucleus 

accumbens, putamen, spinal cord (cervical c-1), substantia nigra. 

Tissue-specific eQTLs 

From the GTEx Portal (V7, accessed 04/16/18, see URLs), we downloaded all SNP-gene (expression 

quantitative trait loci, eQTL) association tests (including non-significant tests) for blood (to allow for a 

blood-brain comparison) and 11 of the 13 available brain regions19. To reduce redundancy across the 

brain regions, we excluded cortex and cerebellum, and instead included frontal cortex, anterior 

cingulate cortex and cerebellar hemisphere. We performed an FDR correction for each tissue and 

included all SNP-gene associations that passed FDR < 5% in our downstream analyses. For the blood-

brain comparison, eQTLs from all 11 brain regions were combined to form one brain category. eQTLs 
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that replicated across brain regions were collapsed into one entry and allocated an effect size (i.e. the 

absolute value of the linear regression slope) equal to that of the maximum effect size observed across 

the brain regions. Finally, eQTLs were assigned to either blood or brain by their effect size. A similar 

approach was used for the within-brain analysis, where eQTLs were assigned to one of the 11 brain 

regions based on effect size. 

Cell-type-specific gene expression 

Cell-type-specific annotations were constructed using gene expression data from the Barres group20 

and the Linnarsson group21 (see URLs), which was generated using bulk RNA-sequencing and single-

cell RNA-sequencing, respectively. Due to the disparate nature of the RNA-sequencing methods, each 

dataset was analysed separately. Common to both analyses was the calculation of an enrichment 

value for each gene in each cell type. Enrichment was calculated as: gene expression in one cell type 

divided by the average gene expression across all other cell types. We thereafter selected the top 10% 

of genes enriched within each cell type and added a 100kb window to reflect the approach used by 

Finucane et al.17 When using the Barres data, we averaged gene expression across samples of the 

same cell type, filtered genes on the basis of an FPKM ≥ 1 in at least one cell type (this equates to 

~66% of all genes with FPKM > 0.1, which was set by Zhang et al. 20 as the threshold for minimum gene 

expression), and then calculated gene enrichment. Our detection threshold of FPKM ≥ 1 was employed 

on the basis that smaller thresholds tend to produce large and misleading enrichments51. The 

Linnarsson data was available with gene expression aggregated by sub-cell type/cluster. Genes were 

filtered on the basis of expression > 0, enrichment was calculated and a subset of the 265 identified 

clusters were used as annotations. Mouse genes were converted to human orthologs using Biomart. 

Cell-type-specific co-expression modules 

Co-expression networks for frontal cortex, putamen and substantia nigra were constructed using GTEx 

V6 gene expression19, the WGCNA R package52 and post-processing with k-means53 (see URLs), as 

described by Botia et al.22 Modules were assigned to cell types using the userListEnrichment R function 

implemented in the WGCNA R package, which measures enrichment between module-assigned genes 

and defined brain-related lists18,54–57 using a hypergeometric test. Genes assigned to modules 

significantly enriched for brain-related cell-type markers of predominantly one cell type with a module 

membership of ≥ 0.5 were allocated a cell-type “label” of neuron, microglia, astrocyte or 

oligodendrocyte and considered cell-type specific. Module membership values range between 0 and 

1, with 1 indicating that a gene’s expression is highly correlated with the module eigengene. An 

eigengene is defined as the first principal component of a given module and can be considered 

representative of the gene expression profiles within the module, as it summarises the largest amount 

of variance in expression. 
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GWAS datasets 
Table 1. Summary of GWAS datasets. 

Disease Author, Year N cases N controls PMID Reference 

PD IPDGC Consortium, 2011 5,333 12,019 21738488 58 

PD Nalls, 2014 13,708 95,282 25064009 59 

PD Nalls, 2018 (excluding 
23andMe contributions)1 

33,674  
(18,618 proxy cases 
from UK Biobank)  

449,037   15 

SCZ SCZ Consortium, 2011 9,394  12,462 21926974 
 

60 

SCZ Ripke, 2013 14,395 18,705 23974872 61 

SCZ SCZ Consortium, 2014 
(EUR subset) 

33,640 43,456 25056061 62 

SCZ Pardiñas, 2018 40,675 64,643 29483656 16 

1 Access to PD 2018 summary statistics (excluding 23andMe contributions) was provided by Mike A Nalls, with 
permissions from IPDGC and SGPD. 

MAGMA: assessing gene-level enrichment 
Gene-level p-values were calculated using MAGMA v1.06 (see URLs)63, which tests the joint 

association of all SNPs in a gene with the phenotype while accounting for LD between SNPs. SNPs were 

mapped to genes using NCBI definitions (GRCh37, annotation release 105); only genes in which at least 

one SNP mapped were included in downstream analyses. Gene boundaries were defined as the region 

from transcription start site to transcription stop site. In addition, we added a window of 35 kb 

upstream and 10 kb downstream of each gene, as most transcriptional regulatory elements fall within 

this interval64. Furthermore, the MHC region on chromosome 6 (chr6: 25500000 – 33500000, human 

genome assembly GRCh37) was excluded. The gene p-value was computed based on the mean 

association statistic of SNPs within a gene, with genome-wide significance set to p < 2.82 x 10-6, and 

LD was estimated from the European subset of 1000 Genomes Phase 349.  

Expression-weighted cell-type enrichment (EWCE): evaluating enrichment of PD-associated 
genes and gene sets 
EWCE (see URLs)65 was used to determine whether PD-associated genes or gene sets have higher 

expression within a particular cell type than expected by chance. As our input, we used the same 

subset of clusters from the Linnarsson single-cell RNA-sequencing dataset used in stratified LDSC, in 

addition to a target gene list. For each gene in the Linnarsson dataset, we estimated its cell-type 

specificity i.e. the proportion of total expression of a gene found in one cell type compared to all cell 

types, using the ‘generate.celltype.data’ function of the EWCE package. EWCE with the target list was 

run with 100,000 bootstrap lists. We controlled for transcript length and GC-content biases by 

selecting bootstrap lists with comparable properties to the target list. P-values were corrected for 

multiple testing using the Benjamini-Hochberg method over all cell types and gene lists tested. We 

performed the analysis with major cell-type classes (e.g. “astrocyte”, “microglia”, “enteric neurons”, 

etc.) and subtypes of these classes (e.g. ACNT1 [“Non-telencephalon astrocytes, protoplasmic”], 

ACNT2 [“Non-telencephalon astrocytes, fibrous”], etc.). Data are displayed as standard deviations 

from the mean, and any values < 0, which reflect a depletion of expression, are displayed as 0. 
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PD susceptibility genes 

PD susceptibility genes were derived from our own MAGMA analyses and a study attempting to 

prioritise genes in PD using TWAS and colocalisation analyses (Supplementary Table 1 in ref.41). The 

genes comprising these lists are available in Supplementary Table 5. In the case of MAGMA, only those 

genes passing genome-wide significance (p < 2.82 x 10-6) were used. In the case of TWAS/coloc, only 

those eQTL-gene associations found within dorsolateral prefrontal cortex tissue, which were both 

TWAS and coloc hits (as defined in ref.41) were used.  

Gene sets associated with PD 

We investigated three gene sets with previous biological support for involvement in PD: autophagy, 

lysosomal and mitochondrial25–30. The autophagy gene set included all genes associated with the Gene 

Ontology terms: GO:0006914 (“autophagy”) and GO:0005776 (“autophagosome”), as derived from 

the GO C5 collection of the MSigDB database (v5.2). Lysosomal genes were downloaded from the 

Human Lysosome Gene Database (hLGDB, see URLs)66. All genes reported lysosomal by any of the 

listed sources (9 of the 16 were unbiased proteomic studies) were used. Mitochondrial genes were 

obtained from Human MitoCarta 2.0, an inventory of human genes with strong support of 

mitochondrial localisation based on literature curation, proteomic analyses and epitope 

tagging/microscopy (see URLs)67. The genes comprising these lists are available in Supplementary 

Table 6. Overlap between gene sets was determined using Intervene, a command line tool and web 

application that computes and visualises intersections of gene sets (see URLs)68. 

URLs 
Barres immunopanning, http://www.brainrnaseq.org/; Baseline LDSC annotations, 

https://data.broadinstitute.org/alkesgroup/LDSCORE/; Expression-weighted cell-type enrichment 

(EWCE), https://github.com/NathanSkene/EWCE; Finucane GTEx annotations, 

https://data.broadinstitute.org/alkesgroup/LDSCORE/LDSC_SEG_ldscores/; GTEx Portal, 

https://www.gtexportal.org/; Intervene, https://asntech.shinyapps.io/intervene/; LDSC, 

https://github.com/bulik/ldsc/wiki; Linnarsson single-cell RNA-sequencing, http://mousebrain.org/; 

MAGMA, https://ctg.cncr.nl/software/magma; MitoCarta, 

https://www.broadinstitute.org/scientific-community/science/programs/metabolic-disease-

program/publications/mitocarta/mitocarta-in-0; SCZ GWAS summary statistics, 

https://www.med.unc.edu/pgc/results-and-downloads; The Human Lysosome Gene Database, 

http://lysosome.unipg.it/; WGCNA, 

https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/; WGCNA 

hierarchical clustering with k-means, https://github.com/juanbot/km2gcn     
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