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Abstract: We record calcium activity from the majority of head neurons in freely moving C. 
elegans to reveal where and how natural behavior is encoded in a compact brain. We find that a 
sparse subset of neurons distributed throughout the head encode locomotion. A linear 
combination of these neurons’ activity predicts the animal's velocity and body curvature and is 
sufficient to infer its posture. This sparse linear model outperforms single neuron or PCA models 15 
at predicting behavior. Among neurons important for the prediction are well-known locomotory 
neurons, such as AVA, as well as neurons not traditionally associated with locomotion. We 
compare neural activity of the same animal during unrestrained movement and during 
immobilization and find large differences between brain-wide neural dynamics during real and 
fictive locomotion. 20 
 

One Sentence Summary: C. elegans behavior is predicted from neural activity. 
Main Text:  
How do patterns of neural activity in the brain represent an animal's behavior? Much of what is 
known about the neural codes for animal behaviors such as head direction (1, 2), spatial location 25 
(3, 4) or arm movements (5) comes from studying small regions of the brain. It is unclear to what 
extent neurons in other regions of the brain may also carry behavior related signals, or how those 
signals may be encoded. Recent reports of neural signals correlated with facial expression in 
sensory brain areas like the visual cortex (6) suggest that behavioral information may be 
prevalent throughout the brain and may account for a larger fraction of neural dynamics than 30 
previously thought. Advances in calcium imaging now allow for brain-wide investigations of 
neural activity at single cell resolution in small transparent organisms such as zebrafish (7), 
worms (8) or hydra (9). Pioneering work in these systems has begun to investigate how brain-
wide patterns of neural activity correlate with behavior, primarily by measuring fictive 
locomotion from immobilized animals (7, 10).  Here we investigate brain-wide neural coding of 35 
behavior in unrestrained and freely moving Caenorhabditis elegans. We find that the brain 
exhibits starkly different neural dynamics during immobilization compared to awake and 
unrestrained locomotion. We present a linear model or ‘decoder’ that predicts the animal’s 
velocity and body curvature from the activity of a subset of neurons spatially distributed 
throughout its head. Amongst those neurons are many that have previously been identified in 40 
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coding for locomotory behavior, such as AVA, SMB and AIY, as well as additional neurons that 
have not traditionally been implicated in locomotion (ALA, AIM, RIS, RMG, and RIP). Finally, 
we use our decoder to predict the animal's full posture from neural activity. Our work provides a 
revised picture of how behavior is encoded in brain-wide neural dynamics in the C. elegans 
model system.  5 
Previous investigations of whole-brain neural activity of behavior in C. elegans have used 
animals that were immobilized with a paralytic, tetramisole (10, 11). We wondered the extent to 
which neural dynamics of paralyzed or immobilized animals resembled those of freely moving 
animals. We used a whole-brain imaging system for freely moving animals ((12); see also (13)) 
to compare neural dynamics of the same animal during movement and immobilization. We 10 
recorded neural activity as an animal crawled freely in a microfluidic arena and then delivered a 
paralytic, part way through the same recording (Fig. 1A, additional trial in Fig. S1). Consistent 
with prior reports (10), neural dynamics during immobilization showed slow, antiphasic activity 
in two groups of neurons. In contrast, when the same animal was freely moving, the neural 
activity appeared to vary more rapidly and less coherently.  15 
We recorded neural dynamics from 18 additional animals that were immobilized or freely 
moving for the entirety of the recording (including two that were reanalyzed from (14), Fig. S2, 
and Table S1).  We calculated the autocorrelation of calcium activity for each condition, 
averaged across neurons (Fig. 1D). We found pronounced peaks in the correlogram of the 
immobilized recordings indicating slow ( s), periodic activity of many neurons during 20 
immobilization. In contrast, such pronounced peaks were absent in the correlogram for activity 
during movement, indicating that during movement animals exhibited less periodic activity, 
especially on longer timescales. Here immobilized animals included those either paralyzed with 
tetramisole, or immobilized using nanobeads, both of which exhibited similar dynamics (see 
Supplementary Text and Fig. S3). We therefore concluded that neural dynamics during 25 
immobilization fluctuate more slowly and are more periodic than during movement. 

To investigate the structure and dimensionality of neural dynamics during behavior we used 
principal components analysis (PCA, Fig. 1C). PCA extracts a basis set, called the principal 
components (PCs). A truncated set of PCs can be used to represent neural activity in a lower-
dimensional space while retaining the features accounting for the most variance. In agreement 30 
with recent reports (10, 15), we observed neural dynamics during immobilization that cycle 
repeatedly through a stereotyped trajectory in neural state space defined by the first three PCs 
(Fig. 1F, blue spiral-like trajectory). Interestingly, neural dynamics of the same animal during 
movement followed no such stereotyped structure (Fig. 1F, red hairball), suggesting a major 
difference between the neural dynamics of fictive and real movement.  35 
We further wondered how well the observed neural dynamics were approximated by a low 
dimensional representation. The first three principal components explained 74% of the variance 
of neural activity for the immobile portion of our recording but only 59% for the moving portion 
(Fig. 1E). A statistical analysis of 18 recordings (moving and immobile) revealed that the 
number of significant principal components was larger for recordings during movement than 40 
during immobilization (Fig. S4, Supplementary Text). Similar analysis of calcium-insensitive 
GFP control animals suggest that these differences cannot be trivially explained by motion 
artefact (Supplementary Text, Fig. S4). That neural dynamics of movement are less well 
approximated by a three-dimensional representation than those during immobilization further 
suggests that there are important differences between neural dynamics of movement and 45 
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immobilization.  We therefore proceeded to study neural activity exclusively during unrestrained 
movement. 

To explore how behavior is encoded in the brain, we simultaneously measured locomotion and 
posture, and whole-brain neural activity. We extracted the animal’s velocity and its body 
curvature (a feature directly related to turning behavior) using a PCA-based posture analysis 5 
(16). We imaged freely moving wild type (WT) animals on either an agar plate or in a 
microfluidic arena (Fig. 2). To control for potential imaging-induced behavior effects, we also 
imaged lite-1 mutants that lack the animal’s endogenous blue-light aversive response (17). 
Consistent with prior reports (10–12, 18, 19), we observed that the activity of individual neurons 
was correlated with velocity or body curvature (Fig. S5). We therefore developed models to 10 
predict such behavior from measured neural activity. 
A previous report from immobilized animals suggests that neural activity projected along only 
the first three PCs should be sufficient to encode behavior (10). We therefore used linear 
regression to test how well linear combinations of projections of activity along the first three PCs 
predict a freely-moving animal’s velocity and body curvature (PCA model, Fig. 2A-E, G). The 15 
regression model was trained on part of the recording and tested on the remaining portion (Fig. 
2C). Surprisingly, this PCA model performed poorly at predicting velocity and body curvature 
(median R2 of 0.13 and 0.01, respectively). For predicting velocity its performance was 
comparable to that of the best single neuron, and for predicting body curvature it was 
dramatically worse (Fig. 2G). Therefore, we conclude that for freely moving animals, the first 20 
three orthogonal components of neural activity do not trivially encode behavior.  
We wondered whether a differently weighted collection of neurons could better predict behavior. 
We used sparse linear regression to find the linear combination of neurons from each recording 
whose collective activity best predicted turning and body curvature. `Elastic net’ regularization 
was used to impose sparsity while retaining neurons with redundant but relevant signals. (see 25 
Fig. 2F, methods). We performed fitting and time-series cross-validation on part of the recording 
and tested the performance of the model on the remaining portion (Fig. 2C, methods). The sparse 
linear model (SLM) outperformed both the best single neuron and the PCA model at predicting 
velocity and body curvature, (median R2 of 0.37 and 0.41, respectively). When applied to 
calcium insensitive GFP control animals, a similar SLM performed poorly, suggesting that the 30 
model derives its predictive power from calcium signals and not motion artefacts (Fig. 2G). 
Model performance was not restricted to a particular environment (plate or arena) or to a genetic 
background (WT or lite-1).  
The SLM assigned non-zero weights to 19±5 and 15±2 neurons (mean ± s.e.m., across animals) 
for predicting velocity and body curvature, respectively, with little overlap, accounting for 35 
roughly 20% of the measured neurons (Fig. 3A, B). Neurons selected by the SLM were spread 
spatially throughout the recording region, with the highest density located in the nerve ring (Fig. 
3C, D). Their location was roughly stereotyped across animals. We aligned neuron locations for 
each recording to a known cell atlas (20) and attempted to identify those neurons selected by the 
SLM by name. We were reassured to find many neurons that had previously been implicated in 40 
locomotory behavior, including neuron classes AVA, SMB, and AIY (Fig. 3C, D and Tab. S2) 
(10, 18, 21, 22). Intriguingly, we also found neurons not traditionally known as locomotory, 
including ALA and RIS which are quiescence-promoting (23, 24), AIM which is involved in 
foraging (25), RMG which is a multisensory integration hub (26) and RIP which is less well 
characterized (Fig. S6).  45 
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To infer the animal’s posture from neural activity, we integrated information about the predicted 
behavioral variables— velocity and body curvature —over time. Given only neural activity and 
the animal’s starting posture, we accurately predicted posture for up to 10 seconds, after which 
error accumulation caused the phase between the predicted and true postures to drift (Fig. 4A, B 
and Video S1). The SLM accurately predicts posture and posture dynamics during forward 5 
locomotion. However, during turns (when body curvature amplitude is large), the predicted 
curvature of the animal’s posture is slightly too low (Fig. 4B). We found that adding an 
empirically derived nonlinearity to the body curvature decoder provided more accurate posture 
predictions during turns (Fig. 4C-F). This suggests that the nervous system may nonlinearly 
amplify curvature related neural signals, either in the brain or at the neuromuscular junction. 10 
Taken together, we conclude that a linear model with minor non-linear corrections is sufficient to 
fully reconstruct the animal’s behavior and posture from a sparse combination of neural activity. 

Discussion: 
Our results provide new insights into where and how behavior is coded in a simple brain. In C. 
elegans we find that a sparse subset of neurons spatially located throughout the head encode 15 
behavior. A linear combination of activity from these neurons alone is sufficient to predict the 
animal's velocity and body curvature, and to further infer its posture. Among this subset of 
neurons are many that have long been associated with locomotion, like AVA, SMB, and AIY 
(10, 18, 21, 22), as well as others that have not traditionally been implicated in locomotion, like 
RMG and RIP. Together, this suggests that neural coding of behavior is spread throughout the 20 
brain and includes more neurons than previously thought.  

What role might these neurons have in behavior? Some, like AVA, have been shown to 
modulate reversal frequency and generate high-level motor commands directly (19). Other 
neurons, however, are probably either reporting motor commands generated elsewhere as an 
efference copy (27), or are detecting locomotion independently as in proprioception (28).  25 

Our results also demonstrate dramatic differences between neural dynamics of fictive and 
real locomotion that inform our picture of the brain. Previous studies from immobilized C. 
elegans had reported that the brain’s neural dynamics are dominated by low dimensional 
representations of behavior contained in the first three PCs of neural activity (10). That result 
implies that motor outputs constitute a large fraction of the brain’s neural dynamics. In contrast, 30 
our measurements in freely moving animals indicate that the first three PCs are poor predictors 
of behavior. The neural coding of behavior we find in moving animals is linear and low 
dimensional, but it does not so dominate brain wide neural dynamics as to appear in the first few 
principal components.  

If the first few PCs of brain wide activity are not coding for behavior, what might be their 35 
role instead? In addition to generating behavior, the nervous system must also sense an animal’s 
environment and maintain internal states. In mice, an internal arousal state (as measured by pupil 
diameter) accounts for the majority of the variance of membrane potential in an arbitrary brain 
region such as auditory cortex (29). We speculate that in C. elegans the first few PCs of neural 
activity may be involved in either sensory coding or maintaining internal brain states such as 40 
arousal, both of which complement behavior and are critical for survival. 
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Fig. 1. Neural dynamics slow down when animals are immobilized  

(A) Calcium activity of a transiently immobilized C. elegans. Calcium activity is recorded from 
an animal as it moves unrestrained and then is immobilized with tetramisole, a paralytic drug. 5 
Calcium activity is the fractional change above baseline of the motion-corrected intensity of 
GCaMP6s (ΔI/I0). (B) Ethogram shows animal’s behavior. (C) Neural activity is shown 
projected onto its first three principal components, as determined by the immobilized portion of 
the recording. (D) Autocorrelation of neural activity, averaged across neurons, is shown for 
many recordings of either moving or immobilized animals. Thick line shows the recording from 10 
(A), split into two parts. Immobilized recordings include animals paralyzed by tetramisole or 
treated with nanobeads. Neural activity is more periodic and fluctuates more slowly in 
immobilized animals than in moving animals. (E) Cumulative variance explained by the first ten 
principal components for the moving (red) and immobile part (blue) of the recording in (A). (F) 
Neural state space trajectory for the same recording. 15 
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Fig. 2. Behavior is decoded from a population of neurons 
(A) Neural activity of a freely moving animal. (B) Ethogram. (C) Neural activity projected onto 
its first three principal components (PCs). (D) Velocity and body curvature capture describe the 5 
animal’s locomotion. (E) Velocity and body curvature are predicted by a PCA-based linear 
model ‘PCA’ that uses projections of neural activity onto three PCs as shown in (C). Prediction 
is colored. Observed behavior is gray. The model is trained on first and last portion of the 
recording and tested on the middle portion, labeled ‘testset’ in (A-D), and shown here. (F) 
Velocity and body curvature is predicted by a sparse linear model (SLM). (G) Model 10 
performance for multiple animals is shown and compared against the most predictive single 
neuron (SN), and a similar sparse linear model applied to calcium insensitive GFP control 
animals, (Ctrl). Box plot shows median. Circles denote wild type animals, triangles denote lite-1 
background animals. 
  15 
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Fig. 3 Neural code for locomotion is spatially distributed throughout the head.  
(A) Number of non-zero weighted neurons selected by the sparse linear model for predicting 
velocity or body curvature. (B) Fraction of those neurons that uniquely occur in only the 5 
velocity- or curvature-predicting subsets, but not both. (C) Putative identities of selected velocity 
and (D) body curvature neurons from 6 recordings are estimated by projecting onto a reference 
atlas. Shading indicates the number of recordings in which that neuron was present. Labeled 
neurons are those previously described to have a role in locomotion. For additional neurons see 
(Fig. S6 and Table S2).  10 
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Fig. 4 Posture is inferred from neural activity 

(A) Observed and predicted posture of an animal during neural recording. From top to bottom 
rows show: measured posture (original), the posture predicted using the sparse linear model 5 
(SLM), and the posture predicted from the SLM with a nonlinear correction (SLM+NL). The 
original posture is underlayed in gray for comparison. (B) Posture for a different portion of the 
same recording. (C) Scatter plot of the predicted (SLM) and true body curvature from all 
recordings. A nonlinear function (red) was fit to the point cloud. (D) Turn prediction before 
(SLM, blue) and after (SLM+NL, yellow) applying a nonlinear correction to enhance the turning 10 
amplitude. The ground truth is shown as dashed line. The shaded bars indicate the segments 
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shown in (A) and (B). (E) RMSE between the true posture and the posture predicted by the linear 
or non-linear corrected model during turns (body curvature amplitude larger than 10).   
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Materials and Methods 
 
Strains 
The following strains were used in this work: Strain AML32 (wtfIs5[Prab-3::NLS::GCaMP6s; 
Prab-3::NLS::tagRFP]) expresses the calcium indicator GCaMP6s and a fluorophore tag-RFP in 
the nuclei of all neurons (1). Strain AML18 (wtfIs3[Prab-3::NLS::GFP, Prab-3::NLS::tagRFP]) 
expresses the fluorophores GFP and tag-RFP in the nuclei of all neurons  (2). Strain AML70 
(lite-1(ce314)X; wtfIs5[Prab-3::NLS::GCaMP6s; Prab-3::NLS::tagRFP] also expresses 
GCaMP6s and tag-RFP in the nuclei, but does so in a mutant background that is defective for the 
animal’s endogenous aversive blue-light response. AML70 was generated by backcrossing 
AML32 to KG1180(lite-1(ce314)). Similarly, strain AML175 (lite-1(ce314)X; wtfIs3[Prab-
3::NLS::GFP; Prab-3::NLS::tagRFP]  expresses GFP and tag-RFP in the nuclei in the light-
insensitive mutant background. Strain AML175 was generated by backcrossing AML18 to 
KG1180(lite-1(ce314)). The presence of the lite-1 mutation was confirmed by sequencing.  

Strains were maintained on standard NGM media with E. coli OP50 as food source. 
Animals were imaged between young adult and day 1 adult stage.  

 
Whole brain imaging of freely behaving animals  

Whole brain imaging of freely moving animals was performed as described previously 
(1, 2). Briefly, animals were placed on an imaging plate (a modified NGM media lacking 
cholesterol and agarose replacing agar) and covered with mineral oil. A coverslip was placed on 
top of the plate with 100 um plastic spacers between the coverglass and plate surface. The 
coverslip was fixed to the agarose plate with valap. Animals were imaged on the whole brain 
imager (2), which simultaneously records four video streams to image the  calcium activity of the 
brain of freely moving animals. We record a 10x magnification darkfield image of the body 
posture, a 10x fluorescence image of the fluorescent brain for tracking, and a 40x image each of 
tagRFP, and of GCaMP6s (or GFP). The 10x images are recorded at 50 frames/s, and the neural 
dynamics are recorded with 200 slices/s, with a resulting acquisition rate of 6 volumes/s. 

 
Whole brain imaging animals immobilized via nanobeads 

Animals were washed in M9 and picked onto 10% agarose pads with 1 ul of 0.1 um 
polystyrene beads for immobilization (3). A coverslip was placed on top of the agarose and 
sealed with valap. The animals were recorded and analyzed as described above. 

 
Whole brain imaging of animals paralyzed via tetramisole 

For transient immobilization experiments as in Fig 1, animals were immobilized with the 
paralytic tetramisole during recording. A single animal was loaded into a customized ‘artificial 
dirt’ microfluidic chip arena, inspired by (4), that enabled the animal to crawl freely in an 
aqueous environment while precise quantities of liquid were delivered to the arena. A computer-
controlled automated liquid delivery system (OB1 and MUX, Elveflow, Paris, France) was used 
to flow in the buffer and paralytic into the arena. M9 buffer was flowed in for the 4 minutes after 
which the buffer was switched to 5 uM tetramisole in M9, paralyzing the animal. The buffer 
switching sequence was pre-programmed and automated using the software provided by 
Elveflow. The animals were recorded continuously on the whole brain imager. Recording was 
manually synced to the start of the buffer sequence.  

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 17, 2018. ; https://doi.org/10.1101/445643doi: bioRxiv preprint 

https://doi.org/10.1101/445643
http://creativecommons.org/licenses/by-nc/4.0/


 
 

3 
 

Segmenting and measuring neural and behavior signals from whole brain recordings 
The resulting videos of freely moving, immobilized or paralyzed animals were analyzed 

with the NeRVE Clustering pipeline (1). In brief, the movies are synchronized temporally using 
light flashes. The animals’ posture is extracted using an active contour fit on the frames of the 
10x behavior recordings. The fit finds 100 (x,y) coordinates for each frame of the behavior 
recording describing the centerline of the animal. This centerline is computationally mapped 
onto the high magnification recordings to straighten the point set of detected neuronal nuclei. 
The neural dynamics are extracted by segmenting the neuronal nuclei in the red channel and 
straightening the image according to the body posture. Using repeated clustering, neurons are 
assigned identities over time. The GCaMP signal is extracted using the neural positions over 
time that resulted from tracking. Occasionally, badly tracked neurons were removed post-
analysis during human quality checks. The pipeline returns datasets containing RFP and 
GCaMP6s (or GFP) fluorescence values for each successfully tracked neuron over time, and the 
centerline coordinates describing the posture of the animal over time. These are subsequently 
processed to extract neural activity or behavior features. 
 
Extracting neural activity using independent component analysis 
 
To measure neural activity, we sought to extract changes in fluorescence due to calcium activity 
and reject artifacts due to animal motion or noise. We pursued a strategy of extracting signals 
unique to the calcium indicator GCaMP6s and rejecting background signals common to both 
GCaMP6s and the calcium insensitive fluorophore RFP. We performed independent component 
analysis (ICA) on the red RFP and green GCaMP6s channels for each neuron independently. 
ICA has previously been used in neuroscience contexts, for example to identify spikes in 
intracranial recordings (5) or  to automatically define regions of interest from large-scale calcium 
recordings (6). Here we use ICA to separate calcium signals from motion artifact. For each 
neuron, the fluorescence intensity from the red FRFP and green FGCaMP channels are smoothed 
with a gaussian filter of width 1 s. We then separate signal from noise using the FastICA 
algorithm based on the implementation described in (7) as provided by the python scikit-learn 
package (8). ICA extracts two components, one of which relates to the neural activity signal and 
the other describes any background that is present in both channels, and thus likely noise. To 
identify which independent component corresponds to the signal, we pick the component that is 
most correlated with the green channel, FGCaMP. ICA is insensitive to the sign of the component, 
and it can converge to components that are inverted. We therefore assign the correct sign to the 
component by checking if the correlation with the green channel is positive or negative. We then 
normalize the ICA values by first subtracting the 20th percentile (I0) and then also dividing by 
that value. In this work we therefore report calcium signals as Δ"/"$ =

&'&!
&!
, where	" = 

ICASignal(FGCaMP,FRFP).   
 

Compared to a ratiometric approach (Δ./.$,	R= FGCaMP / FRFP) that we had used previously  
(2), we find that the ICA approach improves the quality of extracted signals, and slightly 
improves the resulting performance of our models. While a ratiometric approach removes much 
of the noise created by motion, it handles certain types of artefacts poorly and has the 
disadvantage that independent channel noise is amplified by forming a ratio between the two 
variables. The ICA approach ultimately performs better, as illustrated in simulations (Fig. S7).  
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Measuring and representing behavior 
To measure the animal’s velocity and body curvature we used a PCA-based ‘eigenworm’ 
postural analysis  (9) , as follows. Centerlines of the worms were extracted from the whole-brain 
imaging recordings using an active contour fit to a brightfield image of the worm as in (1). The 
resulting centerlines were projected onto a 4-dimensional basis set of eigenworms (9). To create 
the eigenworms, centerlines from 135,958 frames of behaving worms imaged in the whole brain 
imager were extracted. The centerline coordinates were transformed into a set of relative angles 
between segments and the mean angle was subtracted from each centerline. PCA of the relative 
angles results in a set of eigenvectors that describe the postural variation of the centerlines. The 
first four eigenworms explain 96% of the observed variance in the centerlines.  
 

The projection of the centerlines onto the eigenworms results in a timeseries of coefficients, 
one per eigenworm.  Two of the eigenworms describe the body bends that the worm creates 
during its sinusoidal locomotion. The phase of the body bends is Θ(1) = tan678(1)/79(1):, 
where 78, 79 are the coefficients for the first two eigenworms. The derivative of the phase Θ̇ is 
the phase velocity that describes the speed of bend propagation in the worm and is approximately 
the animal’s center of mass velocity. Per our convention, Θ̇ is referred to as ‘velocity’ and a 
positive value of Θ̇ corresponds to the worm moving forward and a negative value of Θ̇ denotes a 
reversal. Velocity is obtained by filtering Θ with a gaussian derivative filter with width of 3 s. 
The third eigenworm coefficient 7<(1) corresponds to the body curvature of the animal, which is 
related to turning. For example, when the animal makes a turn its velocity is positive, and its 
body curvature is large. The sign of 7<(1) describes the bend direction. 7<(1) is filtered with a 
gaussian filter of width 1 s. 
 

 
Principal component analysis (PCA) of neural activity 

PCA was performed on the mean-centered and standard deviation scaled data using 
packages present in the python module scikit-learn (8).  

 
Predicting behavior from PC’s of neural activity using linear regression 

For the PCA model in Fig 2, we use linear regression on the first three neural principal 
components (PCs) to predict either velocity or turns. The model is trained (i.e., weights are found 
for each PC) on 60% of the neural activity data. The performance of the model is estimated on 
the remaining 40% of the data by calculating the coefficient of determination between model 
prediction and behavior. 

 
Predicting behavior from neural activity using elastic net regularized linear models 

For the sparse linear model (SLM), behavior was predicted from neural traces using a linear 
model with elastic net regularization which applies both l8	and l9 weight penalties (10).  

min@!,@{|y − β$ − Xβ|9
9} ; 	subject	to	(1 − α)|β|8 + α|β|9

9 ≤ t,	where	α =
λ9

λ8 + λ9
 

Here, T are the model inputs, in our case the neural activities, U is the model output, in our case 
the behavior. β$ and β denote the slope and offset of the linear model. The parameters V, W8, W9 
set the relative strengths of the l8	and l9 weight penalties. 
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The X8	 penalty allows weights to converge to zero, thus resulting in a sparse model. The l9 
penalty makes the fit robust to collinear inputs, by weighing them equally. In neural decoding, 
elastic net performs better than a simple LASSO regularization, since many of the neural traces 
are highly correlated.  

To fit the sparse linear model, we hold out 40% of the data as test data. We use the 
remaining data to fit and cross-validate the model. To set the hyperparameter λ8, we used 5-fold 
timeseries cross validation. For each fold, the training data is split such that the test data for cross 
validation is chronologically after the training data. This reduces information ‘leakage’ between 
test and training sets. We set the relative strength α of the X8	and X9 penalty at 0.95, favoring the 
l8 term. After determining the optimal hyperparameter, we assess the prediction quality on the 
held-out test set (not used in cross-validation). 

 
Assessing model performance in predicting behavior 

The quality of the prediction of the PCA and the sparse linear models was assessed by 
calculating the coefficient of determination between the model and the test data, termed R9.  

R9 ≡ 1 −
[[!"#
[[$%$

,  

where SS]^_ is the sum of squares of the residuals between model prediction and test data, and 
S`aba is the sum of squares of the test data. The coefficient of determination can be negative, 
since the model was trained on unseen data. A model prediction could in principle be anti-
correlated with the test data and yield large negative values.  

 
Posture dynamics reconstruction 

 
Our three parameter description of animal posture has a direct correspondence to the 

predicted velocity and curvature. Because of this we can directly reconstruct an approximation of 
the animal’s full posture from these predicted variables. To compose the posture, each 
eigenworm is weighted by its coefficients 78, 79, a< and summed. The SLM directly predicts 
body curvature, which correspond to a<, but the undulatory coefficients need to be calculated 
from the predicted velocity. 

We assume that the phase of the body undulations Θ(1) lies on a circle in the 78-79 plane 
with radius r, which is a good approximation for moving worms (9). To reconstruct the 
coefficients of the eigenworms 78, 79, we can use the predicted velocity and the fact that the 
coefficients lie on a circle. By integrating the derivative of the phase angle Θ̇, which we called 
the velocity, we can obtain Θ(1). We calculate 78, 79 using 

78
9 + 79

9 = r9 
tan Θ =

a8
a9

 

  
The reconstruction requires the input of an initial Θ(1) and the true radius c(t = 0). The 
following 10 seconds are predicted solely from the SLM using the measured neural activity. In 
Supplementary Movies S1 and S2, where longer predictions are shown, we repeatedly reset the 
animal’s predicted posture every 10 seconds using the true Θ and c. 

 
Estimating neural identities 
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To estimate the identities of our recorded neurons with respect to C. elegans known neuro 
anatomical atlas (11) we attempted to align and register our recordings.  The dataset in Fig 2a 
was chosen as a reference for all alignments. The 3D positions of the reference dataset were 
centered around (0,0,0). For each of the remaining datasets the neuronal positions were also 
centered and registered to the reference with a rigid point set registration followed by a non-rigid 
point set registration using the python implementation of the coherent point drift algorithm (12, 
13). Putative neuronal identities were established by projecting the neuronal positions into two 
dimensions (reducing the left-right axis) and aligning to a two-dimensional neuronal atlas (14). 
Neurons were assigned the ID of the closest atlas neuron. Neurons were ranked by how many 
times they were chosen in independent recordings and the 20 highest ranked candidates are 
shown in Table S2. 
 
Nonlinear enhancement of turn amplitudes 

We observed that body curvature predicted by the SLM were smaller in amplitude than the 
true body curvature. In the posture reconstruction this manifests as a shallow bend during 
turning, rather than the deep bends observed in experiments. We enhanced body curvature in Fig. 
4 by applying an empirically derived non-linearity. The non-linearity was found by fitting all 
datasets with turnpredicted =  A erf6turnpredicted/s: - m. To quantify the improvement in posture 
prediction provided by this non-linearity, calculate the root mean-square error of the predicted 
posture and the true posture. 
 
Analysis Scripts 
Analysis scripts in python are publicly available at 
https://github.com/monikascholz/PredictionCode.  
 
Datasets 
Calcium activity traces, animal posture, and other relevant datasets are publicly available at 
doi:10.17605/OSF.IO/MW5ZS. 
 

Supplementary Text 
Differences in moving and immobile neural dynamics cannot be explained by motion artefact 

Recordings of freely behaving animals have the potential to contain motion artefacts and 
spurious correlations with behavior that would not be present in immobile animals. To test 
whether the neural dynamics and behavioral encoding we observe can be attributed to motion 
artefact, we conducted control experiments with animals expressing a calcium insensitive GFP 
instead of the calcium indicator GCaMP6s.  Recordings of GFP control animals contain all of the 
motion artefacts but none of the calcium signals present in recordings of the GCaMP animals. 
The following evidence suggests that the behavioral encoding and neural dynamics we observe 
cannot be explained by motion artefact. 

While recordings of freely moving GFP animals did show artefactual fluctuations, those 
fluctuations did not correlate well with velocity or body curvature. Crucially, GFP control 
animals performed extremely poorly at predicting behavior, and had essentially no predictive 
ability (see Fig. 2). This indicates that our predictions of behavior arise from neural signals and 
not motion artefact.  
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We further analyzed multiple recordings of freely moving GFP and GCaMP animals using 
PCA. We compared the number of principal components with significant eigenvalues in the GFP 
and GCaMP recordings. We find that GFP recordings have a smaller number of significant 
components than GCaMP recordings (3 and 5, respectively), indicating that there are additional, 
neural activity-related signals present in the GCaMP recordings that are absent in the GFP 
recordings (Fig. S3).  

Similarities of neural dynamics during immobilization of tetramisole and nanobeads 

We employ two common immobilization techniques, microbeads and paralytic drug. The neural 
dynamics of both appear qualitatively similar in that both show the characteristic slow antiphasic 
activity (Fig. S3). Others have also observed similarities in the neural dynamics of 
immobilization using confinement (as in a microfluidic device, presumably similar to nanobeads) 
compared to using paralytic (15). For all these reasons we chose to treat tetramisole and 
microbead recordings interchangeably as “immobilized.” Details of which recordings use which 
immobilization technique are included in Table S1.  
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Fig. S1 Additional recording of a transiently paralyzed animal 
(A) Calcium activity of a transiently immobilized animal. The animal moves unrestrained in a 
microfluidic chip for 4 minutes, and then is paralyzed. Calcium activity is the fractional change 
above baseline of the motion-corrected intensity of GCaMP6s (ΔI/I0).  (B) Ethogram of the 
animal’s behavior. (C) Neural activity of (A) projected onto the first three principal components 
(PCs). PCs are determined by the immobilized portion of the recording.  
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Fig. S2 Examples of recordings from freely moving and immobilized GCaMP6s and GFP-
control animals 
(A) Heatmap showing the activity of neurons over time for moving animal expressing 
GCaMP6s. (B) Ethogram corresponding to the recordings in (A). (C) Neural activity of (A) 
projected onto the first three principal components (PCs). PCs are determined from the full 
recording.  
(D-F) The same as (A-C) for a freely moving animal expressing GFP. 
(G-I) The same as (A-C) for an immobilized animal expressing GCaMP6s. 
(J-L) The same as (A-C) for an immobilized animal expressing GFP. 
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Fig. S3 Immobilization by paralytic and nanobeads result in similar neural dynamics 
(A) Calcium activity of moving animal expressing GCaMP6s. Animal is immobilized with the 
paralytic tetramisole after four minutes of movement. Same recording as in Fig 1.  (B) Ethogram. 
(C) Neural activity projected onto the first three principal components (PCs) as determined from 
the full recording.  Asterisks denote peaks of slow antiphasic activity present in PC1 during 
immobilization. (D-F) Same as (A-C) for an animal immobilized using nanobeads. Slow 
antiphasic peaks are similarly present during immobilization via nanobeads. 
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Fig. S4 Number of significant PCs in neural activity during movement and immobilization. 

Eigenvalue spectra from PCA of neural activity, averaged across multiple recordings, is shown. 
The vertical dashed line shows an estimate of the number of significant principal components 
(PCs) in the recording. Specifically, it denotes the number of PCs beyond which the eigenvalues 
of the neural activity (red) are no longer significantly greater than a time-lag-shuffle in which 
each neuron’s activity is circularly permuted a random amount in time (blue; Welch’s t-test, 
p<0.05). The time-lag shuffle destroys correlations between neurons but preserves temporal 
correlations within each neuron. For comparison, spectra are also shown for a random shuffle 
(black) in which each neuron’s activity is separately shuffled in time so as to also destroy 
temporal correlations.  Eigenvalue spectra are compared for (A) immobilized animals expressing 
the calcium indicator GCaMP6s (N=12), (B) moving animals expressing the calcium indicator 
GCaMP6s (N=6) and for (C) immobile animals expressing the calcium insensitive GFP control 
(N=3) (D) moving animals expressing the calcium insensitive GFP control (N=6). Of the four 
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conditions, moving animals expressing calcium indicator have the highest estimated number of 
significant PC’s.  
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Fig. S5 Individual neurons correlate with behavior 
 (A) Cumulative distribution of neurons correlating with velocity for GCaMP6s (red, N=6) and 
GFP control recordings (gray, N=6) of freely moving animals. Each line is a separate recording. 
(B) Cumulative distribution of neurons correlating with turns.  
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Fig. S6 Selection of unexpected neurons found to encode velocity or body curvature  

(A) Identities of velocity and (B) body curvature neurons from 6 recordings are estimated by 
projecting onto a reference atlas. Shading indicates the number of recordings in which that 
neuron was present. The annotated neurons are not typically associated with locomotion but were 
nonetheless assigned non-zero weights in the sparse linear model. AIM, ALA, RIS and RMG 
neurons have known function in quiescence, foraging and as chemosensory hub. However, a 
direct connection to locomotion encoding was unknown. The role of RIP has been less well-
characterized.  
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Fig. S7 Simulation of motion artefact using ratiometric and independent component 
analysis  
(A) Simulated fluorescence signals for two color channels reflect a true underlying calcium 
signal (black, dashed). The GCaMP channel (green trace) contains signal, motion artefacts 
(arrow) and gaussian noise. The RFP channel (red trace) contains only background motion 
artefact and gaussian noise. (B) Signal recovered through ratiometric analysis. The amplitude of 
the recovered signal (blue) does not agree with the true signal (black, dashed) (C) Background 
obtained from independent component analysis (ICA) matches the motion artefact background 
inserted in (A). (D) Signal extracted using ICA (blue) more closely matches the actual signal 
(black, dashed), as compared to the ratiometric approach.  
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Table S1. Summary of recordings 
Details of all recordings used in this paper are described below. Unique identifier can be used to locate the corresponding publicly 
accessible dataset at doi:10.17605/OSF.IO/MW5ZS.  The two recordings indicated with “*” were previously reported in (16).  

 

Condition  Strain  Unique Identifier Fluorophore Background Arena 
Duration 

(min) 

 
Number 

of 
Neurons  

Figure 
Panels 

transiently 
paralyzed 

with 
tetramisole 

AML70 BrainScanner20180329_152141  GCaMP6s lite-1  microfluidic 8 101 Fig.S1 

AML32 BrainScanner20180511_134913  GCaMP6s wt  microfluidic 13 99 Fig.1, S3 

Immobilized 
with 

nanobeads 

 
AML32* BrainScanner20171017_170419  GCaMP6s  wt  agarose pad 13 85 Fig1D, S4 

 
AML32* BrainScanner20171017_171956  GCaMP6s  wt  agarose pad 10 70 Fig1D, S4 
 AML32 BrainScanner20171017_184114  GCaMP6s  wt  agarose pad 16 72 Fig1D, S4 
 AML32 BrainScanner20171212_160415  GCaMP6s  wt  agarose pad 10 80 Fig1D, S4 
 AML32 BrainScanner20180510_090158  GCaMP6s  wt  agarose pad 16 115 Fig1D, S4 

 AML32 BrainScanner20180510_092218  GCaMP6s  wt  agarose pad 15 114 
Fig1D, S4, 

S2 
 AML70 BrainScanner20180221_150819  GCaMP6s  lite-1  agarose pad 11 118 Fig1D, S4 
 AML70 BrainScanner20180221_152059  GCaMP6s  lite-1  agarose pad 10 71 Fig1D, S4 
 AML70 BrainScanner20180221_154553  GCaMP6s  lite-1  agarose pad 12 83 Fig1D, S4 
 AML70 BrainScanner20180323_140814  GCaMP6s  lite-1  agarose pad 11 74 Fig1D, S4 
 AML70 BrainScanner20180323_143102  GCaMP6s  lite-1  agarose pad 6 81 Fig1D, S4 
 AML70 BrainScanner20180323_144442  GCaMP6s  lite-1  agarose pad 7 84 Fig1D, S4 
 AML18 BrainScanner20180518_091402  GFP  wt  agarose pad 11 111 Fig.S4 
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Condition  Strain  Unique Identifier Fluorophore Background Arena 
Duration 

(min) 

 
Number 

of 
Neurons  

Figure 
Panels 

 AML18 BrainScanner20180518_093125  GFP  wt  agarose pad 8 108 Fig.S4 
 AML18 BrainScanner20180518_094052  GFP  wt  agarose pad 8 105 Fig.S4, S2 

freely 
moving 

 AML18 BrainScanner20160506_155051  GFP  wt  imaging plate 9 95 Fig.3, S4 
 AML18 BrainScanner20160506_160928  GFP  wt  imaging plate 10 83 Fig.3, S4, S2 

 
AML175 BrainScanner20180223_141721  GFP  lite-1  imaging plate 6 62 Fig.3, S4, S5 

 
AML175 BrainScanner20180223_142554  GFP  lite-1  imaging plate 10 59 Fig.3, S4, S5 

 
AML175 BrainScanner20180330_160650  GFP  lite-1  imaging plate 9 57 Fig.3, S4, S5 

 
AML175 BrainScanner20180330_162137  GFP  lite-1  imaging plate 11 95 Fig.3, S4, S5 

 AML70 BrainScanner20180327_152059  GCaMP6s  lite-1  microfluidic  12 87 

Fig. 1D, 2E-
G, 3, 4C,E, 
S4, S5, S6 

 AML70 BrainScanner20180430_141614  GCaMP6s  lite-1  microfluidic  9 91 

Fig. 1D, 2E-
G, 3, 4C,E, 
S4, S5, S6 

 AML32 BrainScanner20170424_105620  GCaMP6s  wt  imaging plate 11 68 

Fig. 1D, 2E-
G, 3, 4, 

S4,S5, S4, S6 

 AML32 BrainScanner20170610_105634  GCaMP6s  wt  imaging plate 10 68 

Fig. 1D, 2E-
G, 3, 4C,E, 
S4, S5, S6 

 AML32 BrainScanner20170613_134800  GCaMP6s  wt  imaging plate 10 67 
Fig. 1D, 2, 3, 
4, S4, S5, S6 

 AML32 BrainScanner20180709_100433  GCaMP6s  wt  imaging plate 10 91 

Fig. 1D, 2E-
G, 3, 4C,E, 
S4, S5, S6 
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Table S2. Neurons most often found to be predictive of behavior across recordings 
Identities of neurons that were reliably found to be predictive of velocity or body curvature. 
Neurons are ranked by how often they appear across recordings among the non-zero weighted 
neurons found by the sparse linear decoder model. The top ranked 20 neurons for each behavior 
are shown. Neurons already known to have signals relating to velocity or turning frequency 
(which is relevant for body curvature) are highlighted in red (17–20). Neurons with a previously 
described function unrelated to locomotion, shown in Fig S5, are highlighted in blue.  

Velocity neurons Number of 
recordings 

Turn neurons Number of 
recordings 

AIYR 5 RMDR 5 
AIZL 4 RID 4 
BAGL/R 4/3 AIML 3 
FLPR/L 4/3 AINR 3 
RMED/R/L 4/4/3 AIYR 3 
SIADR 4 AVDL 3 
SMBDR/VR 4/3 BAGR/L 3/3 
VD2 4 CEPDR 3 
AIAL 3 DB1 3 
AVAL 3 FLPL 3 
AVL 3 IL2DR 3 
AWBR 3 RIPR 2 
CEPDR/VL 3/3 RME 2 
OLQVL 3 SAA 2 
RICL 3 SMBVR 2 
RIGL 3 AVAL 2 
RIPR 3 AVBL 2 
RIS 3 AIMR 2 
RMGL 3 AIZR 2 
  ALA 2 
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Movie S1. Worm posture predicted from neural activity with a sparse linear model 
https://vimeo.com/295461323 
The video shows an animal’s posture predicted from its neural activity using the Sparse Linear 
Model (right) alongside the animal’s true posture (left) for comparison. The gray track shows the 
predicted and true center of mass location of the animal, respectively. The predicted posture is 
initialized with the animal’s true posture at the beginning of the recording and updated every 10 
seconds with information from the animal’s true posture so as to correct for accumulating errors.  
The timestamp flashes red to indicate each update.  
 

Movie S2. Worm posture predicted from neural activity with a PCA model 

https://vimeo.com/295462311 
The video shows an animal’s posture predicted from its neural activity using the PCA mode 
(right) alongside the animal’s true posture (left) for comparison. The PCA model performs more 
poorly than the Sparse Linear Model shown in Movie S1. The gray track shows the predicted and 
true center of mass location of the animal, respectively. The predicted posture is initialized with 
the animal’s true posture at the beginning of the recording and updated every 10 seconds with 
information from the animal’s true posture so as to correct for accumulating errors.  The 
timestamp flashes red to indicate each update.  
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