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ABSTRACT 
Precision oncology relies on the accurate discovery and interpretation of genomic variants to enable 
individualized diagnosis, prognosis, and therapy selection. We found that knowledgebases containing clinical 
interpretations of somatic cancer variants are highly disparate in interpretation content, structure, and 
supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical 
setting. With the cooperation of experts of the Global Alliance for Genomics and Health (GA4GH) and six 
prominent cancer variant knowledgebases, we developed a framework for aggregating and harmonizing 
variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations covering 3,437 
unique variants in 415 genes, 357 diseases, and 791 drugs. We demonstrated large gains in overlap between 
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resources across variants, diseases, and drugs as a result of this harmonization. We subsequently 
demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical 
significance, observing an increase from an average of 33% per individual knowledgebase to 56% in 
aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We 
also provide an open and freely available web interface (search.cancervariants.org) for exploring the 
harmonized interpretations from these six knowledgebases. 

MAIN 
The promise of precision oncology–in which a cancer patient's treatment is informed by the mutational profile 
of their tumor–requires concise, standardized, and searchable clinical interpretations of the detected variants. 
These structured interpretations of biomarker-disease associations can be diagnostic (determinant of a 
disease type or subtype), prognostic (indicator of patient outcome), therapeutic (predictive of favorable or 
adverse response to therapy), or predisposing (germline variants that increase risk of developing cancer). 
Isolated institutional efforts have contributed to the curation of the biomedical literature to collect and formalize 
these interpretations into knowledgebases1–12. These isolated efforts have resulted in disparate models for 
representing this knowledge, and the rapid generation and evolution of knowledge compounds this 
heterogeneity. While the vast scale of the curation process drives the need for many individual efforts, the 
heterogeneity we face when exchanging biomarker-disease associations represents a critical challenge that 
must be addressed13. Consequently, stakeholders interested in the effects of genomic variants of a cancer on 
potential therapeutic interventions are faced with the following tradeoff: 1) referencing and understanding 
multiple representations and interpretations of variants across knowledgebases; or 2) potentially omitting 
clinically significant interpretations that are not universally captured across knowledgebases. Manual 
aggregation of information across knowledgebases to interpret each patient’s variant profile is an 
unsustainable approach that does not scale in a precision medicine setting. Moreover, the lack of an integrated 
resource has precluded the ability to assess the current state of precision treatment options based on the 
aggregated knowledge across major cancer precision medicine programs. Published reports14–17 have relied 
on individual, often highly discordant knowledgebases. Interoperability and automated aggregation is therefore 
required to make a comprehensive approach to cancer precision medicine tractable and to compare 
interpretations across knowledgebases in order to establish consensus. 
 
The current diversity and number of “knowledge silos” and the associated difficulties of coordinating these 
disparate knowledgebases has led to an international effort to maximize genomic data sharing.18,19 The Global 
Alliance for Genomics and Health (GA4GH) has emerged as an international cooperative project to accelerate 
the development of approaches for responsible, voluntary, and secure sharing of genomic and clinical data.20,21 
The Variant Interpretation for Cancer Consortium (VICC; cancervariants.org) is a Driver Project of GA4GH, 
established to co-develop standards for genomic data sharing (ga4gh.org/howwework/driver-projects.html). 
Specifically, the VICC is a consortium of clinical variant interpretation experts addressing the challenges of 
representing and sharing curated interpretations across the cancer research community. 
 
In this study, we leveraged the VICC member expertise to aggregate cancer variant interpretations from six 
distinguished constituent knowledgebases: Cancer Genome Interpreter (CGI), Clinical Interpretations of 
Variants in Cancers (CIViC), Jackson Labs Clinical Knowledgebase (JAX-CKB), MolecularMatch, OncoKB, 
and the Precision Medicine Knowledgebase (PMKB) (Table S1).1,5,9–11,22 The institutions leading each 
constituent knowledgebase agreed upon a core set of principles (http://cancervariants.org/principles/) 
stipulating that the contents of each knowledgebase would contain a minimum set of data elements describing 
an interpretation and be freely shared with the research community. 
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This cooperative effort enabled us to develop a framework for structuring and harmonizing clinical 
interpretations across these knowledgebases. Specifically, we defined key elements of variant interpretations 
(genes, variants, diseases, drugs, and evidence), developed strategies for harmonization (through linking 
these elements to established and unambiguous references), and implemented this framework to consolidate 
interpretations into a single, harmonized meta-knowledgebase (freely available at search.cancervariants.org). 

RESULTS 

A strategy for aggregating and structuring interpretation knowledge 
An initial survey of the constituent knowledgebases of the VICC (Table S1)1,5,9–11,22 revealed dramatic 
differences in the components of variant interpretations, which were often a mixture of concepts with 
standardized (e.g. HGNC gene symbols23, HGVS variant nomenclature24, precise disease terms), externally 
referenced (e.g. identified elements of an established ontology or database), or knowledgebase-specific (e.g. 
disease shorthand, internal identifier) representations (Figure 1).  
 
To resolve this complexity and provide readily searchable, standardized interpretations across 
knowledgebases, we evaluated the structure of cancer variant interpretations across the core dataset (Figure 
1). Our first challenge was to develop a consensus for the minimum required data elements that constitute a 
cancer variant interpretation. These minimal elements include a gene identifier, variant name, cancer subtype 
(tumor type and organ), clinical implication (diagnostic, prognostic, therapeutic, or predisposing biomarker), 
provenance of supporting evidence (e.g., PubMed identifier), and curation source. In addition, we 
recommended ascribing a tiered level of support for the evidence contributing to the interpretation. Each VICC 
knowledgebase (Table S1) provided cancer variant interpretation knowledge as structured data meeting these 
requirements. 
 
To adapt disparately-structured interpretations to a common data model, we aggregated cancer variant 
interpretations from each of these knowledgebases by harvesting their evidence through provider-
recommended access methods (e.g. API retrieval, data file downloads). We then harmonized these variant 
interpretations by mapping all data elements in each knowledgebase to established standards and ontologies 
describing genes, variants, diseases, and drugs (Figure 1). Briefly, genes were harmonized using the Human 
Gene Nomenclature Committee (HGNC) gene symbol table and include the current HGNC symbol, Ensembl 
and Entrez gene identifiers. Variants were harmonized through a combination of knowledgebase-specific rules, 
matching to the Catalog of Somatic Mutations in Cancer (COSMIC)3, and use of the ClinGen Allele Registry 
(reg.clinicalgenome.org). Diseases were harmonized using the European Bioinformatics Institute (EBI) 
Ontology Lookup Service (OLS; www.ebi.ac.uk/ols/index) to retrieve Disease Ontology terms and identifiers. 
Drugs were harmonized through queries to the biothings API25, PubChem26, and ChEMBL27, storing the term, 
description, id and source. Details for each of these harmonization strategies are described in Online Methods 
and Figure S1. 
 
Due to the knowledgebase-specific nature of describing an interpretation evidence level (Figure 1), 
harmonization required manual mapping of evidence levels to a common standard. Standards and guidelines 
for the interpretation and reporting of genomic variants in cancers have been published by the Association for 
Molecular Pathology (AMP), the American Society of Clinical Oncology (ASCO), and the College of American 
Pathologists (CAP).28 Released after (and partially informed by) the design and curation of the VICC 
knowledgebases, these guidelines are compatible with (but not identical to) the existing evidence levels of 
these knowledgebases. We constructed a mapping of evidence levels provided by each knowledgebase to the 
evidence levels constituting AMP/ASCO/CAP Tier I and II variants (Table 1). As a result, variant interpretations 
can be filtered by Tier I (level A/B) evidence, defined as having strong clinical significance. Interpretations of 
potential clinical significance (Tier II evidence) comprised of early clinical trials (level C), case studies (level 
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C/D), or preclinical data (level D) are also searchable. Tier III (unknown significance) and Tier IV (benign) 
variants are not included in this resource. 
 
Together, these efforts describe a centralized harmonization strategy to structure and unify queries across the 
knowledgebases describing clinical interpretations of cancer genomic variants (Figure 1). 

The landscape of variant interpretation knowledge 
The meta-knowledgebase v0.10 release contains 12,856 harmonized interpretations (hereafter referred to as 
the core dataset; Online Methods) supported by 4,354 unique publications for an average of 2.95 
interpretations / publication. Notably, 87% of all publications were referenced by only one knowledgebase, and 
only 1 paper29 was referenced across all six knowledgebases (Figure S2a). Gene symbols were almost 
universally provided; the few interpretations lacking gene symbols (<0.01%) are structural variants that are not 
associated with an individual gene. In contrast to publications, the genes curated by the cancer variant 
interpretation community are much more frequently observed in multiple knowledgebases. We observed that 
23% of genes with at least one interpretation were present in at least half of the knowledgebases, compared to 
only 5% of publications (p < 0.001; Fisher’s exact test; Figure S2b).  
 
Variants have little overlap across the core dataset (Figure 2a). Of the constituent 3,439 unique variants, 
76.6% are described by only one knowledgebase, and <10% are observed in at least three (Figure 2b). This 
lack of overlap is partially due to the complexity of variant representation. For example, the representation of 
an ERBB2 variant as described in nomenclature defined by the Human Genome Variation Society (HGVS)24 is 
NP_004439.2:p.Y772_A775dup, and yet it is referenced in multiple different forms in the biomedical literature. 
p.E770delinsEAYVM30, p.M774insAYVM31, and p.A775_G776insYVMA32 all describe an identical protein 
kinase domain alteration, though they appear to identify different variants (Figure 2c). Despite having a 
standard representation by the HGVS guidelines, these alternative forms continue to appear in the literature, 
where readers are sometimes explicitly discouraged from the use of the HGVS standard in lieu of historical 
terms to describe the variant.32 Consequently, a researcher looking to identify a specific match to ERBB2 
p.E770delinsEAYVM may find no direct matches, though several exist under various alternate representations. 
This component of variant harmonization is addressed through the use of the ClinGen Allele Registry (Online 
Methods). 
 
To illustrate this, we performed a survey of all interpretations describing the previously discussed ERBB2 
variant (NP_004439.2:p.Y772_A775dup) using the public web search interface provided by each 
knowledgebase (Tables 2, S2). Each knowledgebase that had an entry for this variant represented it 
differently. Two did not have specific interpretations for this variant, though they did have relevant container 
mutations (e.g., exon 20 insertions; Table 2). Most of the knowledgebases had a single internal representation 
of the variant, although the majority of these terms did not match across knowledgebases. The evidence 
describing these interpretations varied considerably in form, as each used knowledgebase-specific 
nomenclature (e.g. evidence described as “Level 3A” in OncoKB is equivalent to “Level 1B” from 
MolecularMatch, or “Level B” from CIViC; Tables 1, 2). Of the 19 unique publications describing the collected 
evidence, only 3 (two American Association for Cancer Research [AACR] abstracts and one journal article) 
were observed in more than one knowledgebase, and none were observed in more than two. Interestingly, the 
curated interpretations from these shared publications varied by knowledgebase in disease scope (advanced 
solid tumor compared to non-small cell lung cancer33; breast cancer and non-small cell lung cancer compared 
to cancer34). A review of the interpretations revealed some that are present in most of the knowledgebases 
(e.g. use of afatinib, trastuzumab, or neratinib in non-small cell lung carcinomas; Table 2), and others that are 
present in only one or two (e.g. use of lapatinib in lung adenocarcinoma and use of afatinib and rapamycin in 
combination are observed in only one knowledgebase each; Table 2). Importantly, this includes sparse 
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interpretations that describe conflicting evidence (e.g. no benefit from neratinib in non-small cell lung 
carcinoma; Table 2) or negative evidence (e.g. does not support sensitivity/response to dacomitinib in NSCLC; 
Table 2). Collectively, these data illustrate the diversity in knowledgebase structure, content, terminology, and 
curation methodology. Consequently, utilizing subsets (or alternate sets) of knowledgebases will very likely 
result in differing sets of interpretations.  

Harmonization improves consensus across interpretations 
To test the effect of our harmonization methods on generating consensus, we evaluated the overlap of unique 
interpretation elements from each knowledgebase of the core dataset in comparison to evaluated 
unharmonized (but aggregated) data (Online Methods). As noted above, genes from each resource used 
HGNC gene symbols, resulting in very little gain from harmonization; 45% of genes across knowledgebases 
overlapped without harmonization, compared to 46% with harmonization. This is in contrast to variants (8% 
overlapping unharmonized, 26% overlapping harmonized), diseases (27% unharmonized, 34% harmonized), 
and drugs (20% unharmonized, 36% harmonized) (Table S3). None of the evidence levels were consistent 
across resources when unharmonized, and all are consistent with a common standard (Table 1) after 
harmonization, a primary contribution of this work. 

Harmonization of variant interpretations increases findings of strong clinical significance 
Evaluation of patient variants for strong clinical significance requires an assessment of these variants in the 
appropriate disease context. The aggregated knowledge across the core dataset describes 357 distinct 
disease concepts from the Disease Ontology (DO)35 across 12,497 interpretations (Table S4). These diseases 
range from highly specific (e.g. DOID:0080164 - myeloid and lymphoid neoplasms with eosinophilia and 
abnormalities of PDGFRA, PDGFRB, and FGFR1) to generalized (e.g. DOID:162 - cancer). To compare the 
variant interpretations to disease type, we used the expert-curated “TopNodeCancerSlim” DO mapping36 that 
describes 58 common, top-level disease terms (TopNode terms) across several major datasets, including The 
Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and COSMIC.3,37,38 When 
linked to the nearest TopNode term, 5 major cancer group terms each accounted for over 5% of all 
interpretations in the core dataset: lung cancer (24%), breast cancer (13%), hematologic cancer (11%), large 
intestine cancer (9%), and melanoma (6%) (Figure 3a and Table S5). Notably, the most common 
interpretations mirror TopNode terms that have both high incidence (Figure 3b) and high mortality (Figure 3c) 
as reported by the National Cancer Institute (Table S6)39: lung cancer, breast cancer, and hematologic cancer. 
The large intestine cancer TopNode term contains numerous interpretations describing colorectal cancers, 
which are highly applicable to the related TopNode colon cancer (a top-five cancer in both incidence and 
mortality; Table S7). Evaluation of these terms across the core dataset revealed significant differences in the 
distribution of common cancer types constituting each knowledgebase, illustrating the value of aggregating 
knowledgebases for a more comprehensive landscape of interpretations (Figure S3, Table S8). 
 
To further test the value of harmonized interpretation knowledge, we evaluated the 38,207 patients of the 
AACR Project Genomics Evidence Neoplasia Information Exchange (GENIE)40. We first queried the 237,175 
moderate or high impact variants from GENIE using a broad search strategy (Online Methods and Figure 
S4a). Notably, 11% (4,305) of patients lacked any variants to search before filtering on predicted impact, and 
12% (4,355) after. This search yielded 2,316,305 interpretation search results for an average of 9.8 
interpretations / variant query. For a point mutation, these interpretations included matches to alternate alleles 
at the same position, associated amino acid changes, the exon or functional domain, or gene-level 
interpretations such as overexpression, gain/loss-of-function, or simply mutations. Restricting to an exact 
coordinate match (and thus excluding gene-level interpretations; Figure S4a positional match) revealed an 
interpretation result set dominated by a few common GENIE point mutations in variants each with a large 
number of interpretations, including BRAF NP_004324.2:p.V600E, KRAS NP_004976.2:p.G12 mutations, and 
both NP_006209.2:p.E545K and NP_006209.2:p.H1047R mutations in PIK3CA (Figure S5). This is congruent 
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with our observation that the interpretations of the core dataset for the most common diseases are highly 
focused on these and other specific genes (Figure 3d), including Tier I interpretations (Figure 3e). Examining 
our results at the patient level revealed that a focused, variant-level search resulted in at least one 
interpretation (in any cancer type with any level of evidence) for 57% of patients in the GENIE cohort, 
compared to the average 33% obtained when using each constituent knowledgebase individually (Figure 3f). 
We observed that broadening the search scope to include any overlapping variants (see Figure S4a regional 
match) increased the cohort coverage to 86% of patients (compared to an average of 68% per individual 
knowledgebase). However, it is prudent to keep in mind that the increase in matching percentage using 
regional match instead of exact match would be partly due to non-oncogenic passenger variants.  
  
A key component in determining the clinical relevance of an interpretation is whether the tumor type reported in 
the interpretation matches the patient’s tumor type (See Defining Characteristics, Table 1). To evaluate this 
question, we first mapped the tumor types of the GENIE cohort to DO terms. GENIE samples are annotated 
with a diverse array of Oncotree ontology (oncotree.mskcc.org) disease codes, with 81% (539 / 667) of 
Oncotree diseases represented in the dataset. Over 55% (299 / 539) of the Oncotree diseases from GENIE do 
not link to DO through cross-references, of which 41% (123 / 299) do not have any cross-references (Table 
S9). This lack of cross-references among GENIE diseases is significantly higher than the 25% (166 / 667) of all 
Oncotree terms lacking cross-references (p < 0.001; Fisher’s exact test), suggesting that terms used to 
describe individual patient cancers (e.g. Well-Differentiated Neuroendocrine Tumor of the Rectum) are less 
likely to map to other knowledgebases than high-level parent terms (e.g. colorectal cancer). Despite this, 80% 
of GENIE patients had a disease term map to DO, indicating that the common cancers among this cohort are 
more likely to be cross-referenced adequately for mapping. Further evaluation confirmed a significant 
enrichment of more frequently observed disease terms among the terms that mapped to DO, compared to 
those that did not (p = 0.002; Mann-Whitney U test). Restricting patient search results to those interpretations 
that are of matched grouped (TopNode) disease terms (Figure S4b; Online Methods) resulted in 29% of 
patients with at least one clinical interpretation (compared to an average individual knowledgebase match rate 
of 13%), and 18% of patients with at least one Tier I clinical interpretation (compared to an average 6% per 
individual knowledgebase) (Figure 3f). Allowing matching to any ancestor or descendant term and allowing 
partial variant overlaps improves matches to 60% (compared to an average of 35% per individual 
knowledgebase). This broader strategy, however, requires contextual re-evaluation of assigned 
AMP/ASCO/CAP evidence levels, which are designated for a precise match to variant and disease context. 
Consequently, evidence level or tier filtering can only be used with an exact search strategy. An even broader 
search strategy (Figure S6) that allows variant matching to interpretation genes has comparable findings to the 
overlapping variant strategy, indicating that many of the commonly mutated genes have gene-level 
interpretations.  
 
A comparison of interpretations across the identified common cancers revealed that the use of grouped terms 
instead of exact terms for matching interpretations to patients’ cancers varies dramatically by cancer type, with 
some cancers (e.g. lung cancer, melanoma) showing little increased interpretation breadth, while others have 
enormous effect (e.g. breast cancer, large intestine cancer; Figure 3g). This is primarily due to the specific 
nature by which patients are classified with certain diseases, versus the aggregate nature by which 
interpretations are ascribed to diseases. Interestingly, 50% of GENIE patient samples have disease-matched 
interpretations across the frequently observed cancers, compared to only 33% of patient samples across all 
other cancers (p < 0.001; Fisher’s exact test). These numbers are reduced to 39% and 15%, respectively, 
when considering only Tier I interpretations (p < 0.001; Fisher’s exact test). 
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A resource for searching aggregated and harmonized variant interpretation knowledge 
We have developed and hosted a public web interface for exploring the VICC meta-knowledgebase, freely 
available online at search.cancervariants.org. This interface accesses an ElasticSearch index for the most 
recent data release of the VICC harmonized knowledgebase. Searching the knowledgebase is performed 
through specifying filters for any term or entering free text or compound (e.g. and/or logic) queries in the search 
box at the top of the page (Figure 4a). Panels with data distribution visualizations describe the current result 
set (Figure 4b). These interactive panels provide additional information about specific subsets, and may be 
used to create additional filters (e.g. clicking on a level in the evidence_level panel filters results throughout the 
page to display only those interpretations with the designated evidence level). This allows investigators to see 
the distribution of interpretations by evidence level, disease, gene, and drug, and filter according to their 
interests. Tabulated results are provided at the bottom of the page (Figure 4c), and are expandable with all 
details, including the (unharmonized) record provided by the original knowledgebase for each interpretation. 
These search tools are available via both the web interface and an API search endpoint (Online Methods), in 
addition to a GA4GH beacon on beacon-network.org. Additionally, a Python interface and analysis workbook 
have been developed to enable reproduction (and additional exploration) of the data presented in this paper, 
as well as full downloads of the underlying data (Online Methods). 
 

DISCUSSION 
In this study, we aggregated and analyzed clinical interpretations of cancer variants from six major 
knowledgebases1,5,9–11,22. Our analysis uncovered highly disparate content in curated knowledge, structure, 
and primary literature across these knowledgebases. Specifically, we evaluated the unique nature of the vast 
majority of genomic variants reported across these knowledgebases, and demonstrated the challenge of 
developing a consensus interpretation given these disparities. These challenges are exacerbated by non-
standard representations of clinical interpretations, in both the primary literature and curated knowledge of 
these resources. It is encouraging that the curators of these knowledgebases have, without coordination, 
independently curated diverse literature and knowledge sources. However, this reflects an enormous curation 
burden generated from the increasingly common molecular characterisations of patient tumors and the related 
expansion of primary literature describing them. Our findings thus highlight the need for a cooperative, global 
effort to curate comprehensive and thorough clinical interpretations of molecular variants for robust practice of 
precision medicine. 
 
We formed the Variant Interpretation for Cancer Consortium (VICC) of leaders of prominent cancer variant 
knowledgebases and experts in variant interpretation, software development, curation, ontologies, and clinical 
translation to implement a framework to address the challenge of aggregating and cohesively representing 
variant interpretation knowledge. In doing so, we first defined the distinct elements of a clinical interpretation 
(gene, variant, disease, drug, evidence), and then extracted these data from each of the constituent 
knowledgebases hosted by institutions of the VICC. Extracted data were harmonized to established reference 
standards for each element and stored in a centralized database. We developed a prototype web interface, 
API, and python package for accessing and querying these data. Together, these tools provide the foundation 
to analyze the aggregate interpretation knowledge across the constituent knowledgebases, and are freely 
available and open source (MIT-licensed; see Online Methods) for public use. The content of the meta-
knowledgebase is dynamic, as we routinely poll the constituent knowledgebases for the current clinical 
interpretations of cancer variants. 
 
Harmonization improved concordance between interpretation elements across resources, with large gains in 
overlapping terms between resources across variants, diseases, and drugs. Importantly, this harmonization 
allowed us to search relationships between patient and interpretation disease terms, improving precise 
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matching between patient and interpretations of clinical significance. We noted that there was little need to 
harmonize gene identifiers, as each knowledgebase had independently selected HGNC gene symbols as a 
reference, enabling easy and direct comparison of genes. This underscores both the utility of standardized 
data, as well as the need for adoption of similar standards (such as those described in this work) to drive direct 
comparison of variant interpretations. In our analysis of the variants and diseases of the harmonized 
interpretations, we observed that frequent top-level cancer terms mirror cancers with high incidence and 
mortality. We also noted that a large percentage of these interpretations described a relatively small number of 
gene-disease relationships. We subsequently searched the meta-knowledgebase for interpretations describing 
the patients of the GENIE cohort. As a result of our harmonization of interpretations across knowledgebases, 
we were able to achieve at least one specific (position-matched) variant interpretation for 57% of the patients in 
the cohort. In the most stringent searches we required a precise variant match to a Tier I interpretation also 
matching the patient’s cancer; in these cases, 18% of the cohort had a finding of strong clinical significance. 
Notably, these findings were substantially higher in patients with more common cancers, with 39% of the 
common cancer samples variant-matching at least one Tier I interpretation, compared to 15% of other cancer 
samples. These findings are concordant with observations of matched therapy rates in precision oncology 
trials, including 15% from IMPACT/COMPACT15, 11% from MSK-IMPACT14, 5% from the MD Anderson 
Precision Medicine Study16 and 23% from the NCI-MATCH trials17. 
 
Collectively, our results portray a confluence of knowledge describing the most common genomic events 
relevant to the most frequent cancers, with highly disparate knowledge describing less frequent events in rare 
cancer types. The differing content of these knowledgebases may be a result of research programs targeted at 
frequent cancers, highlighting a need for a broader focus on less common cancers. This sparse landscape of 
curated interpretation knowledge is exacerbated by paucity in cross-references between ontologies describing 
disease, highlighting the importance of bridging this gap41. Similarly, complexities in variant representation 
have elucidated a need for sophisticated methods to harmonize genomic variants; harmonization with the 
ClinGen Allele Registry (reg.clinicalgenome.org) is suited to point mutations and indels, but the representation 
and harmonization of complex and non-genomic (e.g. expression, epigenetic) variants remains a challenge. 
 
Our harmonized clinical interpretation meta-knowledgebase represents a significant step forward in building 
consensus that was previously unattainable due to a lack of harmonization services such as the Allele Registry 
and expert standards and guidelines such as those recommended by AMP/ASCO/CAP. This meta-
knowledgebase serves as an open resource for evaluating interpretations from institutions with distinct curation 
structure, procedures, and objectives. Potential uses include expert-guided therapy matching, supporting FDA 
regulatory processes associated with lab-developed genomic tests for guiding therapy, and identification of 
diseases and biomarkers that warrant future study. 
 
While our initial efforts provide a structure by which variant interpretation knowledgebases can contribute to a 
broader and more consistent set of interpretations, much work remains to be done. In particular, VICC 
members contribute to GA4GH Work Streams to develop and integrate new and existing42–45 standards for the 
representation of variant interpretations and the evidence that describe them. Our web interface is being 
redesigned to a full-scale web service and user interface to concisely represent the most relevant 
interpretations for one or more variants. Additionally, we are building inference tools to automatically identify 
the concepts users are querying in real time. We also will be expanding our effort to harmonize and present 
interpretations of various non-coding variants, structural variants beyond gene pairs, and aggregate markers 
like microsatellite instability status. A prioritized long-term goal is the development of standards and techniques 
for interpretations of combined germline and somatic variations. Similarly, we are building guidelines and 
methods to enable automated consensus recommendations. Finally, we are seeking out additional 
knowledgebases of clinical interpretations of variants to harmonize and share with the broader cancer 
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genomics community, and building an API specification which they may use to incorporate their own 
interpretations. 
 
In conclusion, there is a great need for a collaborative effort across institutions to build structured, harmonized 
representations of clinical interpretations of cancer genomic variants to advance precision medicine 
implementation. Our work has illustrated the diversity of variant interpretations available across resources, 
leading to inconsistency in interpretation of cancer variants. We have assembled a framework and 
recommendations for structuring and harmonizing such interpretations, from which the cancer genomics 
community can improve consensus interpretation for cancer patients. Anyone can leverage the open and freely 
available aggregated knowledge resources, and associated software tools, described in this work at 
search.cancervariants.org. Our working group and open source software development environment are open 
to all and we welcome participation from anyone with interest in learning about, utilizing, augmenting, 
improving, or proposing new directions for this community-based project, for the benefit of cancer patients. 
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ONLINE METHODS 

Harvesting cancer variant interpretation knowledge 
OncoKB, the Cancer Genome Interpreter (CGI) and JAX-Clinical Knowledgebase (JAX-CKB) all contain 
complementary knowledge of variant oncogenicity. While valuable, knowledge of a variant’s potential role in 
driving tumorigenesis is structured differently than clinical interpretations of genomic variants, and is therefore 
outside of the scope of this manuscript. While omitted from the analyses presented in this paper, we do 
aggregate these annotations due to their potential utility in clinical research. ClinGen, ACMG, AMP, ASCO, 

this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt 

The copyright holder has placed this preprint (whichthis version posted October 19, 2018. ; https://doi.org/10.1101/366856doi: bioRxiv preprint 

https://doi.org/10.1101/366856


 

10 

and CAP are working on developing guidelines in order to enable consistent and comprehensive assessment 
of oncogenicity of somatic variants. In the future, variant oncogenicity interpretations based on such guidelines 
can be incorporated into meta-knowledgebase and should help to improve the harmonization of related 
interpretations. 
 
Exact code for harvesting and harmonizing each of the VICC knowledgebases may be found online at 
https://github.com/ohsu-comp-bio/g2p-aggregator. The cancer biomarker database from CGI was harvested 
from the cgi_biomarkers_per_variant.tsv file from the biomarkers download at 
https://www.cancergenomeinterpreter.org/data/cgi_biomarkers_latest.zip. CIViC content was harvested via the 
gene and variant API endpoints documented online at http://griffithlab.org/civic-api-docs/. JAX-CKB content of 
the publically available 86 genes were harvested from an unpublished API endpoint (harvester code online at 
https://github.com/ohsu-comp-bio/g2p-aggregator/blob/v0.10/harvester/jax.py#L145-L147). MolecularMatch 
content was harvested via an authorized API key for use in the aggregated knowledgebase (harvester code 
online at https://github.com/ohsu-comp-bio/g2p-aggregator/blob/v0.10/harvester/molecularmatch.py). OncoKB 
content was harvested via a combination of the levels, genes, variants, and variants/lookup API endpoints 
documented online at: http://oncokb.org/#/dataAccess. PMKB content was provided as a JSON file by the 
knowledgebase, which we are hosting online at: https://s3-us-west-2.amazonaws.com/g2p-0.7/unprocessed-
files/pmkb_interpretations.json 

Harmonizing genes 
Gene symbols were matched to the table of gene symbols from HGNC, hosted at the European Bioinformatics 
Institute (EBI)46: ftp://ftp.ebi.ac.uk/pub/databases/genenames/new/json/non_alt_loci_set.json. This table was 
used to construct an “Aliases” table comprised of retired and alternate symbols for secondary lookup if the 
interpretation gene symbol was not found among the primary gene symbols from HGNC. If an alias used by a 
knowledgebase was shared between two genes, omitted by the knowledgebase, or failed to match either the 
primary or alias table, the gene was omitted from the normalized gene field. 

Harmonizing variants 
Variants harvested from each knowledgebase were first evaluated for attributes specifying a precise genomic 
location, such as chromosome, start and end coordinates, variant allele, and an identifiable reference 
sequence. Variant names were queried against the Catalog of Somatic Mutations in Cancer (COSMIC)3 v81 to 
infer these attributes in knowledgebases that did not provide them. Custom rules were written to transform 
some types of variants without clear coordinates (e.g. amplifications) into gene coordinates. All variants were 
then assembled into HGVS strings and submitted to the ClinGen Allele Registry (http://reg.clinicalgenome.org) 
to obtain distinct, cross-assembly allele identifiers, if available. 

Harmonizing diseases 
Diseases were matched to the Disease Ontology (DO),35 through lookup with the European Bioinformatics 
Institute (EBI) Ontology Lookup Service (OLS)46, unless a pre-existing ontology term for a different ontology 
existed (98.7% of interpretations map to DO). We downloaded the March 2018 release of the TopNode terms 
from 
https://github.com/DiseaseOntology/HumanDiseaseOntology/blob/master/src/ontology/subsets/TopNodes_DO
cancerslim.json and mapped our interpretation diseases to this list, assigning each disease to its nearest 
TopNode ancestor (Table S4). We assigned remaining interpretation diseases to the non-specific term of 
DOID:162 - Cancer if the disease was a descendent of this term, but not a descendant of one of the TopNode 
terms. 
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Harmonizing drugs 
Drug names were first queried against the biothings API25 for harmonization (http://c.biothings.io/v1/query) and 
if not found were subsequently queried against the PubChem Compounds 
(https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/)26, PubChem Substances 
(https://pubchem.ncbi.nlm.nih.gov/rest/pug/substance/), and ChEMBL 
(https://www.ebi.ac.uk/chembl/api/data/chembl_id_lookup/search)27 web services. 

Harmonizing evidence level 
Evidence levels were standardized to the AMP/ASCO/CAP guidelines as outlined in Table 1. 

Comprehensive evaluation of ERBB2 duplication 
Public web portals for the six VICC knowledgebases were manually searched for interpretations for variants 
describing the alteration detailed in Figure 2c. The web portals are freely available online without registration 
at the following URLs: 

● CGI: https://www.cancergenomeinterpreter.org/biomarkers 
● CIViC: https://civicdb.org/search/variants/ 
● JAX-CKB: https://ckb.jax.org/geneVariant/find 
● MolecularMatch: https://app.molecularmatch.com/ 
● OncoKB: http://oncokb.org 
● PMKB: https://pmkb.weill.cornell.edu 

Evaluating non-harmonized aggregate content 
To evaluate the gains provided by our harmonization methods, we collected and minimally formatted 
interpretation elements from each knowledgebase without using any harmonization routines. We selected the 
set of unique elements for each resource and calculated the overlap across the union of those sets (Table S3). 
We then repeated this procedure for harmonized elements and compared total element count and percent 
overlap between harmonized and non-harmonized elements. 
 
For genes, we used HGNC gene symbols, which were provided by each knowledgebase. Gene symbols were 
almost universally provided across interpretations, although some interpretations do not have associated 
genes. 
 
For variants, we extracted the genomic coordinates (chromosome, start, stop) from each resource and 
created a unique set of those variants. JAX-CKB and OncoKB do not provide genomic coordinates for variants. 
When applicable, we split records by the appropriate delimiter to separate out multiple variants. For CGI, we 
also did minimal HGVS parsing for chr/start/stop when gDNA HGVS strings were provided. 
 
For diseases, we extracted the disease term from each knowledgebase and transformed it to lowercase text. 
PMKB represents diseases as a combination of tissue and tumor type, which we transformed to a compound 
string joined by a space (e.g., Tissue: Breast and Type: Adenocarcinoma became Disease: breast 
adenocarcinoma). 
 
For drugs, we extracted the drug term from each knowledgebase and transformed it to lowercase text. As 
many interpretations contain more than one drug, we identified the delimiting character for each resource 
where multiple drugs are represented as a single string and split the string on the delimiter (e.g., the single 
string “dabrafenib + trametinib” was treated as the two strings “dabrafenib” and “trametinib”). 
 
We did not perform this analysis for evidence levels, as there is no shared meaning behind unharmonized 
evidence levels across resources (Table 1). 
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Project GENIE 
GENIE data were downloaded from the 3.0.0 data release available online at: 
https://www.synapse.org/#!Synapse:syn7222066/files/. Variants were extracted from 
“data_mutations_extended.txt”, and clinical data from “data_clinical_sample.txt”. Variants were filtered on 
predicted consequence of medium or high impact. This classification was based upon the VEP consequence 
table (http://useast.ensembl.org/info/genome/variation/prediction/predicted_data.html#consequences) and 
resulted in exclusion of variants classified as Silent, 3’Flank, 3’UTR, 5’Flank, 5’UTR, Intron, or Splice_Region. 
Patients without any variants after filtering were included in all calculations. Oncotree xrefs were obtained from 
their API at http://oncotree.mskcc.org/api/tumorTypes (data version oncotree_2018_05_01), and xrefs were 
then mapped to DO terms where they matched. In cases where 1-to-many mappings occurred, manual review 
of those mappings was performed to select the most appropriate mapping. 

Variant intersection search 
Variant coordinates were used to search genomic features via coordinate intersection. A complete intersection 
of query and target is considered a positional match, or a more specific exact match if the alternate alleles also 
match. A focal match is reported if the intersection fraction is less than complete, but over 10% overlapping 
(reciprocally). A regional match is reported if there is any intersection, but the match is of no other type (Figure 
S4a). 

Disease TopNode search 
Disease searching returns a distance of the number of ancestor or descendent TopNode terms between the 
queried disease and the matching target. Two diseases sharing a TopNode term (e.g. DOID:3008 - Invasive 
ductal carcinoma and its parent term DOID:3007 - Breast ductal carcinoma both are members of DOID:1612 - 
Breast cancer) would have a distance of 0. However, if two diseases share a TopNode term but do not have a 
direct lineage, they are not a match (e.g. DOID:0050938 - Breast lobular carcinoma does not match to 
DOID:3007 - Breast ductal carcinoma even though they share a TopNode term (DOID:1612 - Breast cancer), 
as they are sibling concepts and do not have an ancestor/descendent relationship (Figure S4b). 
 
Gene intersection search 
To assess cohort interpretability (Figure S6) when considering only matching a variant to a gene, we used the 
assigned gene symbols for each GENIE variant and compared them to interpretation gene symbols. Patients 
with at least one variant matching an interpretation gene symbol were considered a match. Matches were 
subsequently filtered by broad disease matching and by interpretation tier; no adjustment was made to the 
evidence level and tier to account for this imprecise aggregation strategy. 

ElasticSearch API and web frontend 
Harvesters create Association documents segmented by the source field. Documents are posted to an 
ElasticSearch 6.0 instance provisioned by AWS elasticsearch service. Index snapshots are archived online: 
https://s3.console.aws.amazon.com/s3/buckets/g2p-ohsu-snapshots. 
 
On top of Elasticsearch, we built web services using the Flask web framework. The search.cancervariants.org 
endpoint provides two simple REST-based web services: an association query service and a GA4GH beacon 
service. The association query service allows users to query for evidence using any combination of keywords, 
while the beacon service provisions G2P associations into the GA4GH beacon network (beacon-network.org) 
enabling retrieval of associations based on genomic location. OpenAPI (swagger) documentation is provided to 
accelerate development and provide API integration scaffolding. Client applications can use the API to create 
higher level sets of queries driven by cohort allele sets (e.g., MAF/VCF files) with varying genomic resolutions 
and disease/drug combinations. The API server and nginx proxy are described by Docker configurations and 
deployed co-located within a t2.micro instance. 
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The UI is a customized Kibana dashboard which enhances Lucene-based full-text search of associations with 
interactive aggregation heatmaps, tables and other components. The API documentation is available online at: 
search.cancervariants.org/api/v1/ui/ 
 

Python interface and analysis notebook 
The python 3.6 interface package and jupyter analysis notebook to generate these results are available online 
at http://git.io/vicckb.  

Data availability 
Analyzed harmonized data from the aggregated knowledgebases are available for bulk download online at 
https://s3-us-west-2.amazonaws.com/g2p-0.10/index.html. Data are made available according to the data 
sharing principles and data sharing agreement provided by the VICC (online at: cancervariants.org/join). In 
accordance with these principles, all content is available for academic research. The CIViC, CGI Biomarkers, 
and PMKB knowledgebases provide content with no restrictions on reuse; however, commercial use of content 
from other knowledgebases is restricted—see individual knowledgebases for current content licensing. All 
code is open-source (MIT licensed) and available online at github.com/ohsu-comp-bio/g2p-aggregator 
(website) and git.io/vicckb (python interface).  
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FIGURES 

 

Figure 1 - Creation of a harmonized meta-knowledgebase 
Six variant interpretation knowledgebases of the VICC (blue panel) and representative symbolic interpretations from each 
(white columns) are illustrated. Interpretations are split across 5 different elements; gene, variant, disease, drugs and 
evidence. Referenced-linked elements correspond to unique identifiers from established authorities for that element (e.g. 
the use of Entrez or Ensembl gene identifiers). Standardized elements correspond to immediately recognizable formats or 
descriptions of elements, but are not linked to an authoritative definition. Resource-specific elements are described by 
terminology unique to the knowledgebase. These elements are each harmonized (red panel) to a common reference 
standard (shown here is the use of HGNC for genes, ChEMBL for drugs, AMP/ASCO/CAP guidelines for evidence, 
Disease Ontology for diseases, and ClinGen Allele Registry for variants). This harmonized meta-knowledgebase allows 
for querying across interpretations from each of the constituent VICC knowledgebases (gray panel, example query BRAF 
V600E), returning aggregated results which are categorized and sorted by evidence level. 
 

  

this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt 

The copyright holder has placed this preprint (whichthis version posted October 19, 2018. ; https://doi.org/10.1101/366856doi: bioRxiv preprint 

https://doi.org/10.1101/366856


 

15 

 

Figure 2 - Representation of genomic variants across interpretation knowledgebases 
(a) UpSet plot47 of variants across six cancer variant interpretation knowledgebases. Sets of variant interpretation 
knowledgebases with shared variants are indicated by colored dots in the lower panel, with color indicating set size (e.g. 
red dots indicate only the single designated knowledgebase in the set, dark blue dots indicate two knowledgebases in the 
set, etc.). Objects are attributed to the largest containing set; thus a variant described by all six knowledgebases is 
attributed to the light blue set with 8 variants. (b) Pie chart visualizing overall uniqueness of variants, with categories 
indicating the number of knowledgebases describing each variant. Nearly 77% of variants are unique across the 
knowledgebases, with only 0.2% ubiquitously represented. The 8 variants present in all 6 knowledgebases are listed at 
right. (c) Multiple syntactically-valid representations of an identical protein product can lead to confusion in describing the 
change in the literature and in variant databases. At top, the wild-type protein sequence is represented for ERBB2. Below, 
two (of many) possible representations of an in-frame insertion are shown. In the middle a non-standard HGVS 
expression describes a 5 amino acid insertion. At the bottom, the HGVS standard representation shows an identical 
protein product from a 4 amino acid duplication. A search for one representation against a database with another (non-
overlapping) representation may lead to omission of a clinically relevant finding. PMKB=Precision Medicine 
Knowledgebase, CIViC=Clinical Interpretations of Variants in Cancer, CGI=Cancer Genome Interpreter, JAX-CKB=The 
Jackson Laboratory Clinical Knowledgebase, MMatch=MolecularMatch interpretation knowledgebase. 
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Figure 3 - Clinical interpretations of variants are defined by disease 
(a) Core dataset interpretations for top-level disease groups. Distinct diseases are shown if the constituent interpretations 
for that disease account for at least 5% of the total dataset. Diseases accounting for at least 5% of cancer incidence (b) 
and mortality (c) are also displayed. Approximately 8% of interpretations are categorized as benign neoplasms (dark gray; 
e.g. von Hippel-Lindau disease). An additional 1% are categorized under high-level terms other than DOID:14566 - 
Disease of Cellular Proliferation. (d) A heatmap of frequent gene-disease interpretations, and (e) the related heatmap 
limited to tier 1 interpretations. (f) Percentage of Project GENIE cohort with at least one interpretation from the indicated 
knowledgebase that matches patient variants (left group), patient variants and disease (center group), or patient variants, 
disease, and a Tier I evidence level (right group). A broader search strategy (indicated by whisker bars; Figure S4) that 
allows for regional variant matches (e.g. gene-level) and broader interpretation disease terms (e.g. DOID:162 - cancer) 
nearly doubles the number of patients with matching interpretations. These broader match strategies are incompatible 
with the ASCO/AMP/CAP evidence guidelines. (g) Most significant finding (by evidence level) across patient samples, by 
disease. Each column represents one of the common diseases indicated in (a), and the rows represent the evidence 
levels described in Table 1. Inner, light green circles (labeled Singular) indicate the proportion observed when matching 
patient diseases to interpretations with the same disease ontology term. Outer, dark green circles (labeled Grouped) 
indicate the proportion observed when matching patients to interpretations with ancestor or descendant terms that group 
to the same class of disease (Online Methods). Hem. Cancer=Hematological Cancer, Lrg. Int. Cancer=Large Intestine 
Cancer.  
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Figure 4 - A web client for exploring the VICC meta-knowledgebase 
(a) Queries are entered as individual terms, with compound queries (e.g. BRAF and V600E) denoted by preceding ‘+’ 
characters. Usage help and example documentation can be found by clicking the “?” icon. (b) Result visualization panels 
are interactive, allowing users to quickly filter results by evidence level, source, disease, drug, and gene. (c) Scrollable 
results table has sortable columns detailing each resource (e.g., molecularmatch), gene (BRAF), variant (V600E), disease 
(skin melanoma), drug (vemurafenib), evidence level, evidence direction, original URL, and primary literature. Rows are 
expandable and include additional detail structured as both JSON and a table.  
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TABLES 

Table 1 - Mapping knowledgebase-specific evidence codes to AMP/ASCO/CAP guidelines 
AMP/ASCO/CAP Variant Evidence Guidelines 

Evidence Level Defining Characteristics CIViC OncoKB JAX-CKB CGI MMatch PMKB 

Level A 
(Tier I) 

Evidence from professional 
guidelines or FDA-approved 
therapies relating to a 
biomarker and disease. 

      

Level A Level 1 / 
2A /R1 

Guideline / 
FDA Approved 

Clinical 
Practice 

Level 
1A 

Tier 1 

Level B 
(Tier I) 

Evidence from clinical trials or 
other well-powered studies in 
clinical populations, with 
expert consensus. 

      

Level B Level 
3A 

Phase III Clinical 
Trials III-IV 

Level 
1B 

 

Level C 
(Tier II) 

Evidence for therapeutic 
predictive markers from case 
studies, or other biomarkers 
from several small studies. 
Also evidence for biomarker 
therapeutic predictions for 
established drugs for different 
indications. 

      

Predictive 
Level C 

Level 
2B, 
Level 
3B 

Clinical Study/ 
Phase I / 
Phase II 

Clinical 
Trials I-II, 
Case 
Reports 

Level 
2C 

Tier 2 

Level D 
(Tier II) 

Preclinical findings or case 
studies of prognostic or 
diagnostic biomarkers. Also 
includes indirect findings. 

      

Non-predictive 
Level C / 
Level D / 
Level E 

Level 4 Phase 0, Pre-
clinical 

Pre-clinical 
Data 

Level 
2D 

Tier 3 

  

this material for any purpose without crediting the original authors. 
was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, remix, or adapt 

The copyright holder has placed this preprint (whichthis version posted October 19, 2018. ; https://doi.org/10.1101/366856doi: bioRxiv preprint 

https://doi.org/10.1101/366856


 

19 

Table 2 - Comprehensive assessment of NP_004439.2:p.Y772_A775dup variant across clinical 
interpretation knowledgebases 
 
Resource ERBB2 Variant Evidence Document ID Interpretation 

CIViC M774INSAYVM Level B, 2-star PMID:25899785 Does not support sensitivity/response to Dacomitinib in NSCLC 

M774INSAYVM Level C, 4-star PMID:26559459 Supports sensitivity/response to Afatinib in Lung Adenocarcinoma 

M774INSAYVM Level C, 3-star PMID:22325357 Supports sensitivity/response to Afatinib in Lung Adenocarcinoma 

M774INSAYVM Level C, 3-star PMID:25789838 Supports sensitivity/response to Trastuzumab Emtansine in Lung 
Adenocarcinoma 

M774INSAYVM Level D, 3-star PMID:19122144 Supports sensitivity/response to Afatinib and Rapamycin (combination) 
in NSCLC 

Kinase Domain 
Mutation 

Level C, 4-star PMID:26598547 Supports sensitivity/response to Trastuzumab in Lung 
Adenocarcinoma 

Kinase Domain 
Mutation 

Level C, 3-star PMID:22325357 Supports sensitivity/response to Afatinib in Lung Adenocarcinoma 

OncoKB Exon 20 Insertions Level 4 10.1158/1538-
7445.AM2016-2644 

Supports response to AP32788 in Non-Small Cell Lung Cancer 

Oncogenic Mutations Level 3A PMID:23220880 Supports response to Neratinib in Breast Cancer and Non-Small Cell 
Lung Cancer 

10.1158/1538-
7445.AM2017-CT001 

CGI inframe ins. 
A775YVMA 

Early trials 10.1200/JCO.2017.3
5.15_suppl.8510 

Responsive to Ado-Trastuzumab Emtansine in Lung Cancer 

inframe ins. 
A775YVMA 

Early trials 10.1158/1538-
7445.AM2017-CT001 

Responsive to Neratinib in Cancer 

proximal exon 20 Early trials PMID:26598547 Responsive to Afatinib, Neratinib, Lapatinib, or Trastuzumab in Lung 
Adenocarcinoma 

10.1200/JCO.2017.3
5.15_suppl.9071 

PMKB exon(s) 20 insertion Tier 2 PMID:22761469 Associated with sensitivity to some ERBB2 inhibitors in Lung 
Adenocarcinoma 

PMID:16818618 

PMID:25152623 

JAX-CKB Y772_A775dup Clinical Study PMID:26964772 Conflicting response to afatinib in Lung Adenocarcinoma 

Y772_A775dup Phase II PMID:29420467 Predicted sensitive to neratinib in Her2-receptor negative breast 
cancer 

Y772_A775dup Phase II PMID:29420467 Predicted resistant to neratinib in urinary bladder cancer and non-small 
cell lung carcinoma 

Y772_A775dup Preclinical PMID:26545934 Sensitive to afatinib in lung cancer 

Y772_A775dup Preclinical PMID:26545934 No benefit to gefitinib in lung cancer 

Y772_A775dup Preclinical PMID:28363995 Sensitive to neratinib in advanced solid tumor 
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exon 20 insertion Clinical Study PMID:28167203 Predicted sensitive to afatinib or trastuzumab in non-small cell lung 
carcinoma 

exon 20 insertion Clinical Study PMID:26964772 Predicted sensitive to afatinib in lung adenocarcinoma 

exon 20 insertion Phase II PMID:29420467 Predicted sensitive to neratinib in Her2-receptor negative breast 
cancer 

exon 20 insertion Phase II PMID:29420467 No benefit to neratinib in non-small cell lung carcinoma 

exon 20 insertion Preclinical 10.1158/1538-
7445.AM2016-2644 

Sensitive to AP32788 in advanced solid tumor 

Molecular 
Match Y772_A775dup Level 1B 

PMID:22325357, 
26964772 Confers sensitivity to Afatinib in patients with Neoplasm of lung 

Y772_A775dup Level 2C PMID:26598547 Confers sensitivity to Trastuzumab in patients with Neoplasm of lung 

Y772_A775dup Level 2D PMID:22325357 Confers sensitivity to Afatinib in patients with Neoplasm of breast 

A775_G776insYVMA Level 1A 
PMID:26559459, 
22325357, 26545934 Confers sensitivity to Afatinib in patients with Neoplasm of lung 

A775_G776insYVMA Level 2C 
PMID:23610105, 
26964772, 22908275 Confers sensitivity to Afatinib in patients with Neoplasm of breast 

A775_G776insYVMA Level 2D 
PMID:17311002, 
22908275 Confers sensitivity to Neratinib in patients with Neoplasm of breast 
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