
Alevin e�ciently estimates accurate gene abundances from
dscRNA-seq data

Avi Srivastava ⇤1, Laraib Malik †1, Tom Smith ‡2, Ian Sudbery §3, and Rob Patro ¶k1

1Department of Computer Science, Stony Brook University, Stony Brook, USA
2Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge,

UK
3She�eld Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, The University of

She�eld, She�eld, S10 2TN, UK

Abstract

We introduce alevin, a fast end-to-end pipeline to process droplet-based single cell RNA sequencing
data, which performs cell barcode detection, read mapping, unique molecular identifier deduplication,
gene count estimation, and cell barcode whitelisting. Alevin ’s approach to UMI deduplication accounts
for both gene-unique reads and reads that multimap between genes. This addresses the inherent bias
in existing tools which discard gene-ambiguous reads, and improves the accuracy of gene abundance
estimates.

There has been a steady increase in the throughput of single-cell RNA-seq (scRNA-seq) experiments,
with droplet-based protocols (dscRNA-seq)1–3 facilitating experiments assaying tens of thousands of cells
in parallel. The three most widely-used dscRNA-seq protocols: drop-seq1, inDrop2, and 10x-chromium3,
use two separate barcodes that require appropriate processing for accurate quantification estimation. First,
cellular barcodes (CBs) are used to tag each cell with a unique barcode, which enables pooling of cells for
sequencing. Second, identification of PCR duplicates is aided by Unique Molecular Identifiers (UMIs), which
tag each unique molecule prior to amplification. Appropriately accounting for the barcode information is
therefore crucial for accurate estimation of gene expression. Only a minor fraction of the possible CBs
present will ultimately tag a cell, and likewise, only a minor fraction of UMIs will tag unique molecules from
the same gene. Thus, in each case, the aim is to identify the barcodes used. Unfortunately, both CBs and
UMIs are subject to errors that occur during sequencing and amplification1,4, which makes the accurate
deconvolution of this information in silico a non-trivial task.

Various methods have been proposed to correctly process dscRNA-seq barcodes in an error-aware manner
(“whitelisting”)3–6 and to obtain cell-level gene quantification estimates7,8. Here, we describe an end-to-end
quantification pipeline that takes as input sample-demultiplexed FASTQ files and outputs gene-level UMI
counts for each cell in the library. We call this unified pipeline alevin, outlined in Figure 1, and it overcomes
two main shortcomings of traditional pipelines. First, existing techniques for UMI deduplication discard
reads that map to more than one gene. In bulk RNA-seq datasets (with paired-end reads and full-length
transcript coverage), the proportion of gene ambiguous reads is generally small (Table S1). Yet, in tagged-
end scRNA-seq, this set of gene-ambiguous reads is generally larger, and commonly accounts for ⇠ 14�23%
of the input data (Figure 2a, Table S2). This is a result of both the fact that dscRNA-seq protocols,
by construction, display a very strong 3’ bias and that these protocols yield e↵ectively single-end reads
(only one of the sequenced reads contains sequence from the underlying transcript), resulting in a reduced
ability to resolve multimapping using a pair of reads from a longer fragment. Discarding the multimapping

⇤asrivastava@cs.stonybrook.edu
†lmalik@cs.stonybrook.edu
‡tss38@cam.ac.uk
§i.sudbery@she�eld.ac.uk
¶rob.patro@cs.stonybrook.edu
kto whom correspondence should be addressed

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

1-Pass Frequency Counting

Neighbor
collapsingObserved Cell Barcode

White List

Cell-Gene
Count Matrix

Transcriptome Mapping

UMI
Deduplication

transcript: gene

t1: g1

t2: g2

(t1, t2)

(t1)

(t1, t2)

(t1, t2)

Transcript-UMI

Network

(t1, t2)

(t1)

Deduplicated

Network

~EM

Estimate

(g1)

(g1, g2)

Intelligent
Whitelisting

UMI Deduplication

dscRNA-seq Reads

UMIs

Observed
Cellular
Barcodes  
(colors ~ cells)Cell Population

External /
Knee

Whitelisting

Sequences

where

d(,) > 1

Figure 1: Overview of the alevin pipeline. The input to the pipeline are sample-demultiplexed FASTQ files
and there are several steps, outlined here, that are required to process this data and obtain per cell gene-level
quantification estimates. The first step is cell-barcode (CB) whitelisting using their frequencies. Barcodes
neighboring whitelisted barcodes are then associated with (collapsed into) their whitelisted counterparts.
Reads from whitelisted CBs are mapped to the transcriptome and the UMI-transcript equivalence classes are
generated. Each equivalence class contains a set of transcripts, the UMIs that are associated with the reads
that map to each class and the read count for each UMI. This information is used to construct a graph where
each node represents a UMI-transcript equivalence class and nodes are connected based on the associated
read counts. The UMI deduplication algorithm then attempts to find a parsimonious set of transcripts that
cover the graph (where each consistently-labeled connected component — each monochromatic arborescence)
is associated with a distinct pre-PCR molecule. In this way, each node is assigned a transcript label, and in
turn, an associated gene label. Reads associated with arborescences that could be consistently labeled by
multiple genes are divided amongst these possible loci probabilistically based on an expectation-maximization
algorithm. Finally, after obtaining this gene count matrix, an intelligent whitelisting procedure finalizes a
list of high quality CBs using a näıve Bayes classifier to di↵erentiate between high and low-quality cells.

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

reads can strongly bias the gene-level counts predicted by various methods (Figure S1) and lead to under-
counting (Figure S2) of UMIs, since the UMI deduplication methods used by these methods do not have
a mechanism to deal with such UMIs that map between multiple genes. Second, existing quantification
pipelines combine independent processing algorithms and tools for each step, usually communicating results
between pipeline stages via intermediate files on disk, which significantly increases the processing time and
memory requirements for the complete analysis (Figure S3). We show that alevin makes use of more reads
than other pipelines (Figure 2a), that this leads to more accurate quantification of genes (Figure 2b), and
that alevin does this ⇠ 10 times faster and with a lower memory requirement (Figure 2c), when compared
to existing best practice pipelines for dscRNA-seq analysis.

There are several steps in the alevin pipeline that are streamlined to work without the overhead of writing
to disk, as highlighted in Figure 1 (details in Online Methods). The first step is to identify the CBs that
represent properly-captured and tagged cells (“whitelisting”). Alevin uses a two-step whitelisting procedure.
An initial whitelist is produced by finding the “knee” in the cumulative distribution of CB frequencies1,3.
For each non-whitelisted CB, alevin tries to correct it to a whitelisted CB, otherwise, the barcode and its
associated reads are discarded. The next step is read mapping to a target transcriptome9,10, followed by
UMI deduplication. Alevin performs deduplication by constructing a graph using information from the
UMI sequences, the UMI counts and the transcript equivalence classes11, such that each UMI-transcript
equivalence class pair is represented by a node and there exists a directed edge from a node to any node
that could have arisen from it due to a PCR or sequencing error, and a bi-directed to any node that could
have arisen from it by sampling (without error) from a di↵erent position along a duplicate of the same
pre-PCR molecule (Section OM2.1). An optimal covering of this graph, using the transcripts associated
with each node, will give the minimum number of UMIs, along with their counts, required to explain the
set of mapped reads. Since the decision version of this problem is NP-complete (Section S1.6), we propose a
greedy algorithm to obtain a minimum cardinality covering of this graph. The ambiguous reads remaining
after this UMI resolution phase are assigned based on an expectation-maximization method12. Finally,
having obtained per-cell gene expression estimates, CB whitelisting is finalized using a näıve Bayes classifier
to di↵erentiate between high and low-quality cells utilizing a set of features derived from the expression
estimates and other diagnostic features6(Section OM3). In addition to the gene-by-cell count matrix, alevin
also provides information about the reliability of the abundance estimate computed for each gene in each
cell in the form of a tier matrix (and, optionally, the summarized variance of bootstrap estimates), which
succinctly encodes the quality of the evidence used to derive the corresponding count (Section OM2.2).

To assess the performance of alevin, both in terms of accuracy in quantification and resource consumption,
we ran it on 10x Chromium datasets from human and mouse, containing 8, 381 and 9, 128 cells and 784 million
and 383 million reads respectively. We compare our results against the Cell-Ranger pipeline3 and a custom
pipeline, with an external list of whitelisted CBs, using STAR13, featureCounts14, and UMI-tools4, which
we refer to as the näıve pipeline. The exact parameters for running each tool are provided in Section OM4.
Results from datasets containing fewer cells are also presented in the Supplementary Material. Comparisons
with other pipelines, and on data using the Drop-seq1 protocol, are also detailed in Section S1.7.

To test the accuracy of the quantification estimates, we aggregate the estimates from each of the single-
cell quantification tools (summing across all cells) and calculate the correlation with estimates predicted
by RSEM15 (paired with Bowite216 alignments) using bulk datasets from the same cell types. Estimates
from alevin, when summed across all cells, have a higher Spearman rank correlation than the Cell-Ranger
and näıve pipelines (Table S6). Specifically, we posit that Cell-Ranger and näıve demonstrate a strong and
persistent bias against groups of two or more genes that exhibit high sequence similarity. That is, the more
sequence-similar a gene is to another gene, the less likely these pipelines are able to assign reads to it —
in the extreme case, some genes essentially become invisible due to the in silico biases of these approaches
(a similar e↵ect was reported by Robert and Watson 17 in bulk RNA-seq data when simple read-counting
approaches are used for quantification, where they highlight that many such genes are relevant to human
disease).

To further explore this hypothesis, we stratified the accuracy of the di↵erent methods by the uniqueness of
the underlying genes (Figure 2b, Figure S6, Section S1.9). In agreement with the hypothesized relationship,
we observed that the higher accuracy of alevin is particularly large for genes with a lower proportion of unique
k-mers. Thus, the approach of Cell-Ranger and näıve, which discard reads mapping to multiple genes, results
in systematic inaccuracies in genes which are insu�ciently unique (i.e. which share a high degree of sequence

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a)

(b)

(c)

Figure 2: Various analyses on the single cell human PBMC 8k and mouse neuronal 9k datasets. (a) The
percentage of multimapping reads in each dataset, calculated using the alignments done by alevin against the
transcriptome. A read is considered to multimap if it maps to transcripts from two di↵erent genes. (b) The
Spearman correlation between quantification estimates (summed across all cells) from di↵erent scRNA-seq
methods against bulk data from the same cell types, stratified by gene sequence uniqueness. The bar plot
shows the percentage of genes in each bin that have unique read evidence. Tier 1 is the set of genes where
all the reads are uniquely mapping. Tier 2 is genes that have ambiguously mapping reads, but connected
to unique read evidence as well, that can be used by the EM to resolve the multimapping reads. Tier 3 is
the genes that have no unique evidence and the read counts are, therefore, distributed between these genes
according to an uninformative prior. Note that all methods perform very similarly on genes from tier 1, but
the performance of alevin is much better for the other tiers. (c) The time and memory performance of the
di↵erent pipelines for the two datasets.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

homology with some other gene). This bias could impact the expression estimates of important marker
genes, such as the genes for the hemoglobin alpha and beta proteins in the mouse neurons18,19. Due to their
lower uniqueness ratio, Cell-Ranger appears to exhibit a bias against such genes, and their expression, as
predicted by alevin, is systematically higher (Figure S7). Anecdotally, we also noticed that, in the human
PBMC data, alevin sometimes predicts the expression of even relatively sequence-unique genes, like YIPF6,
that we expect to be expressed in a subpopulation of these cells (monocytes)20, but which exhibit almost
no expression as predicted by Cell-Ranger (Figure S8). Because the bias against sequence-ambiguous genes
is fundamental and sequence-specific, it cannot be easily remedied with more data, but instead requires
the development of fundamentally novel algorithms, like alevin, that account for, rather than discard, reads
mapping to such genes. Hence, alevin not only quantifies a greater proportion of the sequenced data than
existing methods, but also does so more accurately and in a less-biased manner.

The time and memory requirements for alevin are significantly less than those for the existing pipelines
(Figure 2c, Figure S9), where all methods were ran using 16 threads. For the smallest dataset (900 mouse
neuronal cells), alevin was ⇠ 7 times faster than näıve and ⇠ 21 times faster than Cell-Ranger. This
di↵erence increases further as the size of the dataset increases, since the performance of alevin scales better
than the other tools. Hence, where alevin took only 51 minutes to process the human PBMC 8k dataset,
Cell-Ranger took 22 hours and näıve took 11 hours. In terms of memory, alevin used only ⇠ 18GB on the
human PBMC 8k cell dataset, whereas näıve took ⇠ 20GB. For the mouse neuronal 9k cell dataset, alevin
used ⇠ 15GB and näıve used ⇠ 18GB. In both cases, Cell-Ranger required a minimum of 16GB just for
STAR indexing. We note that Cell-Ranger allows the user to specify a maximum resident memory limit, and
we ran Cell-Ranger allowing it to allocate up to 120GB so that the extra runtime was not due to limitations
in available memory. We observe that the optimal number of threads for running alevin is 12 � 16, where
the maximum gain in terms of time and memory is achieved (Figure S10).

Our analyses demonstrate that, compared to Cell-Ranger (and näıve), alevin achieves a higher accuracy,
in part because of considering a substantially larger number of reads. Further, alevin is considerably faster
and uses less memory than these other approaches. These speed improvements are due to a combination of
the fact that alevin uses bespoke algorithms for CB and UMI edit distance computation, read mapping, and
other tasks, and is a unified tool for performing all of the initial processing steps, obviating the need to read
and write large intermediate files on disk. Alevin is written in C++14, and is integrated into the salmon tool
available at https://github.com/COMBINE-lab/salmon.

Acknowledgments

The authors would like to thank Fatemeh Almodaresi and Hirak Sarkar for useful discussions during the
development of the alevin method, and would also like to thank Hirak Sarkar for his help in crafting Fig-
ure 1. This work was supported by the US National Science Foundation (BIO-1564917, CCF-1750472,
CNS-1763680), and the US National Institutes of Health (R01HG009937). This project has been made pos-
sible in part by grant number 2018-182752 from the Chan Zuckerberg Initiative DAF, an advised fund of
Silicon Valley Community Foundation. The authors would like to thank Stony Brook Research Computing
and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University
for access to the high-performance SeaWulf computing system, which was made possible by a $1.4M National
Science Foundation grant (#1531492).

References

[1] Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay
Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck, et al. Highly parallel genome-wide
expression profiling of individual cells using nanoliter droplets. Cell, 161(5):1202–1214, 2015.

[2] Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li, Leonid
Peshkin, David A Weitz, and Marc W Kirschner. Droplet barcoding for single-cell transcriptomics
applied to embryonic stem cells. Cell, 161(5):1187–1201, 2015.

[3] Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson,

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

Solongo B Ziraldo, Tobias D Wheeler, Geo↵ P McDermott, Junjie Zhu, et al. Massively parallel digital
transcriptional profiling of single cells. Nature Communications, 8:14049, 2017.

[4] Tom Smith, Andreas Heger, and Ian Sudbery. UMI-tools: modeling sequencing errors in unique molec-
ular identifiers to improve quantification accuracy. Genome Research, 27(3):491–499, 2017.

[5] Lu Zhao, Zhimin Liu, Sasha F Levy, and Song Wu. Bartender: a fast and accurate clustering algorithm
to count barcode reads. Bioinformatics, 2017.

[6] Petukhov, V and Guo, J and Baryawno, N and Severe, N and Scadden, DT and Samsonova, MG
and Kharchenko, PV. dropEst: pipeline for accurate estimation of molecular counts in droplet-based
single-cell RNA-seq experiments. Genome Biology, 19(1):78, 2018.

[7] Vasilis Ntranos, Govinda M Kamath, Jesse M Zhang, Lior Pachter, and N Tse David. Fast and accurate
single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biology, 17(1):
112, 2016.

[8] Luyi Tian, Shian Su, Xueyi Dong, Daniela Amann-Zalcenstein, Christine Biben, Azadeh Seidi, Douglas J
Hilton, Shalin H Naik, and Matthew E Ritchie. scPipe: a flexible R/Bioconductor preprocessing pipeline
for single-cell RNA-sequencing data. PLoS Computational Biology, 14(8):e1006361, 2018.

[9] Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Rob Patro. RapMap: a rapid, sensitive and accurate
tool for mapping RNA-seq reads to transcriptomes. Bioinformatics, 32(12):i192–i200, 2016.

[10] Hirak Sarkar, Mohsen Zakeri, Laraib Malik, and Rob Patro. Towards selective-alignment: Bridging
the accuracy gap between alignment-based and alignment-free transcript quantification. In Proceedings

of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health In-

formatics, BCB ’18, pages 27–36, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5794-4. doi:
10.1145/3233547.3233589. URL http://doi.acm.org/10.1145/3233547.3233589.

[11] Ernest Turro, Shu-Yi Su, Ângela Gonçalves, Lachlan JM Coin, Sylvia Richardson, and Alex Lewin.
Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome

Biology, 12(2):R13, 2011.

[12] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon provides fast
and bias-aware quantification of transcript expression. Nature Methods, 14(4):417, 2017.

[13] Alexander Dobin, Carrie A Davis, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha, Philippe
Batut, Mark Chaisson, and Thomas R Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinfor-
matics, 29(1):15–21, 2013.

[14] Yang Liao, Gordon K Smyth, and Wei Shi. featureCounts: an e�cient general purpose program for
assigning sequence reads to genomic features. Bioinformatics, 30(7):923–930, 2013.

[15] Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from RNA-Seq data with or
without a reference genome. BMC Bioinformatics, 12(1):323, 2011.

[16] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with bowtie 2. Nature Methods, 9
(4):357, 2012.

[17] Christelle Robert and Mick Watson. Errors in RNA-Seq quantification a↵ect genes of relevance to
human disease. Genome Biology, 16(1):177, 2015.

[18] Xiaoping Han, Renying Wang, Yincong Zhou, Lijiang Fei, Huiyu Sun, Shujing Lai, Assieh Saadatpour,
Zimin Zhou, Haide Chen, Fang Ye, et al. Mapping the mouse cell atlas by microwell-seq. Cell, 172(5):
1091–1107, 2018.

[19] Franziska Richter, Bernhard HMeurers, Chunni Zhu, Vera P Medvedeva, and Marie-Françoise Chesselet.
Neurons express hemoglobin ↵-and �-chains in rat and human brains. Journal of Comparative Neurology,
515(5):538–547, 2009.

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

[20] Helder I Nakaya, Jens Wrammert, Eva K Lee, Luigi Racioppi, Stephanie Marie-Kunze, W Nicholas
Haining, Anthony R Means, Sudhir P Kasturi, Nooruddin Khan, Gui-Mei Li, et al. Systems biology of
vaccination for seasonal influenza in humans. Nature Immunology, 12(8):786, 2011.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

Online Methods

OM1 Initial whitelisting and barcode correction

After standard quality control procedures, the first step of existing single-cell RNA-seq processing pipelines1;2;3

is to extract cell barcode and UMI sequences, and to add this information to the header of the sequenced
read or save it in temporary files. This approach, while versatile, can create many intermediate files on disk
for further processing, which can be time and space-consuming.

Alevin begins with sample-demultiplexed FASTQ files. It quickly iterates over the file containing the
barcode reads, and tallies the frequency of all observed barcodes (regardless of putative errors). We denote
the collection of all observed barcodes as B. Whitelisting involves determining which of these barcodes may
have derived from a valid cell. When the data has been previously processed by another pipeline, a whitelist
may already be available for alevin to use. When a whitelist is not available, alevin uses a two-step procedure
for calculating one. An initial draft whitelist is produced using the procedure explained below, to select CBs
for initial quantification. This list is refined after per-cell level quantification estimates are available (see
section OM3) to produce a final whitelist.

To generate a putative whitelist, we follow the approach taken by other dscRNA-seq pipelines by analyzing
the cumulative distribution of barcode frequencies, and finding the knee in this curve1;2. Those barcodes
occurring after the knee constitute the whitelist, denoted W. We use a Gaussian kernel to estimate the
probability density function for the barcode frequency and select the local minimum corresponding to the
“knee”. In the case of a user-provided whitelist, the provided W is used as the fixed final whitelist.

Next, we consider those barcodes in E = B \W to determine, for each non-whitelisted barcode, whether
a) its corresponding reads should be assigned to some barcode in W; or b) this barcode represents some
other type of noise or error (e.g., ambient RNA, lysed cell, etc.) and its associated reads should be discarded.
The approach of alevin is to determine, for each barcode hj 2 E , the set of whitelisted barcodes with which
hj could be associated. We call these the putative labels of hj — denoted as `(hj). Following the criteria
used by previous pipelines1, we consider a whitelisted barcode wi to be a putative label for some erroneous
barcode hj if hj can be obtained from wi by a substitution, by a single insertion (and clipping of the terminal
base) or by a single deletion (and the addition of a valid nucleotide to the end of hj). Rather than applying
traditional algorithms for computing the all-versus-all edit-distances directly, and then filtering for such
occurrences, we exploit the fact that barcodes are relatively short. Therefore, we can explicitly iterate over
all of the valid wi 2 W and enumerate all erroneous barcodes for which this might be a putative label.
Let Q(wi, H) be the set of barcodes from E that adhere to the conditions defined above; then, for each
hj 2 Q(wi, H), we append wi as putative label for the erroneous barcode hj .

Once all whitelisted barcodes have been processed, each element in E will have zero or more putative
labels. If an erroneous barcode has more than one putative label, we prioritize substitutions over insertions
and deletions. If this does not yield a single label, ties are broken randomly. If no candidate is discovered for
an erroneous barcode, then this barcode is considered “noise”, and its associated reads are simply discarded.

OM2 Mapping reads and UMI de-duplication

After labeling each barcode, either as noise, or as belonging to some whitelisted barcode, alevin maps the
sequenced reads to the target transcriptome4;5. Reads mapping to a given transcript (or multimapping to
a set of transcripts) are categorized hierarchically, first based on the label of their corresponding cellular
barcode, and then based on their unique molecular identifier (UMI). At this point, it is then possible to
deduplicate reads based on their mapping and UMI information.

The process of read deduplication involves the identification of duplicate reads based on their UMIs
and alignment positions. Most amplification occurs prior to fragmentation in library construction for 10x
Chromium protocols6. Because of this, the alignment position of a given read is not straightforward to
interpret with respect to deduplication, as the same initial unique molecule may yield reads with di↵erent
alignment coordinates†. UMIs can also contain sequence errors. Thus, achieving the correct deduplication

†
We note that whether the majority of amplification occurs pre- or post-fragmentation can be protocol specific and can

suggest di↵erent strategies for UMI deduplication. Here, we are primarily concerned with the 10X Chromium protocols,

OM1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

requires proper consideration of the available positional information and possible errors.
Our approach for handling sequencing errors, and PCR errors in the UMIs is motivated by “directional”

approach introduced in UMI-tools7. Let Ui be the set of UMIs observed for gene i. A specific UMI un 2 Ui,
observed cn times in gene i, is considered to have arisen by PCR or sequence error if there exists um 2 Ui

such that d(un, um) = 1 and cm > 2cn + 1, where d(·, ·) is, the Hamming distance. Using this information,
only UMIs that could not have arisen as an error under this model are retained. However, this approach
may over-collapse UMIs if there exists evidence that similar UMIs (i.e. UMIs at a Hamming distance of 1 or
less) may have arisen from di↵erent transcripts, and hence, distinct molecules. Moreover, this approach first
discards reads that multimap to more than one read, causing it to lose a substantial amount of information
before even beginning the UMI deduplication process.

As previously proposed to address the problem of cell-clustering8, an equivalence class9;10;11;12;13;14;15

encodes some positional information, by means of encoding the set of transcripts to which a fragment is
mapped. Specifically, these equivalence classes can encode constraints about which UMIs may have arisen
from the same molecule and which UMIs — even if mapping to the same gene — must have derived from
distinct pre-PCR molecules. This can be used to avoid over-collapsing UMI tags that are likely to result from
di↵erent molecules by considering UMIs as distinct for each equivalence class. However, in its simplest form,
this deduplication method is prone to reporting a considerably higher number of distinct UMIs than likely
exist (Figure S5). This is because reads from di↵erent positions along a single transcript, and tagged with
the same UMI, can give rise to di↵erent equivalence classes, so that membership in a di↵erent equivalence
class is not, alone, su�cient evidence that a read must have derived from a distinct (pre-PCR) molecule
(Section S1.7.2). This deters us from directly using such a UMI collapsing strategy for deriving gene-level
counts, though it may be helpful for other types of analyses.

Given the shortcomings of both approaches to UMI deduplication, we propose, instead, a novel UMI
resolution algorithm that takes into account transcript-level evidence when it exists, while simultaneously
avoiding the problem of under-collapsing that can occur if equivalence classes are treated independently for
the purposes of UMI deduplication.

OM2.1 UMI Resolution Algorithm

A potential drawback of gene-level deduplication is that it discards transcript-level evidence. In this case,
such evidence is encoded in the equivalence classes. Thus, gene-level deduplication provides a conservative
approach and assumes that it is highly unlikely for molecules that are distinct transcripts of the same gene
to be tagged with a similar UMI (within an edit distance of 1 from another UMI from the same gene).
However, entirely discarding transcript-level information will mask true UMI collisions to some degree, even
when there is direct evidence that similar UMIs must have arisen from distinct transcripts. For example,
if similar UMIs appear in transcript-disjoint equivalence classes (even if all of the transcripts labeling both
classes belong to the same gene), then they cannot have arisen from the same pre-PCR molecule. Accounting
for such cases is especially true when using an error-aware deduplication approach, and as sequencing depth
increases.

To perform UMI deduplication, alevin begins by constructing a graph G = (V,E), for each cell, where
each vi = (u, Ti) is a tuple consisting of UMI sequence u and a set of transcripts Ti = {ti1 , ti2 , . . . , tim}.
There is a count associated with each vertex such that c(vi) = ci is the number of times this UMI, equivalence
class pair is observed. G contains two types of edges; directed and bi-directed. There exists a directed edge
between every pair of vertices (vi, vj) for which ci > 2cj � 1, |Ti \ Tj | > 0, and d(umi(vi), umi(vj)) = 1.
There is a bi-directed edge between every pair of vertices (vk, v`) for which d(umi(vk), umi(v`)) = 0 and
|Tk \ T`| > 0. Once the edges of this graph have been formed, we no longer need to consider the counts of
the individual UMI, equivalence class pairs.

We view the problem of determining the true number of distinct molecules appearing in this cell, as well
as the mapping relationship between UMIs and genes, as follows. Motivated by the principle of parsimony,
we wish to explain the observed vertices (i.e., UMI, equivalence class pairs) via the minimum possible number
of pre-PCR molecules that are consistent with the observed data. We pose this problem in the following
manner. Given a graph G, we seek a minimum cardinality covering by monochromatic arborescences. In

dominated by pre-fragmentation amplification. However, the method we propose for UMI deduplication can be applied to other

protocols as well.

OM2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

other words, we wish to cover G by a collection of vertex-disjoint arborescences (the analog of a rooted tree
in a directed graph), where each arborescence is labeled consistently by a set of transcripts, which are the
pre-PCR molecule types from which its reads and UMIs are posited to have arisen. Further, we wish to
cover all vertices in G using the minimum possible number of arborescences. Here, the graph G defines which
UMI, read pairs can potentially be explained in terms of others (i.e. which vertices may have arisen from the
same molecule by virtue of di↵erent fragmentation positions or which vertices may have given rise to other
through PCR duplication with error). The decision version of this problem is NP-complete (Section S1.6),
and so alevin employs a greedy algorithm in practice to obtain a valid, though not necessarily minimum,
covering of G.

The algorithm employed by alevin works as follows. First, we note that weakly-connected components
of G can be processed independently, and so we describe here the procedure used to resolve UMIs within a
single weakly-connected component — this is repeated for all such components. Let C = (VC , EC) denote our
current component. We perform a breadth-first search starting from each vertex vi 2 VC and considering
each transcript tij (the j

th transcript in the equivalence class labeling vertex vi). We compute the size
(cardinality) of the largest arborescence that can be created starting from this node and using this label to
cover the visited vertices. Let vi0 , ti0

j0
be the vertex, transcript pair generating the largest arborescence and

let a(vi0 , ti0
j0
) be the corresponding arborescence. We now remove all of the vertices in a(vi0 , ti0

j0
), and all of

their incident edges, from C, and we repeat the same procedure on the remaining graph. This process is
iterated until all vertices of C have been removed. This procedure is guaranteed to select some positive order
arborescence (i.e. an arborescence containing at least one node) in each iteration, and hence is guaranteed
to terminate after at most a linear number of iterations in the order of C.

After computing a covering, each arborescence is labeled with a particular transcript. However, the
selected transcript may not be the unique transcript capable of producing this particular arborescence
starting from the chosen root note. We can compute, for each arborescence, the set of possible transcript
labels that could have colored it (i.e. those in the intersection of the equivalence class labels for all of the
vertices in the arborescence). If the cardinality of this set is 1, then only a single transcript is capable
of explaining all of the UMIs associated with this arborescence. If the cardinality of this set is > 1, then
we need to determine if all transcripts capable of covering this arborescence belong to the same gene, or
whether transcripts from multiple genes may, in fact, be capable of explaining the associated UMIs. In
the former case, the count of pre-PCR molecules (i.e. distinct, deduplicated UMIs) associated with this
uniquely-selected gene is incremented by 1. In the latter case, the molecule associated with the arborescence
is considered to potentially arise from any of the genes with which it could be labeled. Subsequently, an EM
algorithm is used to distribute the counts between the genes. Note that other pipelines simply discard these
gene-ambiguous reads and that both manners in which alevin attempts to resolve such reads (i.e. either
by being selected via the parsimony condition or probabilistic allocated by the EM algorithm) are novel in
the context of scRNA-seq quantification. The EM procedure we adopt to resolve ambiguous arborescences
proceeds in the same manner as the EM algorithm used for transcript estimation in bulk RNA-seq data13,
with the exception that we assume the probability of generating a fragment is directly proportional to the
estimated abundance, rather than the abundance divided by the e↵ective length (i.e. we assume that, in the
tagged-end protocols used, there is no length e↵ect in the fragment generation process).

OM2.2 Tier Assignment

The alevin program also outputs a tier matrix, of the same dimensions as the cell-gene count matrix. Within
a cell, each gene is assigned one of fours tiers. The first tier (assigned 0) is the set of genes that have no
read evidence in this cell and are, therefore, predicted to be unexpressed (whether truly absent, or the e↵ect
of some dropout process). The rest of the tiers (1,2, and 3) are assigned based on a graph induced by the
transcript equivalence classes as follows:

1. All equivalence classes of size 1 are filtered out. The genes associated with the transcripts from these
classes are assigned to tier 1.

2. For the remaining equivalence classes, of size > 1 gene, a graph G is constructed. The nodes in G are
transcripts and two nodes share an edge if their corresponding transcripts belong to a single equivalence
class.

OM3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

3. All the connected components in G are listed and the transcript labels on the nodes mapped to their
corresponding genes. If any component contains a node whose gene has previously been assigned to
tier 1, that gene and all other genes in this connected component are assigned to tier 2. Hence, tier 2
contains genes whose quantification is impacted by the EM algorithm (after the UMI deduplication).

4. Genes associated with the remaining nodes in the graph are assigned tier 3. These are genes that
have no unique evidence, and do not share reads (or, in fact, paths in the equivalence class graph)
with another gene that has unique evidence. Hence, the EM algorithm will distribute reads between
these genes in an essentially uniform manner, and their estimates are uninformative. Their abundance
signifies that some genes (at least 1) in this ambiguous family are expressed, but exactly which and
their distribution of abundances cannot be determined.

Alevin, optionally (using the --numCellBootstraps flag), also outputs bootstrap variance estimates
for genes within each cell. These variance estimates could conceivably be used by downstream tools for
dimensionality reduction, di↵erential expression testing, or other tasks.

OM3 Final whitelisting

Many existing tools for whitelisting CBs, such as Cell-Ranger3 and Sircel16 perform whitelisting only once.
As discussed above, both tools rely on the assumption that the number of times a CB is observed is su�cient
to identify the correct CBs, i.e. those originating from droplets containing a cell. However, as observed by
Petukhov et al.17, there is considerable variation in sequencing depth per-cell, and some droplets may
contain damaged or low-quality cells. Thus, true CBs may fall below a simple knee-like threshold. Similarly,
erroneous CBs may lie above the threshold. Petukhov et. al17 proposed that instead of selecting a single
threshold, one should treat whitelisting as a classification problem and segregate CBs into three regions;
high-quality, low-quality and uncertain / ambiguous. Here, high-quality refers to the CBs which are deemed
to be definitely correct, and low-quality are the CBs which are deemed to most likely not arise from valid
cells. A classifier can then be trained on the high and low-quality CBs to classify the barcodes in the
ambiguous region as either high or low-quality. We adopt this approach in alevin, using our knee method’s
cuto↵ to determine the ambiguous region. Specifically, we divide everything above the knee threshold into
two equal regions; high-quality valid barcodes (upper-half), denoted by H, and ambiguous barcodes (lower-
half), denoted by L. To learn the low-quality region, we take nl = max(0.2 · |H| , 1000) barcodes below the
knee threshold.

In the implementation of Petukhov et al.17, a kernel density estimation classifier was trained using features
which described the number of reads per UMI, UMIs per gene, the fraction of intergenic reads, non-aligned
reads, the fraction of lowly expressed genes and the fraction of UMIs on lowly expressed genes. In addition,
a maximum allowable mitochondrial read content was set for a CB to be classified as “high-quality”. Whilst
these features enabled the authors to build a classifier which e�ciently separated “high-quality” cells from
“low-quality” cells, we believe it may be possible to improve this set of features. Specifically, most of these
features would be expected to correlate with the number of reads or UMIs per CB. Thus, the classifier is
biased towards attributes associated with higher read depth, when in fact one wants it to learn the feature
attributes associated with high-quality cells. We therefore used a slightly di↵erent set of features which we
believe may better capture the di↵erences between high and low-quality cells:

1. Fraction of reads mapped

2. Fraction of mitochondrial reads

3. Fraction of rRNA reads

4. Duplication rate

5. Mean gene counts post de-duplication

6. The maximum correlation of gene-level quantification estimates with the high-quality CBs. (Optionally
activated by --useCorrelation flag.)

OM4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

We chose to use a näıve Bayes classifier to perform classification, since we observed no clear di↵erence
between multiple ML methods (not shown), and the näıve Bayes classifier yields classification probabilities
which are easy to interpret. Our final set of whitelisted CBs are those classified as high-confidence. We
observe that the number of high-confidence cells predicted by alevin are in close proximity to the count of
cells predicted by Cell-Ranger, but there are non-trivial di↵erences (Table S8).

OM4 Machine Configuration and Pipeline Replicability

10x v1 chemistry benchmarking has been scripted using Snakemake18 and performed on an Intel(R) Xeon(R)
CPU (E5-2699 v4 @2.20GHz with 44 cores and 56MB L3 cache) with 512GB RAM and a 4TB TOSHIBA
MG03ACA4 ATA HDD running Ubuntu 16.10.

10x v2 chemistry benchmarking has been scripted using CGATCore (https://github.com/cgat-developers/cgat-
core). The full pipeline and analysis are performed using Stony Brook’s seawulf cluster with 164 Intel Xeon
E5-2683v3 CPUs.

For all analyses, the genome and gtf versions used for human datasets was GENCODE release 27,
GRCh38.p10 and for mouse datasets was GENCODE release M16, GRCm38.p5. All transcriptome files
were generated using these with “rsem-prepare-reference”.

All relevant details of running the following single cell tools are available at https://github.com/

COMBINE-lab/alevin-paper-pipeline/tree/master/benchmark_pipeline.
Cell-Ranger (v2.2.0): The following additional flags were used, as recommended by the Cell-Ranger

guidelines: --nosecondary --expect-cells NumCells, where NumCells is 10,000 for PBMC 8k and Neu-
rons 9k, 5,000 for PBMC 4k, 2,000 for Neurons 2k and Neurons 900.

Alevin (v0.12.0): Run with default parameters with the chromium protocol flag and the -lISR to
specify strandedness. The mRNA and rRNA lists were obtained from the relevant annotation files and
passed as input. Experiments on v1 chemistry were run using the same flags but with the --gemcode

protocol flag.
STAR (v2.6.0a): The following flag was used, as recommended by the guidelines of UMI-tools:

--outFilterMultimapNmax 1

featureCounts (v1.6.3): This was run to obtain an output BAM file and with stranded input (-s 1).
UMI-tools (v0.5.4): The extract command was used to get the CBs/UMIs, when provided with an

external CB whitelist, and attach it to the corresponding reads. The following flags were used in the count
command to obtain the per cell gene count matrix: --gene-tag=XT --wide-format-cell-counts

Dropseq utils (v2.0.0): All the commands were run as recommended by the authors in the tool’s
manual.

The bulk datasets were quantified using Bowtie2 and RSEM, run as follows:
Bowtie2 (v2.3.4.3): The following flags were used, as recommended in the guidelines of RSEM:

--sensitive --dpad 0 --gbar 99999999 --mp 1,1 --np 1 --score-min L,0,-0.1 --no-mixed

--no-discordant

RSEM (v1.3.1): Run with default parameters.

References

[1] Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman, Itay
Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck, et al. Highly parallel genome-wide
expression profiling of individual cells using nanoliter droplets. Cell, 161(5):1202–1214, 2015.

[2] Allon M Klein, Linas Mazutis, Ilke Akartuna, Naren Tallapragada, Adrian Veres, Victor Li, Leonid
Peshkin, David A Weitz, and Marc W Kirschner. Droplet barcoding for single-cell transcriptomics
applied to embryonic stem cells. Cell, 161(5):1187–1201, 2015.

[3] Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan Wilson,
Solongo B Ziraldo, Tobias D Wheeler, Geo↵ P McDermott, Junjie Zhu, et al. Massively parallel digital
transcriptional profiling of single cells. Nature Communications, 8:14049, 2017.

OM5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

https://github.com/COMBINE-lab/alevin-paper-pipeline/tree/master/benchmark_pipeline
https://github.com/COMBINE-lab/alevin-paper-pipeline/tree/master/benchmark_pipeline
https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

[4] Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Rob Patro. RapMap: a rapid, sensitive and accurate
tool for mapping RNA-seq reads to transcriptomes. Bioinformatics, 32(12):i192–i200, 2016.

[5] Hirak Sarkar, Mohsen Zakeri, Laraib Malik, and Rob Patro. Towards selective-alignment: Bridging
the accuracy gap between alignment-based and alignment-free transcript quantification. In Proceedings

of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health In-

formatics, BCB ’18, pages 27–36, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5794-4. doi:
10.1145/3233547.3233589. URL http://doi.acm.org/10.1145/3233547.3233589.

[6] 10x-genomics single-cell 3’-v2 kit. https://teichlab.github.io/scg_lib_structs/data/CG000108_
AssayConfiguration_SC3v2.pdf.

[7] Tom Smith, Andreas Heger, and Ian Sudbery. UMI-tools: modeling sequencing errors in unique molec-
ular identifiers to improve quantification accuracy. Genome Research, 27(3):491–499, 2017.

[8] Vasilis Ntranos, Govinda M Kamath, Jesse M Zhang, Lior Pachter, and N Tse David. Fast and accurate
single-cell RNA-seq analysis by clustering of transcript-compatibility counts. Genome Biology, 17(1):
112, 2016.

[9] Ernest Turro, Shu-Yi Su, Ângela Gonçalves, Lachlan JM Coin, Sylvia Richardson, and Alex Lewin.
Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome

Biology, 12(2):R13, 2011.

[10] Aziz M Mezlini, Eric JM Smith, Marc Fiume, Orion Buske, Gleb L Savich, Sohrab Shah, Sam Aparicio,
Derek Y Chiang, Anna Goldenberg, and Michael Brudno. iReckon: simultaneous isoform discovery and
abundance estimation from RNA-seq data. Genome Research, 23(3):519–529, 2013.

[11] Rob Patro, Stephen M Mount, and Carl Kingsford. Sailfish enables alignment-free isoform quantification
from RNA-seq reads using lightweight algorithms. Nature Biotechnology, 32(5):462, 2014.

[12] Nicolas L Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabilistic RNA-seq
quantification. Nature Biotechnology, 34(5):525, 2016.

[13] Rob Patro, Geet Duggal, Michael I Love, Rafael A Irizarry, and Carl Kingsford. Salmon provides fast
and bias-aware quantification of transcript expression. Nature Methods, 14(4):417, 2017.

[14] Zhaojun Zhang and Wei Wang. RNA-Skim: a rapid method for RNA-Seq quantification at transcript
level. Bioinformatics, 30(12):i283–i292, 2014.

[15] Chelsea J-T Ju, Ruirui Li, Zhengliang Wu, Jyun-Yu Jiang, Zhao Yang, and Wei Wang. Fleximer: Accu-
rate quantification of RNA-Seq via variable-length k-mers. In Proceedings of the 8th ACM International

Conference on Bioinformatics, Computational Biology, and Health Informatics, pages 263–272. ACM,
2017.

[16] Akshay Tambe and Lior Pachter. Barcode identification for single cell genomics. BioRxiv, page 136242,
2017.

[17] Petukhov, V and Guo, J and Baryawno, N and Severe, N and Scadden, DT and Samsonova, MG
and Kharchenko, PV. dropEst: pipeline for accurate estimation of molecular counts in droplet-based
single-cell RNA-seq experiments. Genome Biology, 19(1):78, 2018.

[18] Johannes Köster and Sven Rahmann. Snakemake—a scalable bioinformatics workflow engine. Bioin-

formatics, 28(19):2520–2522, 2012.

OM6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted October 24, 2018. ; https://doi.org/10.1101/335000doi: bioRxiv preprint

http://doi.acm.org/10.1145/3233547.3233589
https://teichlab.github.io/scg_lib_structs/data/CG000108_AssayConfiguration_SC3v2.pdf
https://teichlab.github.io/scg_lib_structs/data/CG000108_AssayConfiguration_SC3v2.pdf
https://doi.org/10.1101/335000
http://creativecommons.org/licenses/by-nc-nd/4.0/

