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Abstract

Background: In high-throughput studies, hundreds to millions of hypotheses are typically tested. Statistical
methods that control the false discovery rate (FDR) have emerged as popular and powerful tools for error rate
control. While classic FDR methods use only p-values as input, more modern FDR methods have been shown
to increase power by incorporating complementary information as “informative covariates” to prioritize, weight,
and group hypotheses. However, there is currently no consensus on how the modern methods compare to one
another. We investigated the accuracy, applicability, and ease of use of two classic and six modern
FDR-controlling methods by performing a systematic benchmark comparison using simulation studies as well
as six case studies in computational biology.
Results: Methods that incorporate informative covariates were modestly more powerful than classic
approaches, and did not underperform classic approaches, even when the covariate was completely
uninformative. The majority of methods were successful at controlling the FDR, with the exception of two
modern methods under certain settings. Furthermore, we found the improvement of the modern FDR methods
over the classic methods increased with the informativeness of the covariate, total number of hypothesis tests,
and proportion of truly non-null hypotheses.
Conclusions: Modern FDR methods that use an informative covariate provide advantages over classic
FDR-controlling procedures, with the relative gain dependent on the application and informativeness of
available covariates. We present our findings as a practical guide and provide recommendations to aid
researchers in their choice of methods to correct for false discoveries.
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Background
When multiple hypotheses are simultaneously tested,
an adjustment for the multiplicity of tests is often nec-
essary to restrict the total number of false discoveries.
The use of such adjustments for multiple testing have
become standard in areas such as genomics [1, 2], neu-
roimaging [3], proteomics [4], psychology [5, 6], and
economics [7]. Most classically, methods which control
the family-wise error rate (FWER), or probability of at
least one false discovery, have been developed and used
to correct for multiple testing. These include the Bon-
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ferroni correction [8, 9] and other approaches [10–12].
Despite their popularity, FWER-controlling methods
are often highly conservative, controlling the probabil-
ity of any false positives (Type I errors) at the cost
of greatly reduced power to detect true positives. The
trade-off of Type I errors and power has become exac-
erbated in the analysis of data from high-throughput
experiments, where the number of tests being consid-
ered can range from several thousand to several mil-
lion.
The false discovery rate (FDR), or expected pro-

portion of discoveries which are falsely rejected [13],
was more recently proposed as an alternative metric
to the FWER in multiple testing control. This metric
has been shown to have greater power to detect true
positives, while still controlling the proportion of Type
I errors at a specified level [13, 21]. In high-throughput
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Figure 1 FDR-controlling methods included in the comparison. Inputs, assumptions, output, and availability (R package) of two
classic [13, 14] and six modern [15–20] FDR-controlling methods. The outputs of the FDR-controlling methods vary, but they all can
be used for the purpose of controlling the FDR. Pairs of classic and modern methods are highlighted in grey if the modern method is
an extension of the classic method.

biological experiments where investigators are willing
to accept a small fraction of false positives to substan-
tially increase the total number of discoveries, the FDR
is often more appropriate and useful [22]. The Ben-
jamini and Hochberg step-up procedure (BH) [13, 23]
was the first method proposed to control the FDR.
Soon afterwards, the q-value was introduced as a more
powerful approach to controlling the FDR (Storey’s q-
value) [14]. We refer to the BH procedure and Storey’s
q-value as “classic” FDR-controlling methods (Figure
1), because they can be easily computed with just a
list of p-values using robust software [24, 25], and are
arguably still the most widely used and cited methods
for controlling the FDR in practice.
While the BH procedure and Storey’s q-value of-

ten provide a substantial increase in discoveries over
methods that control the FWER, they were devel-
oped under the assumption that all tests are exchange-
able, and therefore, that the power to detect discov-
eries is equally likely among all tests. However, indi-
vidual tests or groups of tests often differ in statistical
properties, such as their level of precision or under-
lying biology, which can lead to certain tests having
greater power than others [15, 18]. For example, in a

genome-wide association study (GWAS) meta analy-
sis where samples are pooled across studies, the loci-
specific sample sizes can be informative of the differing
signal-to-noise ratio across loci [16]. Additionally, in an
expression quantitative trait loci (eQTL) study, tests
between polymorphisms and genes in cis are known a
priori to be more likely to be significant than those in
trans [15].
Recently, a new class of methods that control the

FDR (Figure 1, Additional file 1: Table S1) have been
proposed to exploit this variability across tests by com-
bining the standard input (p-values or test statistics)
[13, 14, 26] with a second piece information, referred to
as an “informative covariate” [15–19, 27]. Intuitively, if
a covariate is informative of each test’s power or prior
probability of being non-null, it can be used to priori-
tize individual or groups of tests to increase the overall
power across the entire experiment [15]. To guarantee
FDR control, the covariate must also be independent
of the p-values under the null hypothesis. In a similar
vein, other approaches have been proposed using two
alternative pieces of information, namely effect sizes
and their standard errors [20], to adaptively control
the FDR. These modern FDR-controlling methods al-
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low researchers to leverage additional information or
metadata and are particularly well suited for biologi-
cal studies.
However, due to their recent and concurrent develop-

ment, comparisons between these modern FDR meth-
ods have been limited, and the demonstration of each
method’s applicability and utility on real biological
problems is highly variable. Furthermore, each method
requires varying sets of input data and relies on differ-
ing sets of methodological assumptions. As a result,
the answer to the simple question of which methods
can, let alone should, be used for a particular analysis
is often unclear.
To bridge the gap between methods and application,

we performed a systematic benchmark comparison of
two classic and six modern FDR-controlling methods.
Specifically, we compared the classic BH approach [13]
and Storey’s q-value [14] with several modern FDR-
controlling methods, including the conditional local
FDR (LFDR) [17], FDR regression (FDRreg) [19], In-
dependent Hypothesis Weighting (IHW) [15], Adap-
tive Shrinkage (ASH) [20], Boca and Leek’s FDR re-
gression (BL) [16], and Adaptive p-value Threshold-
ing (AdaPT) [18] (Figure 1). Throughout, we use low-
ercase when referring to the specific, typically de-
fault, implementation of each method detailed in the
“Methods” section. Both the theoretical and empiri-
cal null Empirical Bayes implementations of FDRreg
were compared, referred to as “fdrreg-t” and “fdrreg-e”,
respectively. AdaPT was compared using the default
logistic-Gamma generalized linear model option and
is referenced as “adapt-glm”. The q-values returned by
ASH were used for comparison, and are referred to as
“ashq”.
Of the modern FDR-controlling methods included

in our comparison, IHW, BL, AdaPT, and LFDR can
be applied generally to any multiple testing problem
with p-values and an informative covariate satisfying
a minimal set of assumptions (Figure 1, Additional
file 1: Table S1). In contrast, FDRreg is restricted to
multiple testing problems where normal test statis-
tics, expressed as z-scores, are available. Most un-
like the other modern methods, ASH requires spec-
ifying effect sizes and standard errors separately for
normal or t-distributed test statistics, and cannot be
used with more general informative covariates. Fur-
thermore, ASH requires that the true (unobserved) ef-
fect sizes across all tests are unimodal, i.e. that most
non-null effect sizes are small and near zero. While
this may be a reasonable assumption in settings where
most non-null effects are believed to be small and
larger effects are rare, it might not necessarily be true
for all datasets and applications. While it is not pos-
sible to confirm whether the assumption is true, it is

simple to check whether the assumption is blatantly
violated, i.e. if the distribution of all observed effect
sizes shows clear multimodality.
While both the BH procedure and Storey’s q-value

serve as reference points for evaluating the modern
FDR-controlling methods, in Figure 1 (and in Addi-
tional file 1: Table S1) we highlight two pairs of modern
and classic methods with a special relationship: IHW
with the BH procedure and BL with Storey’s q-value.
In the case that a completely uninformative covari-
ate is used, these modern methods have the attractive
property of reducing to their classic counterparts, sub-
ject to some estimation error. Therefore, when instruc-
tive, direct comparisons are also made between IHW
and the BH procedure, and similarly between BL and
Storey’s q-value.
In this paper, we first evaluate the performance and

validity of these methods using simulated data and in
silico RNA-seq spike-in datasets. Then, we investigate
the applicability of these methods to multiple testing
problems in computational biology through a series
of six case studies, including: differential expression
testing in bulk RNA-seq, differential expression test-
ing in single-cell RNA-seq, differential abundance test-
ing and correlation analysis in 16S microbiome data,
differential binding testing in ChIP-seq, genome-wide
association testing, and gene set analysis. Combining
these results with insights from our simulation stud-
ies and in silico experiments, we provide a key set of
recommendations to aid investigators looking to take
advantage of advances in multiple-testing correction in
future studies.

Results
Although fdrreg-e was included in the benchmarking
study, we exclude it from the main results presenta-
tion due to its unstable and inferior performance to
its counterpart fdrreg-t. For detailed results including
fdrreg-e, refer to Additional file 1.

False Discovery Rate control
The specificity of the FDR-controlling methods was
evaluated using three approaches. First, a series of
RNA-seq differential expression studies were per-
formed on yeast in silico spike-in datasets generated
by randomly selecting two sets of five and ten sam-
ples each from a dataset of 48 biological replicates in
a single condition [29] and adding differential signal to
a subset of genes to define “true positives”. This was
carried out for a variety of settings of non-null effect
size distributions, proportions of null hypotheses, and
informativeness of covariates (Additional file 1: Ta-
ble S2). Second, a similar differential expression study
was performed using RNA-seq data simulated with
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FDR control in RNA−seq in silico  experimentsA
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Figure 2 FDR control in in silico experiments and simulations. (A) Observed FDR (y-axis) for various α-level cutoffs (x-axis) in
the yeast RNA-seq in silico resampling experiment with spiked-in differentially expressed genes (left panel) and the simulation of
yeast RNA-seq counts using the polyester R/Bioconductor package [28]. (B) Observed FDR (y-axis) across simulation settings at
α-level of 0.05. The left panel displays FDR for increasing numbers of hypothesis tests and the right panel displays FDR for
increasing proportions of non-null hypotheses. Note that the lfdr method is displayed as a dotted line when the number of tests per
bin falls below 200 (where the number of bins is fixed at 20), as fdrtools generates a warning in this case that the estimation may
be unreliable.

the polyester R/Bioconductor package [28]. Finally,
an extensive simulation study was carried out across
a range of test statistic distributions, non-null effect
size distributions, proportions of null hypotheses, in-
formative covariates, and numbers of tests to explore
a wider range of multiple testing scenarios (Additional
file 1: Table S3).
All experiments and simulations were replicated 100

times. Performance metrics are reported as the mean
and standard error across replications. In all analyses,
covariate-aware modern FDR–controlling methods, in-
cluding adapt-glm, bl, fdrreg-t, ihw, and lfdr, were run
twice, once with an informative covariate and again
with an uninformative random covariate.
While the notion of an informative covariate was

loosely introduced above, for our in silico experiments
and simulations, we concretely define “informative co-

variates” by introducing a dependence between the
proportion of hypotheses that are null and the value of
the covariate. A strongly informative covariate in our
simulations is one where certain values of the covari-
ate are highly enriched for truly non-null tests, and a
weakly informative covariate is one where certain val-
ues are only moderately enriched for non-null tests. In
contrast, an uninformative covariate is not enriched
for null or non-null hypotheses for any values. We re-
strict the concepts of weakly and strongly informative
covariates in our analysis to the dependence between
the covariate and the null proportion described above.
No other dependence is introduced between the co-
variate and the test statistics in our simulations and
in silico experiments.
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Modern methods do not always control the FDR
Across in silico experiments and simulation settings,
we found that most methods adequately controlled the
FDR in many situations. FDR control for a single set-
ting of the yeast RNA-seq in silico experiments and
Polyester count simulations is shown in Figure 2A.
In these experiments, 30% of genes were differentially
expressed (DE) between two groups of five samples
each, with effect sizes sampled from a unimodal dis-
tribution and a strongly informative covariate. Here,
all methods controlled the FDR at the target α-level,
with the exception of ashq and lfdr, which exhibited
slightly inflated FDR in the polyester simulations.
Some methods, most noticeably ihw, achieved lower
FDR than others. The tradeoff between FDR, power,
and classification accuracy in the in silico experiments
is summarized in Additional file 1: Figure S1.
The settings of the in silico experiments were var-

ied to also consider a lower proportion of DE genes
(7.5%), bimodal effect size distribution, and a weakly
informative covariate in addition to the uninformative
random covariate run with all covariate-aware methods
(Additional file 1: Table S2). The FDR for covariate-
aware methods was not sensitive to covariate informa-
tiveness, with nearly identical proportions of false dis-
coveries using weakly and strongly informative covari-
ates. However, we found that with the bimodal effect
size distribution and smaller proportion of non-null hy-
potheses, a subset of methods including ashq and lfdr
failed to control the FDR at the nominal FDR cut-
off (α), leading to an inflated rate of false discoveries
(Additional file 1: Figure S2).
Similar trends were observed across simulation stud-

ies, where conditions were varied analogous to the
yeast experiments to consider a wider range of scenar-
ios. While most methods were consistently conserva-
tive or achieved an accurate target FDR, some meth-
ods clearly failed to control the FDR under certain
settings.

lfdr and fdrreg-t do not control FDR with few tests
Since modern FDR-controlling methods must estimate
the covariate dependence from the set of hypotheses,
the effectiveness of these methods can depend on hav-
ing a sufficiently large number of tests. We performed
a series of simulations to assess the sensitivity of the
covariate-aware methods to the total number of hy-
potheses. We observed that lfdr exhibited substantially
inflated FDR when applied to 10,000 or fewer tests
(Figure 2B, left panel). This result could be due to
our implementation of LFDR, which groups hypothe-
ses into 20 groups regardless of the total number of
tests, and suggests that the performance of lfdr im-
proves when the numbers of tests per bin increases.
We also observed that fdrreg-t showed slightly inflated
FDR with 1,000 or fewer tests.

lfdr and ashq do not control FDR for extreme
proportions of non-null tests
The proportion of non-null tests is typically unknown,
but can vary dramatically between data sets. While
most simulation settings were performed with 10%
non-null tests, to cover a range of scenarios a series of
settings covering non-null proportions between 0% and
95% were also considered. The yeast in silico experi-
ments included settings of 0%, 7.5% and 30% non-null
tests.
Most methods demonstrated the same general trend

in simulation, where the FDR of most methods was
controlled at the target α-level, and decreased as
the proportion of non-null hypotheses increased (Fig-
ure 2B, right panel). However, we also found that the
ability of some methods to control FDR was sensitive
to the proportion of tests that were non-null. Specifi-
cally, lfdr exhibited inflated FDR when the proportion
of non-null tests was low (less than 20%). Likewise,
ashq exhibited inflated FDR when the proportion of
non-null tests was high (greater than 20%).
Similarly, ash and lfdr failed to control FDR in the in

silico yeast experiments when the proportion of non-
nulls was 7.5% compared to 30% (Additional file 1:
Figure S2). We also note that for a sample size of 5
per group, several methods exhibited inflated FDR in
the extreme setting when the non-null proportion of
hypotheses was 0%, where FDR reduces to FWER.
However, although the proportion of replications with
at least one false positive was greater than the tar-
get, the average proportion of tests rejected was very
small (Additional file 2). Since the in silico experi-
ments were generated by splitting biological replicates
into two groups, it is possible that unmeasured biolog-
ical differences exist between them.

Power
In addition to FDR, we also evaluated sensitivity of the
FDR-controlling methods using the same in silico ex-
periment and simulation framework described above.

Modern methods are modestly more powerful
We found that in general modern FDR methods led
to a modestly higher true positive rate (TPR), or
power, in the yeast in silico RNA-seq experiments and
polyester simulations (Figure 3A). This was also true
when using a weakly informative rather than a strongly
informative covariate (Additional file 1: Figure S2B).
Much of the gain with modern methods, most appar-
ent with lfdr and ashq, was found in genes with small
to moderate effect sizes (Additional file 1: Figure S1D).
While the majority of discoveries were common among
all or most methods, there were several smaller sets of
rejections that were unique to a small number of meth-
ods (Additional file 1: Figure S1E).
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Figure 3 Power in in silico experiments and simulations.(A) True Positive Rate (y-axis) for increasing α-level cutoffs (x-axis) in
the yeast RNA-seq in silico resampling experiment with spiked-in differentially expressed genes (left panel) and the simulation of
yeast RNA-seq counts using the polyester R/Bioconductor package [28]. (B) True Positive Rate (y-axis) across simulation settings
at α-level of 0.05. The left panel displays increasing numbers of hypothesis tests and the right panel displays increasing proportions
of non-null hypotheses. Note that the lfdr method is displayed as a dotted line when the number of tests per bin falls below 200
(where the number of bins is fixed at 20), as fdrtools generates a warning in this case that the estimation may be unreliable.

Again, higher power was similarly observed for most
modern FDR methods over classic methods across sim-
ulation settings (Figure 3B, Additional file 1: Fig-
ures S3, S4, S5, S6, S7). The increase in TPR was
generally modest for all methods, as in the yeast ex-
periments, with the exception of fdrreg-t which showed
substantial improvement in TPR over modern meth-
ods in several simulation settings (Additional file 1:
Figure S3B, D, and F).

Power of modern methods is sensitive to covariate
informativeness
Comparing across yeast experiments using weakly and
strongly informative covariates, we found that the
TPR was higher for strongly informative covariates
compared to weakly informative covariates (Additional
file 1: Figure S2). To further quantify the impact of
covariate informativeness, a series of simulations was

performed using covariates of varying informativeness.
A rough scale of 0-100 was used to describe the in-
formativeness of the covariate, with larger values of
informativeness corresponding to greater power of the
covariate to distinguish null and non-null tests (Ad-
ditional file 1: Figure S8). Echoing the results of the
yeast experiments, the gain in TPR of covariate-aware
methods over other methods also increased with infor-
mativeness in the simulation studies (Additional file 1:
Figure S3B). This gain tended to be larger for some
methods (fdrreg-t, lfdr, and adapt-glm) than for others
(ihw and bl).
Additionally, simulations were performed across four

different dependencies between the covariate and the
null proportion. The covariates were named step, co-
sine, sine, and cubic for the shape of their dependence.
We found that in general, the above results were rela-
tively robust to the functional form of the dependence
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(Additional file 1: Figure S4A-C). However, the gain
in TPR varied across informative covariates, with the
smallest gains observed in the step covariate setting
across all covariate-aware methods, likely attributable
to the lower informativeness of the covariate relative to
the other settings. The gain in TPR also varied more
for some methods than others. In the cosine covariate,
where the dependence between the covariate and null
proportion was strongly non-monotone, bl showed no
gain over the classic q-value. As bl attempts to model
the covariate-null proportion dependence using logis-
tic regression, a monotone function, the method was
unable to capture the true relationship. A small, but
noticeable increase in TPR was observed in the re-
maining settings, where the covariate dependence was
monotone. In contrast, covariate-aware methods with
more flexible modeling approaches either based on bin-
ning (ihw, lfdr) or spline expansion (fdrreg-t), were
generally more consistent across covariates.

Including an uninformative covariate is not harmful
A reasonable concern, closely related to weakly and
strongly informative covariates, is whether an uninfor-
mative covariate could mislead methods such as ihw,
bl, fdrreg, lfdr, or adapt-glm. Across settings of the
yeast in silico experiments and simulations, we ob-
served that with the use of a completely uninforma-
tive covariate, modern FDR methods generally had
lower power (and higher FDR) than with an informa-
tive covariate (Additional file 1: Figures S4D-E, S5D-
E, S6D-E, S9, and S10B). However, while modern FDR
methods were modestly more powerful than classic ap-
proaches when using an informative covariate, they did
not underperform classic approaches with a completely
uninformative covariate (Additional file 1: Figure S3A-
B).
A notable exception was adapt-glm, which suffered

from lower power with the inclusion of a weakly infor-
mative covariate than with the uninformative covari-
ate, likely due to overfitting (Additional file 1: Fig-
ures S3B and S4E). In estimating the dependence be-
tween the covariate and null proportion, adapt-glm in-
cludes a step of model selection. Based on feedback
from the method authors, we considered modifying the
default adaplt-glm parameters by including a null de-
pendence as one of the model choices, allowing the
method to ignore the dependence when it cannot be
properly estimated. When applied to the weakly infor-
mative step covariate setting, this resulted in improved
performance with the method no longer suffering from
lower power with the inclusion of the weakly informa-
tive covariate (Additional file 1: Figure S11). However,
since this procedure was not used in [18] and is not cur-
rently mentioned in the software documentation, we

have excluded it from our primary analyses. The au-
thors responded positively to the recommendation of
documenting this procedure in future releases of the
package.

lfdr and adapt-glm are sensitive to the number of tests
We found that the power of some methods was more
sensitive to the number of hypothesis tests in the simu-
lation studies than others. Specifically, lfdr and adapt-
glm performed poorly in terms of TPR when there
were fewer than 1000 tests (Figure 3B, left panel). The
lfdr result may again be due to our implementation, as
described above. We also note that the improvement
in TPR of ihw over bh was not apparent unless there
were at least several thousand tests (Additional file 1:
Figure S3D).

Applicability
To investigate the applicability of modern methods to
a variety of analyses and datasets, we used a combina-
tion of simulation settings and empirical case studies.
Specifically, we evaluated performance under several
different test statistic and effect size distributions in
simulation. We considered normal, t with both 5 and
11 degrees of freedom, and χ2 test statistics with 4 de-
grees of freedom as in [16]. Additionally, we considered
several different effect size distributions, ranging from
unimodal to bimodal.
We also investigated the application of these meth-

ods to a series of six case studies in computational bi-
ology, including: differential expression testing in bulk
RNA-seq, differential expression testing in single-cell
RNA-seq, differential abundance testing and correla-
tion analysis in 16S microbiome data, differential bind-
ing testing in ChIP-seq, genome-wide association test-
ing, and gene set analysis. These results, along with
a practical discussion of the selection and assessment
of informative covariates, are included in the following
sections.

ashq and fdrreg-t are sensitive to the sampling
distribution of the test statistic
Many of the modern FDR-controlling methods make
assumptions regarding a valid distribution of p-values.
However, some methods also make assumptions about
the distribution of the test statistic or effect size.
Specifically, FDRreg and ASH both assume that
test statistics are normally distributed [19, 20]. How-
ever, ASH is also described as being applicable to t-
distributed statistics, although, currently only based
on a rough approximation [20]. The option to specify
the degrees of freedom for t-distributed statistics based
on this approximation was used for the ashq implemen-
tation in the t-distributed simulations. The sensitivity
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Figure 4 Applicability of benchmarked methods to various test statistics and case study datasets. (A) The top panel displays
various null and non-null test statistic distributions used in simulations, with the corresponding observed FDR shown in the bottom
panel. Note that although fdrreg-t requires normally distributed test statistics, it is included in the evaluation of t11 and t5 statistics
to illustrate the effect of a heavy tailed distribution. In addition, neither ashq nor fdrreg-t are evaluated on χ2 statistics, as they
violate assumptions of the method. (B) Proportion of maximum rejections (color) for each dataset and informative covariate
(column, grouped by case study) and FDR correction method (row). In each column, the maximum proportion of rejections out of
the total possible number of comparisons is displayed. Where methods ashq and fdrreg-t could not be applied to a case study to due
violation of assumptions, the cell is colored in grey. Where the method lfdr was not applied due to practical limitations on the
number of tests, the cell is colored grey and marked with “*”. The informative covariate used in each case study is listed in Table 1.
For case studies with more than one covariate, the covariate is denoted in the x-axis labels.

of these methods along with the others to changes in
the underlying distributions of the test statistics was
investigated through simulations across four distribu-
tions: normal, t with 11 and 5 degrees of freedom, and
χ2 with 4 degrees of freedom. These simulation results
are shown in Figure 4A and Additional file 1: Fig-

ure S5. Since the assumptions for both FDRreg and
ASH are strongly violated with χ2 test statistics, these
methods were not applied in this setting.
We observed that FDR control for most methods,

namely those which take p-values as input rather than
z-scores or effect sizes (Figure 1), was not sensitive
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Table 1 Independent and informative covariates used in case studies.

Case study Covariates found to be independent and informative
Microbiome Ubiquity: the proportion of samples in which the feature is present. In microbiome data it is

common for many features to go undetected in many samples.
Mean nonzero abundance: the average abundance of a feature among those samples in which
it was detected. We note that this did not seem as informative as ubiquity in our case studies.

GWAS Minor allele frequency: the proportion of the population which exhibits the less common allele
(ranges from 0 to 0.5). Represents the rarity of a particular variant.
Sample size (for meta-analyses): the number of samples for which the particular variant was
measured.

Gene Set Analyses Gene set size: the number of genes included in the particular set. Note that this is not independent
under the null for over-representation tests, however (see Additional file 1: Supplementary Results).

Bulk RNA-seq Mean gene expression: the average expression level (calculated from normalized read counts)
for a particular gene.

Single-Cell RNA-seq Mean nonzero gene expression: the average expression level (calculated from normalized read
counts) for a particular gene, excluding zero counts.
Detection rate: the proportion of samples in which the gene is detected. In single-cell RNA-seq
it is common for many genes to go undetected in many samples.

ChIP-seq Mean read depth: the average coverage (calculated from normalized read counts) for the region
Window Size: the length of the region

to the distribution of test statistics (Figure 4A and
Additional file 1: Figure S5B-C). However, violation
of the normal assumption of fdrreg-t led to inflated
FDR when the test statistics were t-distributed, and
as expected, the increase in FDR was greater for
the heavier-tailed t distribution with fewer degrees of
freedom (Figure 4A). Although it accommodates t-
distributed test statistics, inflated FDR was also ob-
served for ashq (both with and without specifying the
correct degrees of freedom). In personal communica-
tions, the authors of [20] have acknowledged that the
current procedure for t-distributed test statistics can
be improved and are actively developing an adaptation
of ashq for this case.

ashq is not sensitive to violation of the unimodal
assumption
In addition to distributional assumptions on the test
statistic, ASH assumes that the distribution of the true
(unobserved) effect sizes is unimodal, referred to as the
‘unimodal assumption’. To investigate ASH’s sensitiv-
ity to the unimodal assumption, multiple distributions
of the effect sizes were considered in both simulations
and yeast in silico experiments. Both effect size dis-
tributions following the unimodal assumption of ASH
and those with most non-null effects away from zero
(Additional file 1: Figure S5A), were considered. While
most simulations included the latter, simulations were
also performed with a set of unimodal effect size distri-
butions described in [20] (Additional file 1: Figure S6
and S7). In the yeast in silico experiments, two con-
ditions were investigated - a unimodal and a bimodal
case.
We also observed that even when the unimodal as-

sumption of ASH was violated in simulation, ashq had
only a slight inflation in FDR and comparable TPR to
other methods (Additional file 1: Figure S6B-C). This

was also observed in the yeast in silico experiments
(Additional file 1: Figure S2).

Not all methods could be applied to every case study
We discovered that some methods could not be ap-
plied to some case studies due to restrictive assump-
tions. For example, FDRreg could only be applied if
the tests under consideration yielded approximately
normally-distributed statistics. As a result, FDRreg
was applied to the bulk RNA-seq and GWAS studies,
but not considered in any of the other case studies since
the test statistics are decidedly not normal. Likewise,
ASH could only be applied if both an effect size and
corresponding standard error for each test was avail-
able. As a result, ASH was excluded from case stud-
ies involving tests that only output a p-value or test
statistic, such as permutation tests or the Wilcoxon
rank-sum test (Figure 4B). Further, the lfdr method
was not applied to three microbiome datasets where
there were fewer than 4,000 total tests (200 tests per
bin).
In the in silico experiments and simulations de-

scribed above where the underlying properties of the
data are known, it is easy to verify whether the as-
sumptions of each method are satisfied. In practice,
however, some assumptions are difficult or even im-
possible to check. For example, while it is feasible to
assess the overall unimodality of the observed effect
sizes for input to ashq, it is impossible to check the
‘unimodal assumption’ for the true (unobserved) ef-
fects. For this reason, it is possible that the assump-
tions of ashq could be violated in some of the case
studies.

Choice of independent covariate was
application-dependent
Several covariates have been suggested for t-tests,
rank-based tests, RNA-seq DE analysis, eQTL anal-
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ysis, GWAS, and quantitative proteomics [15]. In the
case studies, we selected covariates based on these sug-
gestions, as well as our own hypotheses about covari-
ates that could potentially contain information about
the power of a test, or the prior probability of a test
being non-null (Table 1). We observed that the rela-
tionship between the covariates explored in the case
studies and the proportion of tests rejected was highly
variable (Additional file 1: Figure S12).
To select covariates for each case study, we visually

evaluated whether each covariate was informative by
examining a scatter plot of the independent covariate
percentile and the p-value. If this contained any sort
of trend such that certain values of the informative
covariate were enriched for smaller p-values, we con-
sidered the covariate to be informative.
We also visually evaluated whether each covariate

was approximately independent under the null hypoth-
esis following the recommendations of [15]. Specifically,
we examined the histogram of p-values stratified by
small, moderate and large values of the covariate (Ad-
ditional file 1: Figure S13). If the distribution of the
moderate to large p-values appeared approximately
uniform, we considered the covariate to be approxi-
mately independent of the p-values under the null hy-
pothesis.
For almost all choices of the covariate, we were able

to substantiate evidence for informativeness and inde-
pendence. One notable exception was the set size co-
variate for the overrepresentation test in the gene set
analysis case study. Here, we found that although the
covariate appeared to be informative, it was not in-
dependent under the null hypothesis (Additional files
22-23). We observed a dependence in the global en-
richment of smaller p-values in small gene sets. This
is a direct consequence of the fact that a single DE
gene represents a larger proportion of a smaller gene
set than it does a larger gene set. As a result, we only
show results for gene set analysis using Gene Set En-
richment Analysis (GSEA), which does not rely on se-
lecting a subset of DE genes, but instead incorporates
the rank of every gene into the evaluation of a gene
set. The gene set size covariate did satisfy the inde-
pendent and informative criteria for p-values obtained
from GSEA.

Consistency
We observed that the relative performance of modern
methods differed depending on the particular scenario.
To evaluate the consistency of the performance of mod-
ern methods, we summarized the variability across the
different simulation studies, in silico experiments, and
case studies.

Across all simulation studies and yeast in silico ex-
periments, we quantified the overall proportion of set-
tings of modern FDR methods achieving FDR con-
trol (Figure 5A) and the average ranking of TPR
(Figure 5B). In addition, we quantified the variabil-
ity across simulation settings of modern FDR meth-
ods relative to classic methods (Figure 5C-D). We also
evaluated the consistency of the number of rejections
in case studies both with and without informative co-
variates. Note that variability across case studies was
not evaluated for fdrreg and ashq, as the methods were
only applied to a subset of the datasets. Detailed dis-
cussion of these results is provided in the following
sections.

Consistency of FDR and Power
We observed that adapt-glm, ihw, and bl achieved
FDR control in almost all simulation and in silico ex-
periment settings (Figure 5A), and were ranked near
the median of all methods in terms of TPR on average
(Figure 5B). However, adapt-glm frequently resulted
in lower TPR than classic methods (Figure 5C), and
had the highest variability of TPR and FDR across all
simulation settings (Figure 5D). Note that although
ihw had lower TPR than bh and qvalue in about 10%
of simulation settings (Figure 5C), this difference was
usually small and the variability of ihw relative to
classic methods was smaller than most other modern
methods (Figure 5D).
On the other hand, fdrreg-t and ashq were consis-

tently ranked among the top methods in terms of TPR
(Figure 5B), but both failed to control FDR in more
than 40% of simulation settings (Figure 5B) and exhib-
ited higher variability of both FDR and TPR than bl
and ihw (Figure 5D). lfdr showed similar performance
to ashq and fdrreg-t, but was ranked more favorably
in terms of TPR in simulation studies compared to in
silico experiments (Figure 5).

Number of rejections highly variable in case studies
In the case studies, we found that lfdr and ashq (where
applied) made the most rejections on average (Addi-
tional file 1: Figure S14), a similar trend to that ob-
served in the yeast in silico simulations (Additional
file 1: Figure S15). Otherwise, the relative ranking
among the methods varied among datasets and covari-
ates used in each analysis (Figure 4B).
The adapt-glm and lfdr methods had the most vari-

able performance relative to classic methods across
case studies (Figure 5D). In particular, adapt-glm re-
jected fewer tests than the classic methods in approx-
imately 25% of case study datasets (Figure 5C). The
performance pattern of bl was very similar to qvalue
(Figure 4). Likewise, ihw exhibited similar patterns
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Figure 5 Summary metrics computed to rate methods for final recommendations. Several metrics were computed over all
settings of the simulations, and yeast experiments, as well as all datasets and covariates in the case studies to evaluate the (A) FDR
control, (B) power, and (C,D) consistency of the evaluated methods. In panels (A) and (B), color denotes whether the metric is
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in the case studies “CS (%reject)”. In all panels, methods are shown on the x-axis, and methods with superior performance are those
with a low value of the y-axis metric. Cutoffs used with the metrics shown are provided in the “Methods” section.

to bh. The ashq method, where applied, was usually
among the methods with the most rejections, and bh
consistently found among the fewest discoveries on av-
erage among all FDR-controlling methods.

Gain over uninformative covariates highly variable in
case studies
To investigate how each method uses information from
covariates and to assess performance in the case that a
covariate is completely uninformative, we also included
a randomly generated uninformative covariate in each
case study, that was independent of the p-values under
the null and alternative.
The average gain from using an informative covariate

as compared to an uninformative covariate was usually
modest, but in rare cases resulted in order of magni-
tude differences (Additional file 1: Figure S10A). The
gain was also highly variable across case studies, co-
variates, and datasets. In some cases the adapt-glm

and bl methods made fewer rejections using the infor-
mative covariate (Additional file 1: Figure S16).

Discussion and Conclusions
We have presented a systematic evaluation to guide re-
searchers in their decisions regarding methods to con-
trol for false discoveries in their own data analysis. A
series of case studies and simulations were performed
to investigate which methods maximize the number of
discoveries while controlling FDR at the nominal α-
level. We conclude by highlighting several key results
and practical recommendations, which are summarized
in Figure 6.
We found that modern methods for FDR control

were more powerful than classic approaches, but that
the gain in power was generally modest. In addition,
with the exception of AdaPT, most methods that in-
corporate an independent covariate were not found to
underperform classic approaches, even when the co-
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Figure 6 Summary of recommendations. For each method
(row) and evaluation criteria (column), a filled circle denotes
the method was superior, a half-filled circle denotes the
method was satisfactory, and an empty circle denotes the
method was unsatisfactory. Gray circles are used to denote
that BH and q-value were not evaluated for the Consistency
criteria. An asterisk is used to denote that applicability was
assessed slightly differently for AdaPT. Detailed evaluation
criteria are provided in the “Methods” section.

variate was completely uninformative. Because adapt-
glm sometimes performed worse with the use of a co-
variate, we recommend including a null model as input
along with the covariate model when applying AdaPT.
Overall, we found the performance of the mod-

ern FDR methods generally improved over the clas-
sic methods as (1) the informativeness of the covari-
ate increased, (2) the number of hypothesis tests in-
creased, and (3) the proportion of non-null hypothe-
ses increased. Although it is not possible to assess (1)
and (3) in practice, most methods still controlled FDR
when the covariate was weakly informative and the
proportion of non-nulls was high.
Across our simulation and case study evaluations, we

found that IHW and BL generally had the most con-
sistent gains in TPR over classic methods, while still
controlling the FDR (Figure 6). While the TPR of BL
was often higher than IHW, we note that the gain in
power of BL relative to IHW should be interpreted in
light of any gain in power of q-value to BH, due to the
special relationship between these pairs of methods.
Specifically, IHW and BL reduce to BH and q-value,
respectively, when the covariate is uninformative. The
power of IHW was generally superior to BH when the
covariate was sufficiently informative, but almost iden-
tical to BH when the covariate was not informative

enough or when there were only a few thousand tests.
Likewise, the power of BL was generally superior to
Storey’s q-value when the covariate was sufficiently in-
formative and had a monotonic relationship with the
probability of a test being non-null.
We also found that although the majority of meth-

ods performed similarly in controlling the FDR, some
methods were not able to control FDR at the desired
level under certain settings. This occurred for empiri-
cal FDRreg when the proportion of non-nulls was near
50%, LFDR when there were fewer than 5000 tests,
and ASH when the test statistic was t-distributed.
We have provided several useful examples of how to

use an informative covariate in biological case studies.
When choosing a covariate for a particular analysis,
it is important to evaluate whether it is both infor-
mative and independent under the null hypothesis. In
other words, while the covariate should be informative
of whether a test is truly positive, if a test is truly neg-
ative, knowledge of the covariate should not alter the
validity of the p-value or test statistic. Violation of this
condition can lead to loss of Type I error control and
an inflated rate of false discoveries [30]. To avoid these
pitfalls, we recommend using previously proposed vi-
sual diagnostics to check both the informativeness and
independence of the selected covariate [15].
We also note that although in this study we only

considered a single (univariate) covariate in the sim-
ulations and case studies, some of the modern meth-
ods are able to incorporate multiple covariates. BL,
AdaPT, and FDRreg can all accommodate an arbi-
trary set of covariates through the specification of a
design matrix. In particular, AdaPT is well-suited to
high-dimensional problems, as it provides an imple-
mentation that uses L1-penalized Generalized Linear
Models for feature selection. Further investigation is
needed in the selection of multiple covariates and the
potential gain in performance over using a single co-
variate.
Finally, we rank IHW, BH, and Storey’s q-value as

superior in terms of user-friendliness and documenta-
tion, critical for lasting use and impact in the commu-
nity. All methods were implemented and evaluated in
R. With the exception of LFDR and the latest version
of FDRreg, methods were easily accessible from pack-
ages in CRAN or Bioconductor, the primary reposito-
ries for R packages. Implementing LFDR and installing
FDRreg both required additional work (see the “Meth-
ods” section). In their implementations, most methods
provide direct measures, such as adjusted p-values or q-
values, as outputs directly to users. In contrast, bl pro-
vides null hypothesis weights which must be manually
applied to BH-adjusted p-values by the user to con-
trol FDR. In addition, bl, adapt-glm and fdrreg, all re-
quire specifying a functional relationship between the
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covariate and null proportion in the form of a model or
formula. While this provides the user significant flex-
ibility, it can also be unintuitive for researchers not
familiar with the underlying modeling frameworks of
these methods. A benchmarking experiment to deter-
mine reasonable default values for parameters to im-
prove the user-friendliness of these methods is left as
future work.

Methods
Assessing assumptions
ASH and FDRreg differ substantially from the remain-
ing methods, and care should be taken to verify that
the appropriate inputs are available and that the un-
derlying assumptions are indeed valid. Based on these
criteria, both methods were excluded from most case
studies and several simulation settings considered in
this benchmark. A more detailed discussion of these
assumptions is included below. For FDRreg and adapt-
glm, the informative covariate must be specified in
the form of a model matrix or formula (respectively).
In both cases, we use the same type of formula or
model matrix used in the authors’ original publica-
tions [18, 19]. For lfdr, the informative covariate must
be a discrete group label. We follow the implementa-
tion of lfdr developed in [15], which automatically bins
the input covariate into 20 approximately equally sized
bins before estimating the within-group local FDR
(source code to implement this procedure available on
the GitHub repository linked in “Data and source code
availability”).
Common to all modern FDR-controlling procedures

included in Figure 1 is the requirement that the infor-
mative covariate also be independent of the p-value or
test statistic under the null. That is, while the covari-
ate should be informative of whether a test is truly
positive, if a test is truly negative, knowledge of the
covariate should not alter the validity of the p-value
or test statistic. Violation of this condition can lead to
loss of Type I error control and an inflated rate of false
discoveries [30]. To avoid these pitfalls, previously pro-
posed visual diagnostics were used to check both the
informativeness and independence of the selected co-
variate [15].

Implementation of benchmarked methods
All analyses were implemented using R version 3.5.0
[24]. We used version 0.99.2 of the R package Sum-
marizedBenchmark [31] to carry out the benchmark
comparisons, which is available on GitHub at the ‘fdr-
benchmark’ branch at https://github.com/areyesq
89/SummarizedBenchmark/tree/fdrbenchmark.
While other modern FDR-controlling methods have

also been proposed, methods were excluded if accom-
panying software was unavailable or if the available

software could not be run without substantial work
from the user [32].

BH
Adjusted p-values by BH were obtained using the
p.adjust function from the stats base R package,
with option method="BH".

qvalue
Storey’s q-values were obtained using the qvalue func-
tion in version 2.12.0 of the qvalue Bioconductor R
package.

IHW
Adjusted p-values by IHW were obtained using the
adj_pvalues function on the output of the ihw func-
tion, both from version 1.8.0 of the IHW Bioconductor
R package.

BL
Adjusted p-values by BL were obtained by multiplying
BH adjusted p-values (see above) by the π0,i estimates
obtained using the lm_pi0 function from version 1.6.0
of the Bioconductor R swfdr package.

lfdr
Adjusted p-values by lfdr were obtained by first bin-
ning the independent covariate into 20 approximately
equal sized groups using the groups_by_filter func-
tion the IHW R package. Next the fdrtool function
from version 1.2.15 of the fdrtool CRAN R package
was applied to the p-values within each covariate bin
separately, with the parameter statistic="pvalue".
We require that at least 200 tests per bin, as rec-
ommended by fdrtool. Note that we follow [15] and
use fdrtool rather than the locfdr package recom-
mended by [17] to obtain local false discovery rates, as
the former may operate directly on p-values instead of
requiring z-scores as in the latter.

FDRreg
For applications where the test statistic was assumed
to be normally distributed, Bayesian FDRs were ob-
tained by FDRreg function from version 0.2-1 of the
FDRreg R package (obtained from GitHub at https:
//github.com/jgscott/FDRreg). The features pa-
rameter was specified as a model matrix with a B-
spline polynomial spline basis of the independent co-
variate with 3 degrees of freedom (using the bs func-
tion from the splines base R package), and no in-
tercept. The nulltype was set to "empirical" or
"theoretical" for the empirical and theoretical null
implementations of FDRreg, respectively.
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ASH
q-values were obtained using the get_qvalue function
on the output of the ash function, both from version
2.2-7 of the ashr R CRAN package. The effect sizes
and their corresponding standard errors were input as
the effect_size and sebetahat parameters, respec-
tively.

AdaPT
q-values were obtained using the adapt_glm function
version 1.0.0 of the adaptMT CRAN R package. The
pi_formulas and mu_formulas arguments were both
specified as natural cubic B-spline basis matrices of
the independent covariate with degrees of freedom ∈
{2, 4, 6, 8, 10} (using the ns function from the splines
base R package).

Yeast in silico experiments
Preprocessed RNA-seq count tables from [29] were
downloaded from the authors’ GitHub repository at
https://github.com/bartongroup/profDGE48. All
samples that passed quality control in the original
study were included. All genes with a mean count of at
least 1 across all samples were included, for a total of
6553 genes. Null comparisons were constructed by ran-
domly sampling two groups of 5 and 10 samples from
the same condition (Snf2-knockout). Non-null compar-
isons of the same size were constructed by adding dif-
ferentially expressed (DE) genes in silico to null com-
parisons. In addition to different sample sizes, several
different settings of the proportion of non-null genes,
the distribution of the non-null effect sizes, and infor-
mativeness of the covariate were explored. An overview
of the different settings is provided in Table S2.
We evaluated results using a low proportion of non-

null genes (500, or approximately 7.5% non-null) as
well as a high proportion (2000 or approximately
30% non-null). The non-null genes were selected using
probability weights sampled from a logistic function
(where weights w(u) = 1

1+e−10u+5 , and u ∼ U(0, 1)).
Three types of informative covariates were explored:
(1) strongly informative, (2) weakly informative and
(3) uninformative. The strongly informative covari-
ate Xs was equal to the logistic sampling weight w.
The weakly informative covariate Xw was equal to
the logisitic sampling weight plus noise: w + ε, where
ε ∼ N(0, 0.25), truncated such that Xw ∈ (0, 1). The
uninformative Xu covariate was unrelated to the sam-
pling weights and drawn from a uniform distribution
such that Xu ∼ U(0, 1).
We also evaluated results under two different distri-

butions of non-null effect sizes: (1) Unimodal and (2)
Bimodal. For unimodal alternative effect size distribu-
tions, the observed fold changes for the selected non-
null genes in a non-null empirical comparison of the

same sample size were used. For bimodal alternatives,
observed test statistics z from an empirical non-null
comparison of the same sample size were sampled with
probability weights w(z) = f(|x|;α, β), where f is the
Gamma probability density function (with shape and
rate parameters α = 4.5 and β = 1 − 1e−4, respec-
tively). The corresponding effect sizes (fold changes,
FC) for ashq were calculated assuming a fixed stan-
dard error: FC = zσm, where σm is the median stan-
dard error of the log2 fold change across all genes.
To add differential signal to the designated non-

null genes, the expression in one randomly selected
group was then multiplied by their corresponding fold
change. Differential expression analysis using DESeq2
[33] was carried out on both the null and non-null com-
parisons to assess specificity and sensitivity of the FDR
correction methods. Genes for which DESeq2 returned
NA p-values were removed. In each setting, simulations
were repeated 100 times and the average and stan-
dard error are reported across replications. Results dis-
played in the main manuscript contain 2000 DE genes,
use the strongly informative covariate, and have a sam-
ple size of 5 in each group. Results for all settings are
presented in Additional files 2-5.

Polyester in silico experiments
The yeast RNA-seq data described in the previous
section was used to estimate model parameters using
version 1.16.0 of the polyester [28] R Bioconductor
package. All samples that passed quality control in the
original study were included. A baseline group con-
taining all the samples in the wild-type group was
used, and genes with mean expression of less than
1 count were filtered out. Counts were library size
normalized using DESeq2 size factors [33], and the
get_params function from the polyester package was
used to obtain model parameters. Counts were simu-
lated using the create_read_numbers function. Using
the same sample sizes as the yeast in silico experi-
ments (5 or 10 samples in each group), we evaluated
a null comparison, where the beta parameters of the
create_read_numbers function (which represent ef-
fect size) were set to zero for all genes. We also evalu-
ated non-null comparisons where the beta parameters
were drawn from a standard normal distribution for
2000 non-null genes. The non-null genes were selected
in the same way as the yeast in silico experiments de-
scribed in the previous section. Differential expression
analysis and evaluation of FDR correction methods
was also carried out as described for the yeast experi-
ments. Results are presented in Additional file 6.

Simulation studies
We performed Monte Carlo simulation studies to as-
sess the performance of the methods with known
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ground truth information. In each simulation, M

observed effect sizes, {di}Mi=1, and standard errors,
{si}Mi=1, were sampled to obtain test statistics, {ti =

di/si}Mi=1. Letting {δi}Mi=1 denote the true effect sizes,
each ti was tested against the null hypothesis Hi

0 :

δi = 0. Observed effect sizes and standard errors were
simulated to obtain test statistics following one of four
distributions under the null:

– standard normal distribution,
– t distribution with 11 degrees of freedom,
– t distribution with 5 degrees of freedom, or
– χ2 distribution with 4 degrees of freedom.

For each test i, let hi denote the true status of the
test, with hi = 0 and hi = 1 corresponding to the
test being null and non-null in the simulation. True ef-
fect sizes, δi, were set to 0 for {i|hi = 0} and sampled
from an underlying non-null effect size distribution for
{i|hi = 1}. For normal and t distributed test statistics,
observed effect sizes were simulated by adding stan-
dard normal noise to the true effect sizes, di N(δi, 1).
The standard errors were all set to 1 to obtain nor-
mal test statistics and set to si =

√
vi/ν with each

vi ∼ χ2
ν independent to obtain t statistics with ν de-

grees of freedom. For χ2 test statistics, observed effect
sizes were sampled from non-central χ2 distributions
with non-centrality parameters equal to the true ef-
fect sizes, di χ2

4(ncp = δi). Standard errors were not
used to simulate χ2 statistics and were simply set to 1.
The p-value was calculated as the two-tail probability
of the sampling distribution under the null for normal
and t statistics. The upper-tail probability under the
null was used for χ2 statistics.

In all simulations, independent covariates, {xi}Mi=1,
were simulated from the standard uniform distribution
over the unit interval. In the uninformative simulation
setting, the {hi}Mi=1 were sampled from a Bernoulli
distribution according to the marginal null propor-
tion, π̄0, independent of the {xi}. In all other settings,
the {hi}Mi=1 were sampled from Bernoulli distributions
with test-specific probabilities determined by the in-
formative covariates through a function, p(xi), taking
values in [0, 1]. Several forms of p(xi) were considered
in the simulations. The p(xi) were chosen to explore
a range of relationships between the covariate and the
null probability of a test. For further flexibility, the
functional relationships were defined conditional on
the marginal null probability, π̄0, so that similar re-
lationships could be studied across a range of π̄0. The
following p(xi; π̄0) relationships, shown in Additional
file 1: Figure S4A for π̄0 = 0.90, were investigated in

the simulations.

pcubic(x; π̄0) = 4(1− π0)(1− x)1/3 + 4π0 − 3

pstep(x; π̄0) =


π̄0/2− 1/2 if x ∈ [0, 1/4)

π̄0/4− 1/4 if x ∈ [1/4, 1/2)

−π̄0/4 + 1/4 if x ∈ [1/2, 3/4)

−π̄0/2 + 1/2 if x ∈ [3/4, 1]

psine(x; π̄0) =


π̄0 − π̄0 sin(2π · x)

if π̄0 ∈ [0, 1/2)

π̄0 + (1− π̄0) sin(2π · x)

if π̄0 ∈ [1/2, 1]

pcosine(x; π̄0) =


π̄0 − π̄0 cos(2π · x)

if π̄0 ∈ [0, 1/2)

π̄0 + (1− π̄0) cos(2π · x)

if π̄0 ∈ [1/2, 1]

The functions pcubic and pstep are valid, i.e. map to
[0, 1], for π̄0 ∈ [3/4, 1] and π̄0 ∈ [1/2, 1], respectively.
All others p(xi) are valid for π̄0 ∈ [0, 1]. In addition to
these functional relationships, we also considered two
specialized relationships with π̄0 fixed at 0.80. These
specialized relationships were parameterized by an in-
formativeness parameter, δ ∈ [0, 1], such that when
δ = 0 the covariate was completely uninformative
and stratifies the hypotheses more effectively as δ in-
creased.

pc-info(x; δ) = 0.8 · (1− δ) + δ/(1 + e5−25x)

pd-info(x; δ) =

{
0.2 · (4 + δ) if x ∈ [0, 4/5]

0.8 · (1− δ) if x ∈ (4/5, 1]

The first, pc-info, is a continuous relationship between
the covariate, x and the null proportion, π0, while the
second, pd-info, is discrete. Results of simulations with
pc-info are shown in Additional file 1: Figure S3A-B,
where the “informativeness" axis is simply 100 · δ. The
covariate relationships, pc-info and pd-info are shown in
Additional file 1: Figure S8 across a range of δ infor-
mativeness values.
Simulations were formulated and performed as sev-

eral distinct case studies, with full results presented
in Additional files 7-20. The complete combination of
settings used in each simulation case study are given in
Table S3. In each case study, simulations were repeated
100 times, and performance metrics are reported as the
average across the replications.
FDRreg and ASH were excluded from simulations

with χ2 distributed test statistics because the setting
clearly violated the assumptions of both methods (Fig-
ure 1).
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Case studies
We explored several real case-studies using publicly
available datasets. Unless otherwise stated, we use an
α = 0.05 level to define a positive test. In all cases, we
also evaluate results using an independent but uninfor-
mative covariate (simulated from a standard normal).
The locations of where the data can be found and the
main details for each case-study is described below.
For more specific analysis details, please refer to Addi-
tional files 21-41 which contain complete reproducible
code sets.

Genome-Wide Association Study
GWAS analysis results were downloaded from ht
tp://portals.broadinstitute.org/collaboration
/giant/images/3/3a/BMI.SNPadjSMK.zip [34]. We
used the results subset by European ancestry provided
in the file BMI.SNPadjSMK.CombinedSexes.EuropeanO
nly.txt to avoid the impact of population stratifica-
tion on our results. We followed [35] and implemented
a linkage disequilibrium (LD)-based pruning step (us-
ing the clump command of PLINK v1.90b3s [36]) to
remove SNPs in high LD (r2 < 0.2) with any nearby
SNP (<250Kb), based LD estimates from the 1000
Genomes phase three CEU population data [37], avail-
able at http://neurogenetics.qimrberghofer.edu.a
u/iSECA/1000G_20101123_v3_GIANT_chr1_23_mini
macnamesifnotRS_CEU_MAF0.01.zip. We explored the
use of both sample size and minor allele frequency
for each SNP as informative covariates. For fdrreg-e
and fdrreg-t, which require a normally distributed test
statistic as input, the t-statistic (effect size divided by
standard error) was used. Because of the large sam-
ple sizes in this study (median 161,165), the t statis-
tics were approximately normal. For ashq, we used
the provided effect size and standard error of the test
statistics. Full results are provided in Additional file
21.

Gene Set Analysis
We used two RNA-seq datasets that investigated
changes in gene expression (1) between cerebellum
and cerebral cortex of 5 males from Genotype-Tissue
Expression Project [38] and (2) upon differentiation
of hematopoietic stem cells (HSCs) into multipotent
progenitors (MPP) [39]. For the independent and in-
formative covariate, we considered the size of the gene
sets. We considered two different gene set analysis
methods: gene set enrichment analysis (GSEA) [40],
and overrepresentation testing [41]. To implement the
overrepresentation test, we first used version 1.20.0 the
R Bioconductor package DESeq2 to obtain a subset of
differentially expressed genes (with adjusted p-value
< 0.05), on which a test of overrepresentation of DE

genes among gene sets was performed using version
1.32.0 of the R Bioconductor package goseq [41]. To
implement GSEA, we used version 1.6.0 of the R Bio-
conductor package fgsea [42], using the DESeq2 test
statistics to rank the genes. For both methods, Gene
Ontology categories obtained using version 2.36.1 of
the R Bioconductor package biomaRt containing at
least 5 genes were used for the gene sets. For fgsea,
10,000 permutations were used and gene sets larger
than 500 genes were excluded as recommended in the
package documentation. The methods fdrreg-e, fdrreg-
t, and ashq were excluded since they require test statis-
tics and/or standard errors that GSEA does not pro-
vide. For goSeq, we also filtered on gene sets contain-
ing at least one DE gene. Full results are provided in
Additional file 22-25.

Bulk RNA-seq
We used two RNAseq datasets to asses the perfor-
mance of modern FDR methods in the context of
differential expression. The first dataset consisted of
20 paired samples of the GTEx project. These 20
samples belonged to two tissues (Nucleus accumbens
and Putamen) of 10 female individuals. These sam-
ples were preprocessed as described in [43]. We used a
second dataset from an experiment in which the mi-
croRNA mir200c was knocked down in mouse cells
[44]. The transcriptomes of knockdown cells and con-
trol cells were sequenced in biological duplicates. The
processed samples of the knockdown experiment were
downloaded from the recount2 database [45]. For each
dataset, we tested for differential expression using
DESeq2. For FDR methods that can use an informative
covariate, we used mean expression across samples, as
indicated in the DESeq2 vignette. Full results are pro-
vided in Additional files 26-27.

Single-cell RNA-seq
We selected two datasets from the conquer [46]
database. First, we detected differentially expressed
genes between glioblastoma cells sampled from a tu-
mor core with those from nearby tissue (GSE84465)
[47]. In addition, we detected DE genes between
murine macrophage cells stimulated to produce an
immune response with an unstimulated population
(GSE84465) [48]. We filtered out cells with a map-
ping rate less than 20% or fewer than 5% of genes
detected. Genes detected in at least 5% of cells were
used in the analysis and spike-in genes were excluded.
We carried out DE analyses using two different meth-
ods developed for scRNA-seq: scDD [49] and MAST
[50], along with the Wilcoxon rank-sum test. MAST
was applied to log2(TPM + 1) counts using version
1.6.1 of the MAST R Bioconductor package. scDD was
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applied to raw counts normalized by version 1.8.2 of
the scran R Bioconductor package [51] using version
1.4.0 of the scDD R Bioconductor package. Wilcoxon
was applied to counts normalized by TMM (using ver-
sion 3.22.3 of the edgeR R Bioconductor package [52])
using the wilcox.test function of the base R pack-
age stats. We examined the mean nonzero expres-
sion and detection rate (defined as the proportion of
cells expressing a given gene) as potentially informa-
tive covariates. The fdrreg-e and fdrreg-t methods were
excluded since none of the test statistics used are nor-
mally distributed. Likewise, ashq was excluded since
none of the methods considered provide effect sizes and
standard errors. Full results are provided in Additional
files 28-33.

ChIP-seq
ChIP-seq analyses were carried out on two separate
datasets. First, H3K4me3 data from two cell lines
(GM12878 and K562) were downloaded from EN-
CODE portal [53]. In each cell line, four replicates were
selected with half of them from one laboratory and
the other half from another laboratory. We performed
two types of differential binding analyses between cell
lines: (1) Following the workflow of [54], we used the
csaw [55] method (version 1.14.1 of the csaw Biocon-
ductor R package) to identify candidate de novo differ-
ential windows, and edgeR [52] method (using version
3.22.3 of the edgeR R Bioconductor package) to test
for significance. (2) We tested for differential binding
only in predefined promoter regions (UCSC "Known
Gene" annotations for human genome assembly hg19
(GRCh37) using DESeq2 [33]). In addition, we carried
out analysis type (1) on a second ChIP-seq dataset
to compare CREB-binding protein in wild-type and
CREB knockout mice [54, 56] (GSE54453). For anal-
ysis type (1), we used the region width as the infor-
mative covariate. For analysis type (2), we used mean
coverage as the informative covariate. The fdrreg-e and
fdrreg-t methods were excluded from csaw analyses
since the test statistics used are non normally dis-
tributed. Likewise, ashq was excluded since csaw does
not provide effect sizes and standard errors. Full re-
sults are provided in Additional files 34-36.

Microbiome
We performed two types of analyses (1) differential
abundance analysis, and (2) correlation analysis. For
the differential abundance analyses, we used four dif-
ferent datasets from the MicrobiomeHD database [57]:
(1) obesity [58], (2) inflammatory bowel disease (IBD)
[59], (3) infectious diarrhea (Clostridium difficile (CDI)
and non-CDI) [60], and (4) colorectal cancer (CRC)
[61]. These studies were processed as described in [57].

We performed Wilcoxon rank-sum differential abun-
dance tests on the operational taxonomic units (OTUs,
sequences clustered at 100% genetic similarity) and on
taxa collapsed to the genus level (as in [57]). Full re-
sults are provided in Additional files 37-40.
For the correlation analyses, we used a previously

published dataset of microbial samples from moni-
toring wells in a site contaminated by former waste
disposal ponds, where all sampled wells have var-
ious geochemical and physical measurements [62].
Paired-end reads were merged using PEAR (ver-
sion 0.9.10) and demultiplexed with QIIME v 1.9.1
split_libraries_fastq.py (maximum barcode error of
0 and quality score cutoff of 20) [63, 64]. Reads were
dereplicated using USEARCH v 9.2.64 -fastx_uniques
and operational taxonomic units (OTUs) were called
with -cluster_otus and an identity threshold of 0.97
[65]. These data were processed with the Amplicon
Sequence Analysis Pipeline http://zhoulab5.rccc.o
u.edu/pipelines/ASAP_web/pipeline_asap.php. We
carried out a Spearman correlation test (H0 : ρ = 0)
between OTU relative abundances across wells and the
respective values of three geochemical variables: pH,
Al, and SO4. Full results are provided in Additional
file 41.
For all analyses we examined the ubiquity (defined

as the percent of samples with non-zero abundance of
each taxa) and mean non-zero abundance of taxa as
potentially informative covariates. Results in the main
manuscript are shown for the OTU level, unless there
were no rejections in the vast majority of methods,
and then results are shown for genus level. The SO4

dataset was also excluded from the main results since
most methods find no rejections. We excluded fdrreg-
e, fdrreg-t, and ashq since neither the Wilcoxon nor
Spearman test statistics are normally distributed, nor
do they provide an effect size and standard error. Due
to small numbers of tests, lfdr was excluded from the
obesity and IBD genus level analyses.

Evaluation metrics
All studies (In-silico experiments, simulations, and
case studies) were evaluated on the number of rejec-
tions at varying α levels, ranging from 0.01 to 0.10.
The overlap among rejection sets for each method was
examined using version 1.3.3 of the UpSetR R CRAN
package. In-silico experiments and simulation studies
were also evaluated on the following metrics at vary-
ing α levels, ranging from 0.01 to 0.10: True Positive
Rate (TPR), observed FDR, and True Negative Rate
(TNR). Here we define TPR as the number of true
positives out of the total number of non-null tests,
observed FDR as the number of false discoveries out
of the total number of discoveries (defined as 0 when
there are no discoveries), and TNR as the number of
true negatives out of the total number of null tests.
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Summary metrics
The final ratings presented in Figure 6 were deter-
mined from the aggregated results of the simulations,
yeast experiments, and case studies.

FDR control
Ratings were determined using results from non-null
simulations where all methods were applied (i.e. ex-
cluding χ2 settings), and all non-null yeast experi-
ments. In each setting or experiment, a method was
determined to control FDR at the nominal 5% cutoff
if the mean FDR across replications was less than one
standard error above 5%. The following cutoffs were
used to determine superior, satisfactory, and unsatis-
factory methods.

– Superior: failed to control FDR in less than 10%
of settings in both simulations and yeast experi-
ments.

– Satisfactory: failed to control FDR in less than
10% of settings in either simulations or yeast ex-
periments.

– unsatisfactory: otherwise.
The computed proportion of simulation and yeast

settings exceeding the nominal FDR threshold are
shown in Figure 5A.

Power
Similar to above, ratings were determined using results
from non-null simulations where all methods were ap-
plied (i.e. excluding χ2 settings), and all non-null yeast
experiments. In each setting or experiment, methods
were ranked in descending order according to the mean
TPR across replications at the nominal 5% FDR cut-
off. Ties were set to the intermediate value, e.g 1.5,
if two methods tied for the highest TPR. The mean
rank of each method was computed across simulation
settings and yeast experiments separately, and used
to determine superior, satisfactory, and unsatisfactory
methods according to the following cutoffs.

– Superior: mean TPR rank less than 5 (of 8) in
both simulations and yeast experiments.

– Satisfactory: mean TPR rank less than 6 (of 8) in
both simulations and yeast experiments.

– Unsatisfactory: otherwise.
Mean TPR ranks for methods across simulation and

yeast settings are shown in Figure 5B.

Consistency
Ratings were determined using results from non-null
simulations where all methods were applied (i.e. ex-
cluding χ2 settings) and all case studies. Here, ashq
and fdrreg-t were excluded from metrics computed us-
ing the case studies, as the two methods were only
applied in 4 of the 26 case studies. In each simula-
tion setting, the TPR and FDR of each covariate-aware

method was compared against the TPR and FDR of
both the BH approach and Storey’s q-value at the
nominal 5% FDR cutoff. Similarly, in each case study,
the number of rejections of each method was compared
against the number of rejections of BH and Storey’s q-
value. Based on these comparisons, two metrics were
computed for each method.
First, in each setting and case study, a modern

method was determined to underperform the classi-
cal approaches if the TPR or number of rejections was
less than 95% of the minimum of the BH approach and
Storey’s q-value. The proportion of simulation settings
and case studies where a modern method underper-
formed was used to determine the consistent stability
of an approach (Figure 5C). The FDR of the methods
was not used for this metric.
Second, in each simulation setting and case study,

the log-ratio FDR, TPR and number of rejections was
computed against a baseline for each modern method.
For each setting, the average across the classical meth-
ods was used as the baseline. Methods were then
ranked according to the standard deviation of these
log-ratios, capturing the consistency of the methods
across simulations and case studies (Figure 5D).
These two metrics were used to determine superior,

satisfactory, and unsatisfactory methods according to
the following cutoffs.

– Superior: In top 50% (3) of methods according to
variance of log-ratio metrics.

– Satisfactory: Not in top 50% (3) of methods ac-
cording to variance of log-ratio metrics, but un-
derperformed both BH and Storey’s q-value in less
than 10% of case studies or simulation settings.

– Unsatisfactory: Not in top 50% (3) of methods ac-
cording to variance of log-ratio metrics, and un-
derperformed both BH and Storey’s q-value in
more than 10% of case studies or simulation set-
tings.

Applicability
Ratings were determined using the proportion of case
studies in which each method could be applied. The
proportion was calculated first within each type of case
studies, followed by averaging across all case studies.
This was done to prevent certain types, e.g. scRNA-
seq DE analysis, from dominating the average. The
following cutoffs were used to determine superior, sat-
isfactory, and unsatisfactory methods. For this metric,
cases when adapt-glm returned exactly zero positive
tests while all other methods returned non-zero results
where labeled as data sets where the method could not
be applied. This is denoted by an asterisk in Figure 6.

– Superior: applied in 100% of case studies.
– Satisfactory: applied in more than 50% of case
studies.
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– Unsatisfactory: otherwise.

Usability
Ratings were determined based on our experience us-
ing the method for our benchmark comparison, and
rated according to the following criteria.

– Superior: a well-documented implementation is
available.

– Satisfactory: an implementation is available, but
lacks extensive documentation or requires addi-
tional work to install.

– Unsatisfactory: no implementation is readily avail-
able.

Data and source code availability
Full analyses and benchmarking methods of the in
silico experiments, simulations, and case studies are
provided in Additional files 2-41. The source code
to reproduce all results in the manuscript and addi-
tional files, as well as all figures is available on GitHub
(https://github.com/pkimes/benchmark-fdr). The
SummarizedBenchmark package is available on Bio-
conductor. The Ecosystems and Networks Integrated
with Genes and Molecular Assemblies (ENIGMA)
data used in the microbiome case study is available
at https://zenodo.org/record/1455793/. For the
case-studies, the data sources are described in detail
in the Methods section.
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Additional file 35 — Case study: Differential binding in ChIP-seq II.
Differential binding analysis and benchmarking results of H3K4me3
between two cell lines using csaw (HTML).

Additional file 36 — Case study: Differential binding in ChIP-seq III.
Differential binding analysis and benchmarking results of CREB-binding
protein between knockout and wild-type mice using csaw (HTML).

Additional file 37 — Case study: Differential abundance testing in
microbiome data analysis I.
Differential abundance analysis and benchmarking results of obesity
(HTML).

Additional file 38 — Case study: Differential abundance testing in
microbiome data analysis II.
Differential abundance analysis and benchmarking results of IBD
(HTML).

Additional file 39 — Case study: Differential abundance testing in
microbiome data analysis III.
Differential abundance analysis and benchmarking results of infectious
diarrhea (HTML).

Additional file 40 — Case study: Differential abundance testing in
microbiome data analysis IV.
Differential abundance analysis and benchmarking results of colorectal
cancer (HTML).

Additional file 41 — Case study: Correlation testing in microbiome data
analysis.
Correlation analysis and benchmarking results of wastewater
contaminants (HTML).
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Figure S1 Performance evaluation in yeast in silico experiment. Using RNA-seq data derived from a yeast experiment, a
differential expression analysis was performed comparing two groups with five samples each and differential signal added to 2000 out
of approximately 6500 genes (30%) using an informative covariate. An evaluation of the performance includes the (A) FDR, (B)
TPR, and (C) number of rejections by FDR (alpha) cutoff. (D) Percentage significant at 0.05 cutoff (log-scale) by effect size (log2
fold change) percentile. Method is denoted by color and the mean value across 100 replications with standard error bars is shown in
(A)-(D). (E) Mean overlap of discoveries at 0.05 cutoff across methods and underlying truth.
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Figure S2 FDR and TPR under various spike-in settings of yeast in silico experiments. Plots of FDR and TPR across α cutoff
values over 100 replications in the yeast simulation (sample size 5 in each group) by alpha level. Vertical bars depict standard error.
Each panel within A and B represents a combination of settings for π0: 30% (2000) and 7.5% (500) non-null genes (total of 6500
genes), as well as different non-null effect size distributions: bimodal and unimodal. (A) For a strongly informative covariate: the
informative covariate is equal to the sampling weights for non-null genes. (B) For a weakly informative covariate: the informative
covariate is equal to the sampling weights for selecting non-null genes plus noise.
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Simulation performance across varying informativeness
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Figure S3 Performance evaluation in simulations. (A) FDR control and (B) TPR across varying informativeness. (C) FDR and
(D) TPR across varying number of hypotheses (E) FDR and (F) TPR across varying proportions of null and alternative hypotheses.
Method is denoted by color and the mean value across 100 replications with standard error bars is shown in (A)-(F). The FDR and
TPR are shown at the nominal 0.05 cutoff.
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Figure S4 Simulation performance across informative covariate relationship (A) Relationship between covariate value, x, and
null proportion of hypotheses, π0, across simulation settings. (B) FDR and (C) TPR across nominal FDR thresholds between 0.01
and 0.10 are shown for each method across four informative covariates described in the “Methods” section. Differences in (D) FDR
and (E) TPR between informative and uninformative covariates are also shown.
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Figure S5 Simulation performance across test statistic distributions (A) Distributions of test statistics for null and non-null tests
in one replication of each simulation. (B) FDR control and (C) TPR across different test statistic distributions. Differences in (D)
FDR and (E) TPR between informative and uninformative covariates are also shown. Method is denoted by color and the mean value
across 100 replications with standard error bars is shown in (B)-(E). Results for ash, fdrreg-t, fdrreg-e are not shown for the χ2

4
setting due to due to distributional assumptions of the methods (see Table 1). Method is denoted by color and the mean value
across 100 replications with standard error bars is shown in (B)-(E).
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Figure S6 Simulation performance across effect size distributions (A) Distributions of effect sizes included in unimodal effect
size simulations. (B) FDR and (C) TPR across nominal FDR thresholds between 0.01 and 0.10 are shown for each method across
four distributions of the non-null effect sizes presented in [20]: bimodal, flat-top, skew, and spiky. All distributions are unimodal with
mode at zero except for the “bimodal" setting. Settings are tested to evaluate the performance of ASH against all other methods
under the unimodal assumption. Differences in (D) FDR and (E) TPR between informative and uninformative covariates are also
shown. Method is denoted by color and the mean value across 100 replications with standard error bars is shown in (B)-(E).
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Figure S7 Simulation performance across unimodal effect size distributions w/ 25% non-null Same as Figure S6 but with
increased proportion of non-null hypotheses. (A) Distributions of effect sizes included in unimodal effect size simulations. (B) FDR
and (C) TPR across nominal FDR thresholds between 0.01 and 0.10 are shown for each method across four distributions of the
non-null effect sizes. Differences in (D) FDR and (E) TPR between informative and uninformative covariates are also shown. Method
is denoted by color and the mean value across 100 replications with standard error bars is shown in (B)-(E).
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Figure S8 Informativeness covariate relationships. Relationship between covariate value, x, and null proportion of hypotheses, π0,
across several δ informativeness values for (A) pc-info and (B) ps-info.
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Figure S9 Impact of covariate information in yeast experiments Mean difference of FDR and TPR (with informative covariate -
without informative covariate) over 100 replications in the yeast simulation (sample size 5 in each group) by alpha level. Vertical bars
depict standard error. Each panel within A and B represents a combination of settings for π0: 30% (2000) and 7.5% (500) non-null
genes (total of 6500 genes), as well as different non-null effect size distributions: bimodal and unimodal. (A) For a strongly
informative covariate: the informative covariate is equal to the sampling weights for non-null genes, and a (B) For a weakly
informative covariate: the informative covariate is equal to the sampling weights for selecting non-null genes plus noise.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2018. ; https://doi.org/10.1101/458786doi: bioRxiv preprint 

https://doi.org/10.1101/458786
http://creativecommons.org/licenses/by-nc/4.0/


Korthauer et al. Page 10 of 25

0.0113%

ihw

bl

adapt−glm

lfdr

fdrreg−e

fdrreg−t

si
m

(1
00

)
−1.0%

−0.5%

0.0%

0.5%

1.0%

Absolute
FDR change

3.83%

ihw

bl

adapt−glm

lfdr

fdrreg−e

fdrreg−t

si
m

(1
00

)

0.0%

2.5%

5.0%

7.5%

10.0%

Absolute
TPR change

144%

135%

50%

59%

49% 20%

ihw

bl

adapt−glm

lfdr

fdrreg−e

fdrreg−t

G
W

A
S

R
N

A
se

q

C
hI

P
se

q

G
S

E
A

m
ic

ro
bi

om
e

sc
R

N
A

se
q

Case Study

M
et

ho
d

−2
5%

−5
%

0% 5% 25
%

10
0%

% Change in
rejections

A B

Simulation

Figure S10 Gain from informative covariate varies by case study. (A) For each method (y-axis) that uses an informative
covariate, the percent change in rejections when using an informative covariate as compared to using a completely uninformative
covariate is represented by color. This is defined as number of rejections when using the informative covariate divided by the number
of rejections when using the uninformative (random) covariate, multiplied by 100. This value is averaged across all datasets and
informative covariates used in each case study (x-axis). If rejections were found using the informative covariate but none were found
using the uninformative covariate, the percentage was set to 100%. The maximum value of this percentage in each column is
labeled. (B) For each method (y-axis) that uses an informative covariate, the absolute percentage change in FDR (left) and TPR
(right) in the yeast in silico experiments are represented in color (setting with 5 samples in each group, unimodal effect size
distribution, and 30% non-null genes). Results are averaged over 100 simulation replications.
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Figure S11 Simulation performance with modified AdaPT parameters (A) FDR and (B) TPR across nominal FDR thresholds
between 0.01 and 0.10 are shown for a subset of methods with the “step" informative covariate (Figure S4). Differences in (C) FDR
and (D) TPR between informative and uninformative covariates are also shown. AdaPT with model parameters modified to include a
null model is shown as “adapt-withnull" and compared against the default AdaPT call, adapt-glm. Method is denoted by color and
the mean value across 100 replications with standard error bars is shown in (A)-(D).
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Figure S12 Relationship between informative covariate and rejection rate was highly variable across case studies. Four
informative covariates from four different case study datasets were chosen to illustrate the wide variation in the relationship between
the informative covariate and the proportion of tests rejected across all FDR controlling methods. (A) Relationship between the
overall mean expression percentile and rejection rate in the brain RNA-seq dataset. (B) Relationship between the detection rate
percentile and the rejection rate in the Human single cell RNA-seq dataset. (C) Relationship between the gene set size percentile and
the rejection rate in the Mouse GSEA dataset. (D) Relationship between the minor allele frequency (MAF) percentile and the
rejection rate in the GWAS case study.
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Figure S13 Examples of informative covariates that are independent under the null hypothesis. Distribution of p-values overall
(left-most panel) and in three approximately equal sized bins by informative covariate (right panels) for (A) the brain dataset in the
RNA-seq case study using overall mean expression as the informative covariate, (B) the human dataset in the single-cell RNA-seq
case study analyzed by MAST using the detection rate as the informative covariate, (C) the mouse dataset of the GSEA case study
using the gene set size as the informative covariate, and (D) the GWAS case study using the minor allele frequency as the
informative covariate.
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Figure S14 Case study evaluation (A) Mean proportion of maximum rejections (color) across all datasets and informative
covariates used for each case study (column) and FDR correction method (row). In each column, the maximum proportion of
rejections out of the total possible number of comparisons is displayed. (B) Mean FDR and TPR (values displayed in each tile and
represented by color) in yeast simulation study at target FDR level 0.05 across sample size settings and 100 replications for each
FDR correction method (row). Numerical values for the data in (A) are displayed in Additional file 1: Table S4
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Figure S15 Comparison of the number of rejections in yeast simulation and case studies. Boxplots of the proportion of
maximum rejections across all case studies (y-axis) is shown for each method, where the x-axis position reflects the proportion of
maximum rejections in the yeast simulation (setting with sample size 5 in each group, unimodal effect size distribution, and 30%
non-null genes). The alpha cutoff to determine rejections is 0.05.
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Figure S16 Gain from informative covariate varies by dataset and covariate in case studies. For each method (y-axis) that uses
an informative covariate, the percent change in rejections when using an informative covariate as compared to using a completely
uninformative covariate is represented by color. This is defined as number of rejections when using the informative covariate divided
by the number of rejections when using the uninformative (random) covariate, multiplied by 100. This is shown separately for each
dataset (grouped by case study and informative covariate, x-axis). If rejections were found using the informative covariate but none
were found using the uninformative covariate, the percentage was set to 100%. The maximum value of this percentage in each
column is labeled. The informative covariate used in each case study is listed in Table 1. For case studies with more than one
covariate, the covariate is denoted in the column labels
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Table S1 Approaches to adjust for multiple comparisons across hypothesis tests. The family-wise error rate (FWER) is the probability of at least one false discovery. The false
discovery rate (FDR) is the expected fraction of false discoveries among all discoveries. FDR adjusted p-values are defined as adjusted p-values that have control FDR at nominal Type
1 error (α) level. π0 represents the proportion of null hypothesis tests.

Control Method Input Output
Two Groups Model

Description Availability (R)
xi ∼ π0,i ∗ f0,i + (1 − π0,i) ∗ f1,i

xi = π0,i = f0,i = f1,i =

FWER
Bonferroni correction

[8, 9]

(1) p-values

adjusted
p-
values[1]

- - - - Robust to dependence, but very conservative package: stats
function(s): p.adjust

FDR

Benjamini-Hochberg
Procedure (BH) [13] p-value equal

across
tests

equal
across
tests

equal
across
tests

First method proposed for controlling the FDR. More powerful
than controlling FWER. However, previously shown to have
sub-optimal power when the individual tests differ in statistical
properties such as sample size, true effect size, signal-to-noise
ratio or prior probability of being false [15].

package: stats
function(s): p.adjust

Storey’s q-value [14] q-value[2]
test
statistic

Directly estimates π0. Increasingly more powerful than BH as
π0 decreases, while controlling FDR.

package: qvalue
function(s): qvalue

Independent
Hypothesis Weighting

(IHW) [15]

(1) p-values,
(2)
independent
covariate

adjusted
p-values

p-value

equal
within
covariate
groups

equal
across
tests

equal within
covariate groups

Weighted BH method to prioritize tests using data-derived
weights computed for groups of tests binned according to an
independent covariate. Does not calculate π0,i explicitly.

package: ihw
function(s): ihw,
adjust_pvalues

Boca and Leek
Procedure (BL) [16]

test
statistic

continu-
ous
(logistic)
function
of
covariate

equal
across
tests

equal across tests

Weighted BH method to prioritize tests using data-derived
weights computed using logistic regression with the
independent covariate. Equivalent to Storey’s q-value in the
case of no covariates.

package: swfdr
function(s): lm_pi0 [3]

Cai and Sun’s
Conditional Local
FDR (lfdr) [17]

equal
within
covariate
groups

equal
within
covariate
groups

equal within
covariate groups

Modifies the standard two-group model by assuming known
group structure and using different cutoffs for each group. FDR
is controlled at different rates for each group to minimize the
global false nondiscovery rate (FNR) subject to a constraint on
the global FDR.

none [4]

AdaPT (adapt-glm)
[18]

q-
values[5]

p-value

continu-
ous
(logistic)
function
of
covariate

equal
across
tests

continuous density
(exponential family),
with parameter
modeled as a
continuous function
(glm) of covariate

Modifies the Barber-Candès procedure [66, 67][6] by
introducing an iterative, data-adaptive thresholding algorithm.
The threshold depends on the covariate through the estimates
of π0,i and f1,i.

package: adaptMT
function(s): adapt,
adapt_glm, adapt_gam

or adapt_glmnet [7]

FDR Regression
(FDRreg) (empirical)

[19] (1) z-scores,
(2)
independent
covariate

Bayesian
FDRs

test
statistic

continuous
(logistic)
function
of
covariate

equal
across
tests

equal
across
tests

Modifies the standard two-group model by modeling the mixing
proportions of the distributions for each test as a logistic
function of an informative covariate (or spline expansion of the
covariate). Assumes that the test statistics are normally
distributed, with arbitrary mean and variance (empirical null) or
standard normal (theoretical null).

package: FDRreg
function(s): FDRreg
[8]

FDR Regression
(FDRreg)

(theoretical) [19]

Adaptive Shrinkage
(ASH) [20]

(1) effect
sizes,
(2) standard
error

q-
values[9]

effect size
equal
across
tests

equal
across
tests

inversely proportional
to power of standard
error

Introduces the concept of the local false sign rate and s-values
for controlling errors across multiple tests. Same approach can
also be used to compute q-values and the local false discovery
rate. Assumes that the distribution of effect sizes is unimodal.

package: ashr
function(s): ash,
get_qvalue

[1]Formally, the BH approach does not generate adjusted p-values, but instead provides significance calls at a specified α FDR cutoff. Adjusted p-values are commonly computed
as the smallest FDR cutoffs at which each test would be called significant.
[2]The q-value is defined as the positive FDR (pFDR) analogue of the p-value. Approach can also be used to compute the local false discovery rate.
[3]Requires specification of a degrees of freedom parameter. Requires multiplying weights against BH adjusted p-values to obtain adjusted p-values
[4]Custom implementation using fdrtools package (function: fdrtools). Requires manually specifying covariate groups, computing local fdr with fdrtools package, followed by
custom code
[5]q-value is defined as the minimum target FDR level such that the p-value is rejected. For hypotheses with p-values above the initial threshold value (default 0.45), the q-values
are set to ∞ because they are never rejected by adapt-glm for any α.
[6]The Barber-Candès procedure estimates the false discovery proportion by quantifying the asymmetry in the distribution of p-values at a given threshold.
[7]adapt_glm, adapt_gam, and adapt_glmnet are all wrappers around adapt that encode a specific assumption about the relationship between π(x) and µ(x). Requires manually
specifying the models for these relationships with, e.g. splines package.
[8]Requires manually specifying model matrix with, e.g. splines package
[9]The method also returns local false sign rates, local false discovery rates, and s-values, where s-vales are defined analogous to Storey’s q-value, but with the local false sign
rate rather than the local false discovery rate. Since the aim of our analysis was to compare methods for controlling the FDR, we only report results for the estimated q-values.
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Table S2 Yeast in silico experiment settings. The results from each series of simulations is reported as a separate Additional file in the
supplementary materials, with the exception of the Null series, which is combined with the ‘Unimodal Alternative, High π0’ series. Both
the ‘Null’ and ‘Unimodal Alternative, High π0’ series are also evaluated in the Polyester in silico experiments, and these results are
provided as a separate separate file.

Series Non-null Effect Non-null Genes Covariate Strength[10] Figures Additional
Size Distribution[11] N(%)[12] File

Null – 0 – – 2

Unimodal Alternative, High π0 Unimodal 2000 (≈30%)
Strong

S1, S14, S10, S2, S9 2Weak
Uninformative

Unimodal Alternative, Low π0 Unimodal 500 (≈7.5%)
Strong

S2, S9 3Weak
Uninformative

Bimodal Alternative, High π0 Bimodal 2000 (≈30%)
Strong

S2, S9 4Weak
Uninformative

Bimodal Alternative, Low π0 Bimodal 500 (≈7.5%)
Strong

S2, S9 5Weak
Uninformative

[10]In all cases, non-null genes were selected using probability weights sampled from a logistic function (where weights w(u) =
1

1+e−10u+5 , and u ∼ U(0, 1)). The strongly informative covariate Xs was equal to the logistic sampling weight w. The weakly
informative covariate Xw was equal to the logisitic sampling weight plus noise: w + ε, where ε ∼ N(0, 0.25), truncated such that

Xw ∈ (0, 1). The uninformative Xu covariate was unrelated to the sampling weights and drawn from a uniform distribution such

that Xu ∼ U(0, 1)
[11]For unimodal alternative effect size distributions, the observed fold changes for the selected non-null genes in a non-null empirical

comparison were used. For bimodal alternatives, observed test statistics z from an empirical non-null comparison were sampled

with probability weights w(z) = f(|x|;α, β), where f is the Gamma probability density function (with shape and rate parameters

α = 4.5 and β = 1 − 1e−4, respectively). The corresponding effect sizes (fold changes, FC) for ashq were calculated assuming a

fixed standard error: FC = zσm, where σm is the median standard error of the log2 fold change across all genes.
[12]Total number of genes considered (with mean expression across all samples greater than 1 raw count) is 6553. A small number

of genes are removed from each replicate if DESeq2 does not return a p-value.
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Table S3 Simulation settings. The results from each series of simulations is reported as a separate Additional file in the supplementary
materials.

Series M Test Statistic Effect Size Marginal Null Covariate Relationship FiguresDistribution Distribution Proportion (π̄0) (p(x; π̄0))

Null 20000

N(0, 1)

– 1.00 – –t11
t5
χ2
4

Informative (cubic) 20000

N(0, 1) N(3, 1)

0.90 pcubic(x; π̄0) Figure S5,Figure S4t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Informative (step) 20000

N(0, 1) N(3, 1)

0.90 pstep(x; π̄0) Figure S4t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Informative (sine) 20000

N(0, 1) N(3, 1)

0.90 psine(x; π̄0) Figure S4t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Informative (cosine) 20000

N(0, 1) N(3, 1)

0.90 pcosine(x; π̄0) Figure S4t11 N(3, 1)
t5 N(3, 1)
χ2
4 N(15, 1)

Unimodal Effect Sizes 20000 N(0, 1)

bimodal

0.90 pcubic(x; π̄0) Figure S6spiky
flat-top
skewed

20000 t11

bimodal

0.90 pcubic(x; π̄0) –Unimodal Effect Sizes spiky
(t11 test statistics) flat-top

skewed

20000 N(0, 1)

bimodal

0.75 pcubic(x; π̄0) Figure S7Unimodal Effect Sizes spiky
(25% non-null) flat-top

skewed

Varying M Tests

100

N(0, 1) N(3, 1) 0.90 psine(x; π̄0) Figure S3C-D

500
1000
5000
10000
50000

Varying Null Proportion 20000 N(0, 1) N(2, 1)

0.05

psine(x; π̄0) Figure S3E-F
0.10
· · ·
0.95
0.99

20000 N(0, 1) N(2, 1)

0.05

psine(x; π̄0) –
Varying Null Proportion 0.10
(t11 test statistics) · · ·

0.95
0.99

20000 N(0, 1) N(2, 1) 0.80

pc-info(x; δ = 0)

Figure S3A-BVarying Informativeness pc-info(x; δ = 5)
(continuous p(x; δ)) · · ·

pc-info(x; δ = 100)

20000 N(0, 1) N(2, 1) 0.80

pd-info(x; δ = 0)

–Varying Informativeness pd-info(x; δ = 5)
(discrete p(x; δ)) · · ·

pd-info(x; δ = 100)
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Table S4 Case Study results. For each case study and method, mean proportion of maximum number of rejections by any method at
α = 0.05, as shown in the left panel of Figure S14. Range is given in parentheses. A ‘-’ indicates that the method was not applied to the
specified case studies.

Method GWAS RNA-seq ChIP-seq GSEA Microbiome scRNA-seq
ashq 0.9 (0.79-1) 0.73 (0.47-1) - - - -
fdrreg-t 0.69 (0.66-0.72) 0.48 (0.42-0.55) - - - -
fdrreg-e 0.78 (0.71-0.84) 0.52 (0.04-1) - - - -
lfdr 0.96 (0.91-1) 0.57 (0.56-0.57) 1 (1-1) 0.98 (0.95-1) 0.98 (0.96-1) 1 (0.96-1)
adapt-glm 0.34 (0-0.69) 0.47 (0.38-0.56) 0.58 (0.19-0.93) 0.5 (0-1) 0.41 (0-1) 0.87 (0.61-1)
bl 0.64 (0.57-0.7) 0.45 (0.4-0.49) 0.64 (0.28-0.92) 0.65 (0.51-0.79) 0.78 (0.22-1) 0.88 (0.63-1)
qvalue 0.63 (0.55-0.7) 0.44 (0.4-0.48) 0.61 (0.28-0.92) 0.61 (0.48-0.75) 0.7 (0.06-1) 0.84 (0.59-1)
ihw 0.79 (0.73-0.84) 0.45 (0.41-0.48) 0.48 (0.12-0.82) 0.63 (0.61-0.65) 0.65 (0.34-0.92) 0.68 (0.5-0.78)
bh 0.62 (0.54-0.69) 0.39 (0.38-0.4) 0.44 (0.06-0.82) 0.5 (0.44-0.55) 0.53 (0.04-0.92) 0.64 (0.45-0.77)
bonf 0.17 (0.15-0.18) 0.08 (0.04-0.11) 0.16 (0-0.32) 0 (0-0) 0.16 (0-0.46) 0.16 (0.07-0.23)
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1 Supplementary in silico experiment results
Here we summarize the benchmarking results of fdrreg-e, which was excluded from the main results due to its
unstable and often inferior performance compared to its counterpart fdrreg-t. The difference between these two
implementations of FDRreg is that fdrreg-t assumes the null distribution of test statistics is standard normal,
while fdrreg-e estimates the null distribution of test statistics empirically. We find this estimation procedure to
be sensitive to settings of the distribution of effect sizes and proportion of non-null tests in particular.

1.1 Summary of fdrreg-e performance
We found that while modern FDR methods generally led to a higher true positive rate (TPR), or power, in
the in silico experiments and simulations, fdrreg-e was sometimes as conservative as the Bonferroni correction
(Figure S2). The increase in TPR of fdrreg-e sometimes showed substantial improvement over modern methods
in several simulation settings (Figures S2, S3, S4, S5, S6, S7). However, these gains were often accompanied by
a lack of FDR control, highlighting the sensitivity of fdrreg-e to underlying model assumptions.

1.1.1 Number of tests
We observed that the FDR control of fdrreg-e was sensitive to the number of tests in simulation. Specifically,
FDR was substantially inflated when fdrreg-e was applied to fewer than 1,000 tests (Figure S3C). FDR control
generally improved as the number of tests increased.

1.1.2 Proportion of non-null tests
The performance of fdrreg-e was particularly sensitive to extreme changes in the proportion of non-null tests.
In simulations, fdrreg-e exhibited inflated FDR when the proportion of non-null hypotheses was near 50%
(Figure S3E), and suffered from low TPR when there were more than 20% non-null hypotheses, excluding
settings where the FDR was not controlled (Figure S3F). In the yeast in silico experiments, we also observed
that fdrreg-e was more conservative when the proportion of non-null genes was 30% compared to when it was
7.5% (Additional file 1: Figure S2). Similar results were also observed in a series of simulations where unimodal
effect sizes were used when the proportion of non-null tests was increased from 10% (Additional file 1: Figure S6)
to 25% (Additional file 1: Figure S7).

1.1.3 Distribution of test statistics
We observed that the performance of fdrreg-e declined when the normality assumption of the test statistic was
violated (Additional file 1: Figure S5B-C). FDR was considerably inflated when it was applied to t-distributed
test statistics. As expected, the increase in FDR was greater for the heavier-tailed t distribution with fewer
degrees of freedom (Additional file 1: Figure S5B).

1.1.4 Distribution of effect sizes
In addition to distributional assumptions on the test statistic, empirical FDRreg requires distributional assump-
tions on the effect size. Specifically, the empirical null framework used in fdrreg-e relies on [1] to estimate the
distribution of null test statistics which requires that all test statistics with values near zero are null, referred
to as the ‘zero assumption’. If this is not true, as is the case when the effect sizes are unimodal, the estimation
of the null distribution is unidentifiable and may become overly wide, resulting in conservative behavior.
To investigate the sensitivity of these methods to the distribution of effect sizes, multiple distributions of

the effect sizes were considered in both yeast in silico experiments and simulations. Both unimodal effect
size distributions and those following the assumption of fdrreg-e, with most non-null effects greater than zero
(Additional file 1: Figure S5A), were considered. While most simulations included the latter, simulations were
also performed with a set of unimodal effect size distributions described in [2] (Additional file 1: Figure S6 and
S7). In the yeast in silico experiments, two conditions were investigated - a unimodal and a bimodal case.
As expected, we observed that when the zero assumption of empirical FDRreg is violated, fdrreg-e was more

conservative in both the yeast in silico experiments (Additional file 1: Figure S2) and in simulation (Additional
file 1: Figures S6 and S7).
We also note that while it is simple to check distributional assumptions on the overall distribution of test

statistics or effect sizes, in practice it is impossible to check the distributional assumptions of empirical FDRreg
under the alternative, since they rely on knowing which tests are non-null.
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2 Supplementary case study results
To illustrate what types of covariates may be informative in controlling the FDR in different computational
biology contexts, we compared the methods using six case studies including genome-wide association testing
(Section 2.1), gene set analysis (Section 2.2), detecting differentially expressed genes in bulk RNA-seq (Sec-
tion 2.3) and single-cell RNA-seq (Section 2.4), differential binding in ChIP-seq (Section 2.5), and differential
abundance testing in the microbiome (Section 2.6). Here we provide additional results for each case study
to complement the summary provided in the main text. For full details of the analyses and results, refer to
Additional files 21-41.

2.1 Case-study: Genome-Wide Association Studies
Genome-Wide Association Studies (GWAS) are typically carried out on large cohorts of independent subjects in
order to test for association of individual genetic variants with a phenotype. The genetic variants are generally
measured using microarrays containing probes for up to several million Single Nucleotide Polymorphisms (SNPs).
These SNP probes target single base-pair DNA sites that have been shown to vary across a population. To boost
power, meta-analyses of GWAS group together many studies, commonly including hundreds of thousands to
millions of SNPs, with heterogeneous effect sizes and a wide range of sample size at each loci.
We analyzed a GWAS experiment that carried out a meta-analysis of hundreds of thousands of individuals for

more than two million SNPs for association of genetic variants with Body Mass Index (BMI) [3]. As informative
covariates, we considered (1) the minor allele frequency (MAF), or the proportion of the population which
exhibits the less common allele, and (2) the number of samples for which each SNP was tested for association
in the corresponding meta-analysis. In total, 196,969 approximately independent SNPs (out of 2,456,142) were
included in the FDR analysis.
For each covariate, we examined whether its rank was associated with the p-value distribution. As expected,

larger values of the sample size resulted in an enrichment for smaller p-values. Additionally, intermediate values
of the MAF were associated with an enrichment for smaller p-values. This is expected since an MAF near 0.5
balances the number of samples with each allele, thereby maximizing power to detect a difference. For both
covariates, the distribution of moderate to large p-values appeared uniform and independent of the value of the
covariate. For methods that include a covariate, similar numbers of SNPs were rejected at the 0.05 level for
either covariate.
For both informative covariates, we found lfdr, ihw, and fdr-e rejected the largest number of hypotheses,

followed by fdr-t. The sample size covariate appeared to be more informative than MAF for lfdr and ihw, as
both methods rejected more than ashq, whereas ashq found more discoveries than all covariate-aware methods
that used MAF. Neither covariate seemed to be very informative for bl, as it did not have much gain over bh
or qvalue. adapt-glm was more conservative than Bonferroni with the MAF covariate, but was ranked above bl
using the sample size covariate. The overlap among the methods was high, with the largest set sizes containing
SNPs rejected by all methods except Bonferonni and/or adapt-glm for both covariate comparisons. The next
largest set size was the SNPs rejected by ashq exclusively.

2.2 Case-study: Gene set analyses
Gene set analysis is commonly used to provide insights to results of differential expression analysis. These
methods aim to identify gene sets such as Gene Ontology (GO) categories or biological pathways that exhibit
a pattern of differential expression. One class of methods, called overrepresentation approaches, test each gene
set for a higher number of differentially expressed genes than expected by chance [4]. Another class of methods,
called functional class scoring approaches, test each gene set for a coordinated change in expression [4]. While
the former operates on a list of differentially expressed genes and does not consider the magnitude or direction
of effect, the latter uses information from all genes, and can even detect small coordinated changes across many
genes that are not significantly DE individually. We investigated the use of an informative covariate in GOseq
[5], an overrepresentation test, as well as Gene Set Enrichment Analysis (GSEA) [6], a functional class scoring
approach. Since the sizes of gene sets differ substantially and these size differences translate into differences in
power, we hypothesized that multiple-testing correction in gene set analysis would benefit from methods that
incorporate information about set sizes.
We used two RNA-seq datasets that investigated gene expression changes (1) between cerebellum and cerebral

cortex [7] and (2) upon differentiation of hematopoietic stem cells (HSCs) into multipotent progenitors (MPP)
[8]. We obtained 9,853 and 1,336 differentially expressed genes with FDR below 0.10 (using BH) for the human
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and mouse datasets, respectively. We observed that for both GSEA and GOseq larger gene sets were more likely
to have smaller p-values than smaller gene sets. Thus, the covariate was informative. In addition, the covariate
appeared to be independent under the null hypothesis for GSEA, as evaluated by the histogram of p-values
stratified by gene set size bins. However, upon evaluation of the stratified histograms of GOseq p-values, we
observed that the distribution of p-values in the larger range was quite different for different covariate bins.
This suggests that gene set size is not independent under the null hypothesis for GOseq, so the assumptions of
methods which use an independent covariate are violated. Thus, we do not include the GOseq method in the
benchmarking study and instead proceed with GSEA p-values only.
In this case study, we excluded the methods fdrreg-e, fdrreg-t, and ashq since they require standard errors and

test statistics that GSEA does not provide. Overall lfdr, bl, and ihw rejected more hypotheses compared to the
other methods. However, the ranking among these methods was not the same between the different datasets.
Fort the mouse dataset, lfdr found the most rejections at smaller α levels (less than 0.05), but adapt-glm found
the most at higher α levels. This was followed by BL, qvalue, and then IHW. For the human dataset, lfdr found
the most rejections at all α levels, followed by IHW and then BL, and adapt-glm was more conservative than BH
for almost all α levels. As expected, performance using the random (uninformative) covariate of BL and IHW
was almost identical to qvalue and BH, respectively. However, the adapt-glm using the uninformative covariate
was quite different in the two datasets, with no rejections in the human, and more rejections than any other
method in the mouse (at α > 0.05).

2.3 Case-study: Differential gene expression in bulk RNA-seq
High-throughput sequencing of mRNA molecules has become the standard for transcriptome profiling. A central
analysis task is to determine which genes are deferentially expressed between two biological conditions. Statistical
models have been established to address this question including DESeq2 [9] and edgeR [10]. These methods
return per gene p-values that are further adjusted for multiple testing, typically using the Benjamini-Hochberg
procedure.
We assessed the performance of modern FDR methods in the context of differential expression on two RNA-

seq datasets. The first dataset consisted of two tissues of 10 individuals from the GTEx project and the second
dataset consisted of a mouse knockdown experiment of the microRNA mir200c. For FDR methods that can use
an informative covariate, we used mean expression across samples. We confirmed that this covariate was indeed
informative for both datasets.
For the GTEx dataset, ashq found more rejections than any other method. At a FDR of 10%, the number

of rejections of ashq was more than twice the number of rejections from any of rest of the methods, and the
largest gene set was the set of genes found by ashq and no other methods. Following ashq, lfdr, adapt-glm, and
fdrreg-t performed similarly. bl found almost the same number of rejections as qvalue, and ihw found slightly
more than bh. fdrreg-e was as conservative as Bonferroni. The ranking of the methods based on the number of
rejections was consistent across different strata of the covariate.
For the mir200c dataset the ranking of the methods was very different compared to the GTEx dataset. Here,

fdrreg-e found the most rejections by far, and the largest gene set was the set of genes found by fdrreg-e and no
other methods. The next highest ranking methods were lfdr, ihw, and ashq, followed by bl, qval, bh, fdrreg-t,
and adapt-glm which all performed similarly. For this dataset, the ranking of methods changed substantially
across strata of the covariate. For example, among the hypothesis falling between the 50th and 75th percentile of
the covariate, lfdr was ranked second (the next highest ranked method after fdrreg-e) but among the hypothesis
between the 75th and 100th percentile of the covariate, ashq was ranked second.

2.4 Case-study: Differential gene expression in single-cell RNA-seq
Over the past 5 years, breakthroughs in microfluidics and droplet-based RNA capture technologies have made
it possible to sequence the transcriptome of individual cells rather than populations of cells. Quantification
of single-cell RNA-seq (scRNA-seq) reads results in a matrix of counts by cells for each sample. The primary
applications of scRNA-seq have been in describing cellular heterogeneity in primary tissues, differences in cellular
heterogeneity in disease, and discovery of novel cell subpopulations. Differential gene expression of scRNA-seq is
used to determine gene sets which distinguish cell populations within the same biological condition, and between
cell populations in different samples or conditions.
In this case-study, we examined differences in gene expression in two different biological systems. First, we

detected differentially expressed genes between neoplastic glioblastoma cells sampled from a patient’s tumor core
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with those sampled from nearby peripheral tissue [11]. In addition, we also detected differentially expressed genes
between murine macrophage cells that were stimulated to produce an immune response with an unstimulated
population [12]. We carried out differential expression analyses using two different methods developed for scRNA-
seq: scDD [13] and MAST [14], as well as the Wilcoxon Rank-Sum test.
We examined the mean nonzero expression and detection rate (defined as the proportion of cells expressing a

given gene) as potentially informative covariates. For both datasets and all three differential expression methods,
we found that mean nonzero expression and detection rate were both informative and approximately independent
under the null hypothesis, satisfying the conditions for suitability of inclusion as an informative covariate for
controlling FDR. All methods returned more rejections of genes with high nonzero mean and detection rate.
They also tended to slightly favor genes with extremely low detection rate.
Across datasets, covariates, and differential expression tests, lfdr usually found the most rejections, followed

by bl and adapt-glm. However, at smaller α values, adapt-glm was one of the most conservative methods. The
ihw and qvalue methods were next, with their rank dependent the dataset and differential expression test used.
While a gain in rejections for ihw over bh was apparent in the human dataset, the performance of ihw was very
similar to bh in the mouse dataset.

2.5 Case-study: Differential binding in ChIP-seq
ChIP-seq has been widely used to detect protein binding regions and histone modifications in DNA. Testing
difference of ChIP-seq signals between conditions usually contains two steps: firstly, defining sets of regions for
which the ChIP-seq coverage are quantified; secondly, comparing quantified coverages for testing the statistical
significance of differential binding regions. In the first step, regions can be defined by peak calling from samples,
based on their signal in sliding windows [15], or by a priori interest. In this study we benchmarked results from
the latter two approaches by analyzing H3K4me3 data from two widely studied cell lines. Because H3K4me3 is
an active marker of gene expression, its signal is most active in promoter regions. This allowed us to pursue an
analysis of promoters as regions of interest. We also benchmark the results using the sliding window approach
csaw to define de novo regions on the H3K4me3 dataset as well as an additional dataset comparing CREB
protein binding (CRB) in wild-type versus knock-out mice. We exclude ashq and FDRreg methods from the
sliding window analyses since csaw does not provide a standard error or test statistic.
Based on observations that differentially bound peaks tend to have higher coverage, we investigated the use

of mean coverage as an informative covariate. In the promoter analysis, the p-value histograms showed that
high coverage groups are more highly enriched for significant p-values different, suggesting mean coverage is
an informative covariate. Likewise, we observed that wider windows in the de novo analysis tend to have more
significant p-values. The distribution of p-values under the null in both cases appeared approximately uniform.
In the promoter analysis, ashq detected the highest number of differential binding regions by far, followed

by lfdr, fdrreg-t, bl, qvalue, and adapt-glm, which all performed similarly. In the sliding window analyses, lfdr
rejected the most hypotheses in both datasets, followed by adapt-glm, bl, and qvalue, which performed similarly
to one another. In both datasets, the next lowest methods were ihw and bh, where the advantage of ihw only
observed in the CBP csaw analysis. Finally, fdrreg-e was more conservative than Bonferroni in the promoter
analysis.

2.6 Case-study: Differential abundance testing and correlations in microbiome data analysis
16S rRNA sequencing provides an overview of the microbial community in a given sample, and is a common
and accessible way to identify relationships between microbial communities and phenotypes of interest. For
example, differential abundance testing is often used to identify bacterial taxa which are enriched or depleted
in a disease state, and non-parametric correlations between taxa abundances and phenotypes can be calculated
when phenotypes of interest are continuous (e.g. body mass index). However, 16S rRNA datasets are high-
dimensional, noisy, and sparse, and biological effects can be weak, complicating many statistical analyses and
limiting power to detect true associations [16, 17]. Furthermore, environmental samples tend to have many
thousands of taxa, which further complicates our ability to identify significant associations
We performed differential abundance tests on the OTU and genus levels for three different datasets from

the microbiomeHD database: (1) obesity, where we do not expect a large disease-associated signal [16, 18], (2)
inflammatory bowel disease (IBD), which seems to have an intermediate number of disease-associated bacteria
[19, 20], and (3) infectious diarrhea (Clostridium difficile (CDI) and non-CDI), where the disease-associated
signal is very strong [20, 21]. We also performed Spearman correlation tests between OTU relative abundances
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and the respective values of three geochemical variables, measured from wells from a contaminated former S-3
waste disposal site in the Bear Creek watershed in Oak Ridge, Tennessee, part of the Department of Energy’s
Oak Ridge Field Research Center [22]. The geochemical variables were chosen based on their ability to be
predicted by the microbial community in [22]: pH, Al, and SO4, where we expect strong, intermediate, and
weak associations with the microbial abundances, respectively.
We examined the ubiquity (defined as the proportion of samples with non-zero abundance of each taxa) and

mean non-zero abundance of taxa as potentially informative covariates. We found that ubiquity was informative
and approximately independent under the null hypothesis, satisfying the conditions for suitability of inclusion
as an informative covariate for controlling FDR. Mean non-zero abundance appeared less informative than
ubiquity, as it typically showed a less striking pattern in diagnostic plots of p-values by covariate value.
OTU-level differential abundance analyses did not have sufficient power to detect any significant differences

in the IBD, CRC, and obesity datasets. Similarly, no OTUs correlated with SO4 levels and ubiquity was not
informative in this case. In addition, very few rejections were found in the CRC dataset at the genus level.
Consequently, ubiquity was not informative in these “null” analyses and almost all FDR-correction methods
found no significant associations. These “null” results are excluded from the results in the main text.
For the other analyses (genus-level differential abundance, OTU-level differential abundance in diarrhea, OTU-

level correlation analyses for pH and Al), ubiquity was informative and the FDR-correction methods which
incorporated this information tended to recover more significant associations than naive methods. When there
were enough tests for it to be applied, lfdr typically found the most rejections. This was usually followed by bl
and qvalue, with the gain of bl over qvalue variable by dataset. In the correlation analyses, however, ihw found
more rejections than bl and qvalue. The performance of adapt-glm was usually highly variable, both within
a dataset and across datasets: it either had a very different ranking at different α levels (obesity), found the
among the most rejections (correlation of pH), or found no rejections at all (IBD, CRC). In cases with very few
tests (e.g. genus-level analyses), ihw used only 1 covariate bin and reduced to bh as expected.
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