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Summary 30 

Genome-wide occupancy maps of transcriptional regulators are important for 31 

understanding gene regulation and its effects on diverse biological processes, but only 32 

a small fraction of the >1,600 transcription factors (TFs) encoded in the human genome 33 

has been assayed. Here we present data and analyses of ChIP-seq experiments for 34 

208 DNA-associated proteins (DAPs) in the HepG2 hepatocellular carcinoma line, 35 

spanning nearly a quarter of its expressed TFs, transcriptional co-factors, and chromatin 36 

regulator proteins. The DAP binding profiles classify into major groups associated 37 

predominantly with promoters or enhancers, or with both. We confirm and expand the 38 

current catalog of DNA sequence motifs; 77 factors showed similar motifs to those 39 

previously described using in vivo and/or in vitro methods, and 17 yielded novel motifs. 40 

We also describe motifs corresponding to other TFs that co-enrich with the primary 41 

ChIP target. FOX family motifs are, for example, significantly enriched in ChIP-seq 42 

peaks of 37 other DAPs. We show that promoters and enhancers can be discriminated 43 

based on motif content and occupancy patterns. This large catalog reveals High 44 

Occupancy Target (HOT) regions at which many DAPs associate, although each 45 

contains motifs for only a minority of the numerous associated DAPs. These analyses 46 

provide a deeper and more complete overview of the gene regulatory networks that 47 

define this cell type.  48 

 49 

Introduction  50 
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Transcription factors (TFs) are DNA-binding proteins that play key roles in gene 51 

regulation [1,2]. According to the most recent census and review of putative TFs, 52 

including manual curation of DNA-binding domains in protein sequences and 53 

experimental observations of DNA binding, there are 1,639 known or likely TFs in the 54 

human genome [2]. However, other tallies [1,3], and broader definitions of proteins that 55 

associate with DNA, including transcriptional cofactors (CFs) and chromatin regulators 56 

or chromatin modifying enzymes (CRs), suggest there may be as many as 2,500 such 57 

proteins encoded in the human reference assembly; we refer to these collectively as 58 

DNA-associated proteins (DAPs), in order to distinguish this broad group of proteins 59 

from the stricter definition of direct DNA-binding TFs. A typical TF binds preferentially to 60 

a short DNA sequence motif, and, in vivo, some TFs also exhibit additional 61 

chromosomal occupancy mediated by their interactions with other DAPs [4-6], although 62 

the extent and biological significance of most secondary associations are not well 63 

understood [7]. TFs, CFs, and CRs all play vital roles in orchestrating cell type- and cell 64 

state-specific gene regulation, including the temporal coordination of gene expression in 65 

developmental processes, environmental responses, and disease states [8-14]. 66 

Identifying genomic regions with which a TF is physically associated, commonly referred 67 

to as TF binding sites (TFBSs), is an important step toward understanding its biological 68 

roles. The most common genome-wide assay for identifying TFBSs is chromatin 69 

immunoprecipitation followed by high-throughput sequencing (ChIP-seq) [15-17]. In 70 

addition to highlighting potentially active regulatory DNA elements by direct 71 

measurement, ChIP-seq data can define specific DNA sequence motifs that can be 72 

used, often in conjunction with expression data and chromatin accessibility maps, to 73 

infer likely binding events in other cellular contexts without direct assays. Elegant 74 

methods have been developed for identifying motifs [18-21], including ones that 75 

consider the plasticity of individual bases within and adjacent to a motif [22-25], account 76 

for structural details in relation to TF co-occurrence [26-28], or incorporate directly 77 

measured and inferred motifs [4]. Subsets of motifs can be specific to different cell types 78 

or environmental contexts, and can depend on chromatin status and presence of 79 

cofactors for accessibility [29,30], and motif sequence alone is not always predictive of 80 

binding events [31-33]. While motifs identified by enrichment in ChIP-seq are often 81 
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representative of direct binding, this is not always the case, as co-occurrence of other 82 

DAPs could lead to the enrichment of their motifs. Further, the ChIP-seq method 83 

identifies both protein:DNA and, indirectly, protein:protein interactions, such that indirect 84 

and even long-distance interactions (e.g. looping of distal elements) are captured as 85 

ChIP-seq enrichments.  86 

A long-term goal for the field is comprehensive mapping of all DAPs in all cell types, but 87 

a compelling and more immediate aspiration is to create a deep map of all DAPs 88 

expressed in a single cell type. The resulting consolidation of hundreds of genome-wide 89 

maps for a single cellular context promises insights into TF/CF/CR networks that are 90 

presently not possible. It will also provide the necessary backdrop for understanding 91 

large-scale functional element assays, and should improve the ability to infer TFBSs in 92 

other cell types that are less amenable to direct measurements. 93 

Previous analyses of sets of numerous DAPs have been performed [34-38]. However, 94 

the larger studies to date have assayed occupancy by transfected DAPs, often 95 

expressed ectopically and at non-physiological levels, in contrast to this study, in which 96 

we performed assays on endogenous proteins expressed at physiological levels. This 97 

work in the HepG2 hepatocellular carcinoma cell line is part of the Encyclopedia of DNA 98 

Elements (ENCODE) Consortium effort toward achieving “factor completeness” (e.g., 99 

the mapping of all expressed DAPs’ binding locations) in a subset of commonly used 100 

human cell lines. We present here an analysis of 208 DAP occupancy maps in HepG2, 101 

composed of 92 traditional ChIP-seq experiments with factor-specific antibodies and 102 

116 CETCh-seq (CRISPR epitope tagging ChIP-seq) experiments. The CETCh-seq 103 

method was developed to address the dearth of ChIP-competent antibodies for many 104 

factors, and has been shown to be a robust, powerful assay [39,40]. Its strength is that 105 

the endogenous DAPs are tagged with a universal epitope that is recognized by a single 106 

well-characterized ChIP antibody, and that the tagged factors are expressed at 107 

physiological levels to avoid ectopic ChIP peaks that can be caused by conventional 108 

transgene overexpression [41,42]. As more CETCh-seq experiments are performed, the 109 

growing database is used to identify any antibody-specific artifacts attributable to cross-110 

reactivity. This is part of the ENCODE Consortium quality control process for ChIP-seq, 111 
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CETCh-seq, and related assays [43], which includes immune reagent validation and 112 

characterization by assays such as western blots, and validation of tagged cell lines by 113 

confirmation of genomic DNA sequence. Additionally, the hundreds of ChIP 114 

experiments performed have led to tuning and optimization of protocols in efforts to 115 

alleviate technical biases [44,45]. Results of validation experiments for all DAPs 116 

assayed here are available on the ENCODE web portal, at www.encodeproject.org. 117 

Of the >1,600 total human DAPs, approximately 960 are expressed in HepG2 cells 118 

above a threshold RNA value of 1 FPKM (Fragments Per Kilobase of transcript per 119 

Million mapped reads), the minimum level at which we have obtained successful ChIP-120 

seq and CETCh-seq results. The resource we present here contains ChIP-seq and 121 

CETCh-seq maps for ~22% of these 960 factors, of which 171 are sequence-specific 122 

TFs and 37 are chromatin regulators and transcription cofactors (Figure 1A and 123 

Supplementary Table 1). This large and unbiased sampling in one cell type allowed us 124 

to approach analysis from complementary directions, beginning with patterns of DAP 125 

occupancy and co-occupancy to find preferential associations with each other and with 126 

promoters, enhancers, or insulator functions, and in the other direction, working from 127 

genomic loci, sequence motifs, and epigenomic state to explain occupancy.  128 

All ChIP-seq/CETCh-seq data are available through the ENCODE web portal 129 

(www.encodeproject.org), as well as at Gene Expression Omnibus. Each DAP’s 130 

genome-wide binding sites were identified using the SPP algorithm [46], with replicate 131 

consistency and peak ranking determined by Irreproducible Discovery Rate (IDR) 132 

[47]. This publicly available ENCODE occupancy data, attaining the greatest factor 133 

depths at physiologically-relevant expression levels to date, together with analyses and 134 

insights presented here, comprise a key resource for the scientific community. 135 

 136 

Results 137 

DNA-associated proteins segregate underlying element types and states  138 
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As an initial analysis, we asked how the binding of each of the 208 DAPs is distributed 139 

in the genome relative to known transcriptional promoters. Specifically, we calculated 140 

the fraction of called peaks within 3 kilobases (+/- 3 kb) of transcription start sites 141 

(TSSs) for each factor, analyzing only TSSs of genes expressed (>=1 TPM, or 142 

Transcripts Per Kilobase Million) in HepG2 (Figure 1B) and, separately, all annotated 143 

TSSs regardless of expression (Supplementary Figure 1).  144 

To further summarize the occupancy landscape, we merged all the called peaks from 145 

every experiment into non-overlapping 2 kb windows, limited to those windows in which 146 

two or more DAPs had a called peak, and performed a Principal Component Analysis 147 

(PCA) on these DNA segments, using presence/absence of each DAP at each 148 

segment. This analysis captured global patterns of ChIP-seq peaks, with Principal 149 

Component 1 (PC1) explaining ~28% of the variance and correlating strongly with the 150 

number of unique DAPs associated with a given genomic region (Figure 1C). PC2 151 

separates promoter-proximal from promoter-distal peaks, underscoring the relevance of 152 

promoters as a major predictor of genomic state and DAP occupancy. Interestingly, the 153 

shape of this plot suggests that as the number of DAPs associated at a locus increases, 154 

the promoter-proximal and promoter-distal regions lose separation along PC2. 155 

Additionally, PC2 plotted against PC3 shows strong segregation based on occupancy of 156 

the factor CTCF (Figure 1C), suggesting discrete genomic demarcations attributable to 157 

this important factor, as expected for its insulator/loop anchoring functions. 158 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2018. ; https://doi.org/10.1101/464800doi: bioRxiv preprint 

https://doi.org/10.1101/464800
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 

Figure 1. Overview and analysis of HepG2 datasets A. The 208 DNA-associated factors assayed in 
HepG2, organized by expression (FPKM), and denoting whether the factors were assayed by ChIP-seq 
and/or CETCh-seq. B. Scatter plot of all 208 factors showing broad distribution of fraction of called peaks 
at expressed TSSs (+/- 3 kb of TSS) vs. total peak number; points beyond maximum possible fraction 
represent multiple peaks at single TSS regions. C. Plots showing PCA of genomic segments with more 
than two factors bound, highlighting the separation based on number of factors bound, promoter vs. 
distal, or the presence of CTCF.  

To assess the epigenomic context of each binding site, we used IDEAS (an Integrative 159 

and Discriminative Epigenome Annotation System), a machine learning method for 160 
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biochemical mark-based genomic segmentation [48]. This IDEAS HepG2 epigenomic 161 

segmentation inferred 36 genomic states based on eight histone modifications, RNA 162 

polymerase ChIP-seq, CTCF ChIP-seq, and DNA accessibility datasets (DNase and 163 

FAIRE). Importantly, IDEAS states for HepG2 were classified using mainly histone 164 

marks, augmented by only two DNA-associated ChIP-seq maps included in our dataset 165 

(CTCF and RNA polymerase). Thus, our analyses using IDEAS segmentation are not 166 

circular, as they would be if the segmentation had used all or mostly TF binding data as 167 

input. These segregate the anticipated major classes of correlations between 168 

epigenomic states in the IDEAS segmentation and DAP associations, such as 169 

enrichment of H3K4me3 at annotated promoters and H3K27ac at candidate active 170 

enhancers, as well as open chromatin status as assayed by DNA accessibility 171 

experiments, typical of TF-bound DNA. As expected, the resulting IDEAS states 172 

classified only a minority of the HepG2 genome as potential cis-regulatory elements 173 

(Supplementary Figure 2). 174 

Clustering of DAP peak calls by the IDEAS segments of these genomic loci delineated 175 

several clear bins of genomic state associations. Specifically, we found a subset of 176 

DAPs that are preferentially associated with promoters, another subset associated with 177 

candidate active enhancers, and a third group distributed across both proximal promoter 178 

regions and likely enhancers (Figure 2A). We also found two smaller DAP-associated 179 

clusters: one associated with heterochromatin/repressed marks (including BMI1 and 180 

EZH2, both part of the polycomb repressor complex), and one with CTCF regions 181 

(including CTCF and known cohesin complex proteins RAD21 and SMC3) (Figure 2A, 182 

Supplementary Table 2). These distinct categories contain members of different classes 183 

of DAPs, and point to distinct gene regulatory pathways. Additionally, a PCA based on 184 

these IDEAS states clearly segregated the DAPs into bins that recapitulate these 185 

clusters (Supplementary Figure 3).  186 

For roughly 40% of the DAPs assayed, most called peaks were in IDEAS promoter-like 187 

regions, while ~30% of DAPs were predominantly associated with IDEAS enhancer-like 188 

regions (Figure 2B). There was no significant correlation between experimental peak 189 

counts and the distribution of peaks across promoters and enhancers. While these 190 
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preferences are part of a continuous distribution, the unsupervised clustering using all 191 

IDEAS genomic states suggests strong localization preferences among subsets of 192 

DAPs. The three largest subsets reveal that many DAPs are strongly enriched for 193 

promoters, while others are strongly associated with candidate enhancers, implying 194 

separable functions for the two classes of most differentiable factors. The third group in 195 

the continuum shows little or no bias, associating more equally with both promoters and 196 

enhancers. Previous publications have noted the similarities between promoters and 197 

enhancers, ascribing enhancer activity to promoters, and it is established that 198 

transcription occurs directly at enhancers in the form of enhancer-RNA (eRNA) and 199 

even as alternative promoters [49,50] (and reviewed in [51]). The subset of DAPs 200 

identified as associating with both promoters and enhancers may point to specific 201 

genomic loci or gene regulatory networks where the lines between promoters and 202 

enhancers are most blurred. It is also possible that the factors in this group are most 203 

associated with looping between promoters and distal enhancer elements. Because 204 

DAPs localize to specific genomic states, we were able to reproducibly train random 205 

forest models capable of predicting the IDEAS state of a genomic region using binding 206 

information of only a small number of DAPs (Figure 2C). The prediction method was 207 

successful when using the combination of TFs/CFs/CRs, and also when trained only on 208 

direct DNA-binding proteins or only on CFs/CRs, requiring a subset of any of ~30 DAPs 209 

to achieve ~80% accuracy. 210 

Liver-specific TFs and genes reveal the cis- and trans-networks of 211 

HepG2  212 

Identifying transcription networks is important for understanding how genes specify a 213 

cell type and execute its activities. Our current understanding is that TFs, including key 214 

cell-type specifying factors, interact with other factors via combinatorial cross-regulation 215 

to drive gene expression in a cell-specific manner. To identify HepG2-specific cis-216 

regulatory elements, we used IDEAS segmentation to identify all promoter-like and 217 

enhancer-like regions in at least one of five other cell lines (GM12878, H1hESC, 218 

HUVEC, HeLa-S3, and K562), and filtered these regions from the HepG2 segmentation. 219 

In the resulting set of 59,115 putative HepG2-specific cis-regulatory regions, we found 220 
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significant enrichment (Fisher’s exact test, adjusted p-value <0.001, BH FDR corrected) 221 

of distinctive DAPs at HepG2-specific enhancer loci, including known liver-specific TFs 222 

such as HNF4A, HNF4G, CEBPA, and FOXA1, along with additional DAPs not 223 

previously associated with liver cell identity such as TEAD1, RXRB, and NFIL3 (Figure 224 

2D). 225 

Because HepG2 is a cancer cell line derived from liver tissue, we focused next on liver-226 

specific genes, filtering for genes that are highly and specifically expressed in liver and 227 

also expressed in HepG2 at levels of at least 10 TPM. This identified a total of 57 key 228 

liver/HepG2 specific genes. We then examined the peak calls of all 208 DAPs close to 229 

promoter regions of the 57 liver specific genes (+/- 2 kb from TSSs), finding between 13 230 

and 148 proteins associated with promoters of these genes. Pioneer TFs (capable of 231 

binding closed chromatin and usually involved in recruiting other factors [52,53]) such 232 

as FOXA1, FOXA2, and CEBPA, as well as key chromatin regulators such as EP300, 233 

associate with most of the 57 liver-specific genes (Figure 2E). Of note, the promoters of 234 

the very highly expressed liver genes ALB, APOA2, AHSG, FGA, and F2 (also known 235 

as thrombin) have very high apparent factor occupancy/association: 65, 148, 124, 114, 236 

and 130 DAPs, respectively (Figure 2E, Supplementary Figure 4). We examined DAP 237 

occupancy at the promoters of all genes as well as of those genes expressed at 10 238 

TPM or higher in HepG2, and compared these to DAP occupancy at the 57 liver-specific 239 

genes (Supplementary Figure 5, Supplementary Table 3). In each analysis, increasing 240 

factor number correlates positively with increasing RNA level. We note that some prior 241 

studies have suggested that high TF occupancy at highly expressed loci is a technical 242 

artifact of ChIP-seq [54], but, as described below in the section on HOT sites, several 243 

lines of evidence argue that these signals represent true biology. The 57 liver-specific 244 

genes have significantly higher expression (rank percentile t-test; p-value < 0.0001) 245 

when compared to other genes matched by number of DAPs, indicating a trend toward 246 

higher expression associated not only with a higher number of associated DAPs but 247 

with specific factor identities. We expanded our analysis to all genes that have higher 248 

expression than expected based on the number of DAPs associated at their promoters, 249 

identifying the particular factors enriched near these genes. For each of these DAPs, we 250 

then filtered all genes with ChIP-seq peaks called for the particular factor, ranking the 251 
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expression of those genes against that of other genes with near-equal number of 252 

associated factors (within 5% of the number of associated factors). We identified DAPs 253 

that are associated with higher than expected expression, including unsurprising factors 254 

such as PAF1 and RNA polymerase II subunit A (Ser2 phosphorylated), marks of active 255 

transcription, as well as ATF4 and HSF1 (Supplementary Figure 5). However, we note 256 

that there are still many DAPs that have not yet been assayed by ChIP-seq, and this 257 

could explain some of the deviation from expected expression.  258 
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Figure 2. Landscape of factor binding to regulatory states. A. Unsupervised clustering of the 208 
factors based on the binding enrichment at 36 IDEAS genome states and the 5 main clusters of factors, 
along with pie charts showing absolute binding fractions of an example of a factor from each cluster. B. 
Plot showing the fraction of promoter or enhancer binding for all 208 factors, with bars colored based on 
peak counts for each factor. C. Predictive ability of random forest classification of genomic regions as 
either enhancer or promoters based on number of factors used to train the algorithm. D. Enrichment of 
TFs at regions of the genome we classified as putative HepG2-specific cis-regulatory elements. E. 
Binding of TFs to liver specific gene promoters. 
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Distribution of DNA-associated proteins in putative cis-regulatory 259 

elements  260 

Though the 208 factors do not represent a complete catalog of all expressed factors in 261 

HepG2, we asked how much of the regulation in this cell line is captured by this partial 262 

compendium. We used IDEAS to define a set of 370,570 putative HepG2 cis-regulatory 263 

elements classified as promoters, “strong” enhancers, or “weak” enhancers (according 264 

to standard segmentation terminology). Discrete regions were specified by the IDEAS 265 

genomic segmentation, and were cataloged independent of their individual sizes, with 266 

merging of similar features within 100 base pairs (bp). This resulted in a broad size 267 

distribution, ranging from 200 bp to 12-16 kb; the larger segments usually represented 268 

locus control regions, divergent promoters (large, bidirectional promoters), or other 269 

similar significantly large genomic features (Supplementary Figure 6). We then 270 

calculated how many DAPs were associated in each of the 370,570 regions 271 

(Supplementary Figure 6). In terms of the general distribution of DAPs across all 272 

putative regulatory regions with called peaks, there are on average seven DAPs 273 

associated at any region, while 18% of the regions have only 1-5 called DAPs. 274 

Approximately 67% of the chromatin regions do not contain any called peaks; however, 275 

the vast majority of these (~85.5%) are classified as “weak” or “poised” enhancers by 276 

the IDEAS segmentation, and this class of elements is most likely to have the fewest 277 

number of associated factors and would therefore be more sensitive to completeness of 278 

assayed factors. It is also possible that these elements have undetectable levels of DAP 279 

occupancy or do not associate with any DAPs at all. Conversely, elements classified as 280 

promoters and “strong” enhancers by IDEAS are enriched for occupancy by higher 281 

numbers of DAPs (Supplementary Figure 6). Of the IDEAS-determined active promoter-282 

like regions in the HepG2 genome, 61% contain a called peak for at least one DAP in 283 

this dataset, and of the “strong” enhancer-like regions, 75% contain at least one called 284 

peak. This analysis shows that the majority of promoters and “strong” IDEAS-modeled 285 

enhancers have one or more DAPs associated, and that these occupied elements 286 

display an unexpectedly high average of 15 and 18 called per region, respectively. 287 
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Thus, these data capture a substantial overview of the TF/CF/CR regulatory network in 288 

HepG2 cells. 289 

Motif analysis reveals direct binding targets and factor associations 290 

We assessed motif enrichment in peaks, and found many previously derived motifs for 291 

both direct and potentially indirect associations, as well as a small number of potentially 292 

novel motifs. To derive and map motifs for each factor, we used the MEME software 293 

suite, TOMTOM, and Centrimo [20,21,55-58] to call and assess motifs for each 294 

experiment. We focused only on motifs called from the 171 putatively direct DNA-295 

binding TFs in our dataset, based on previous curation [2], filtering these motifs by 296 

significance (MEME E-value <1e-05) and enrichment (CMO E-value <1e-10) to obtain a 297 

high-confidence set of 293 motifs called from 160 TFs. We compared these motifs to 298 

the JASPAR databases [59,60] and to the CIS-BP database [4] to determine whether 299 

our de novo derived motifs matched previous findings from various in vivo and/or in vitro 300 

assays [61]. Overall, >80% of the 293 motifs had a similar motif in these databases 301 

(86% in CIS-BP build 1.02, 82% in JASPAR2018, 81% in JASPAR2016; Supplementary 302 

Figure 7). For 103 motifs derived from peaks for 77 unique TFs, the most similar motif in 303 

the database was annotated as the motif for the TF which was the target of the 304 

ChIP/CETCh-seq assay, and we term these cases “concordant” (Figure 3A, 305 

Supplementary table 4). There were 163 motifs derived from peak data for 103 TFs that 306 

were more similar to the database motif of a different TF, and we denote these as 307 

“discordant”. We also observed 27 motifs derived from peaks of 17 TFs that were highly 308 

dissimilar to any motifs in the databases and may be novel motifs; most of these were 309 

from Zinc-Finger TFs, a large class of factors that is virtually unassayed by endogenous 310 

ChIP-seq.  311 

Examining the 163 discordant motifs, we observed an enrichment of motifs representing 312 

pioneer TFs such as FOXA1, and we hypothesize that these motifs were called due to 313 

their significant co-occurrence with the assayed TFs. Previous studies have noted the 314 

enrichment in ChIP-seq data of sequences that do not appear to be binding motifs for 315 

assayed TFs, but rather are more similar to other TF motifs [62]. There are multiple 316 
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potential explanations for why the ChIP-seq derived motif would most closely match a 317 

motif previously annotated for another factor. Related TFs often recognize very similar 318 

sequence motifs; for example, the motif we derived for TEAD4 was very similar to the 319 

motif previously found for TEAD1 [63]. There are also instances where a factor lacks a 320 

strong and specific DNA binding domain and no motif would be expected unless the 321 

motif represents a frequent co-binding partner, a scenario we explore below with 322 

GATAD2A, and also seen with HMG factors. A similar explanation involves a particular 323 

TF acting as an “anchor” at a locus, and through either direct protein:protein 324 

interactions, or by inducing an open chromatin environment, behaves as the mechanism 325 

for localization of other proteins to that region of DNA. A well-studied example of this 326 

highlighted in our data was the enrichment of the CTCF motif in RAD21 ChIP-seq, as 327 

RAD21 lacks a DNA-binding domain but is known to interact with CTCF. It is difficult to 328 

confidently determine whether a discordant motif represents a key co-factor interaction 329 

or a commonly co-localized protein. We note that when we called multiple, distinct, high-330 

confidence motifs in a single ChIP-seq experiment, with one motif annotated in 331 

databases as the direct target of the assayed TF and another motif representing a 332 

different TF that we also assayed separately, we were able to observe from the 333 

secondary factor’s ChIP-seq experiment that both TFs are likely associated at these 334 

loci, since both experiments yielded called peaks at these loci.  335 

Supporting our hypothesis that the secondary factor’s motif was not a site of direct 336 

binding for the primary factor, an examination of the precise location of the motifs within 337 

peaks showed a significant difference (K-S test p-value < 2.2e-16) where the direct 338 

matching motifs of the assayed factors are closer to the center of called peaks, and the 339 

discordant motifs for other TFs are more offset, providing evidence for co-occurrence at 340 

these locations (Figure 3B). Direct interaction and co-recruitment between these pairs of 341 

TFs could explain these observations, and numerous examples of such combinatory 342 

and cooperative activities between TF pairs have been reported (reviewed in [64]). We 343 

also found no significant trend for secondary TF motifs in any factor clusters we 344 

identified by IDEAS state preferences or other methods, suggesting that no biases were 345 

introduced by contributions from particular genomic loci (Supplementary Figure 8). 346 

Additionally, we analyzed the peak locations of the 27 novel motifs (representing 17 347 
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factors) that were highly dissimilar to any motifs in CIS-BP, and the majority showed 348 

enrichment at the center of peaks (Supplementary Figure 9), supporting the notion that 349 

these motifs represent direct DNA binding for these factors.  350 

To better understand discordant TF motif calls, we constructed a similarity heatmap 351 

using all 293 high-confidence motifs from our data and the motif for each assayed TF 352 

annotated in the CIS-BP database (n=733) as provided by the MEME suite software 353 

(Figure 3C). This analysis clustered TFs both by similarity of their direct binding motifs 354 

(such as all Forkhead factors) and by co-occurrence with other motifs. In this way, we 355 

were able to identify TFs that associate at genomic loci near particular motifs, such as 356 

CTCF. Most obvious was a set of 37 factors for which a Forkhead motif was called, 357 

indicating the high prevalence of this motif in HepG2 at enhancers and promoters, and 358 

the key role of factors such as FOXA1 and FOXA2 in the gene regulatory network in 359 

these cells. We examined these cases using our ChIP-seq data from six FOX TFs 360 

(FOXA1, FOXA2, FOXA3, FOXK1, FOXO1, and FOXP1), asking how often each of 361 

these FOX TFs yielded called peaks with a FOX motif that overlapped with a peak for 362 

any of these 37 other factors, and we found that most of the 37 contained a FOX peak 363 

with FOX motif in about 20% of their peaks, with FOXA1 and FOXA3 motifs being the 364 

most common (Figure 3D).  365 

We next examined the location of the FOX motif in the overlapping peaks and found 366 

that all were offset to varying degrees, though always with median distance more than 367 

20 bp from the center of peaks (Figure 3D). Additionally, we examined all peaks called 368 

for each of the 37 factors and identified the fraction containing a primary motif specific to 369 

the individual factor along with a FOX motif, the fraction containing only the primary 370 

motif, the fraction containing only a FOX motif, and the fraction containing neither motif 371 

(Supplementary Figure 10). For most of the 37 factors, the majority of peaks did not 372 

contain a primary motif, a result that may indicate protein:protein interactions and/or 373 

looping events in these peaks. Further, examining peak overlaps between these 37 374 

factors and the six FOX TFs, we observed varying associations and co-occupancy 375 

partners, including factor preferences for individual FOX TFs, as well as a cluster of 376 
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components of the nucleosome remodeling and histone deacetylase (NuRD) complex 377 

(Supplementary Figure 10).  378 

We also found that motif information alone was predictive of genomic segments, clearly 379 

showing segregation between IDEAS states in a PCA (Figure 3E). A random forest 380 

algorithm trained only on motifs was able to predict IDEAS states almost as well as the 381 

method trained on ChIP-seq peaks, achieving ~80% success with any ~40 motifs 382 

(Figure 3F). 383 
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Figure 3. Motif Identification and Analysis. A. The 293 high-confidence motifs derived from analysis of 

the ChIP-seq data were quantitatively compared to all (human) motifs in the CIS-BP database and plotted 

based on similarity scores. Blue points represent motifs that matched the assayed factor, yellow points 

represent motifs that match a factor other than the one assayed, and red points represent motifs not 

similar to any in CIS-BP. B. Histograms showing the distance from the center of the ChIP-seq peak for 

motifs that match the TF, and for motifs that do not match the TF. C. Clustered heat map showing the 

similarity of all 293 significant motifs to 733 motifs from CIS-BP for the assayed factors. D. Further 

analysis of the cluster containing 37 factors that had FOX family motifs, showing the overlap of FOX TF 

binding in these peaks, as well as the median offset of the FOX motif from center of the ChIP-seq peaks. 

E. PCA showing separation of motifs that fall in promoters vs. those that fall in enhancers. F. Prediction 

accuracy for calling whether an element is a promoter or enhancer based on motifs present.  

 384 

Known and novel associations between factors  385 

TFs and chromatin regulatory proteins can interact with and recruit other DAPs through 386 

direct and indirect physical association. While the activity of a few key TFs may be very 387 

important for cell-state expression, it is likely that combinatorial events are necessary to 388 

fine tune expression [65]. We found both known and novel associations by examining 389 

occupancy overlaps and trends in a variety of analyses.  390 

To identify candidate co-occupancy events mediated by direct DNA binding or by 391 

indirect interactions, both of which produce peaks in ChIP-seq data, we performed 392 

several analyses. We used the PCA of the protein-bound genomic loci described above 393 

(in which genomic loci clustered according to the DAPs associated at each region; 394 

Figure 1C-E), and generated a correlation matrix based on the cumulative principal 395 

component distances (weighted by the proportion of variance explained by each 396 

component) between all DAPs. The resulting unsupervised clustering of respective 397 

pairwise distances highlighted punctate groups representing both known and potentially 398 

novel complexes, including a group containing POL2 and TSS-associated chromatin 399 

modifying enzymes, a group of cohesin complex members, a group of liver-specific 400 

factors, and a group containing the NuRD complex, among others (Figure 4A). 401 
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We performed read count Spearman correlations between all 208 DAPs by calculating 402 

raw sequencing counts at every unique locus present in called peaks in any experiment 403 

(+/- 50 bp from peak center). The resulting correlation heatmap also showed clusters of 404 

related proteins as well as both known and potentially novel interactions 405 

(Supplementary Figure 11). Network plots based on pairwise peak overlaps highlighted 406 

a number of known interactions, including CTCF/RAD21 and CEBPA/G networks, as 407 

well as DAPs that associate with a large number of other factors, usually chromatin 408 

regulatory proteins such as SAP130, GATAD2A, and ARID5B (Figure 4B). We 409 

examined the associations at the level of called motifs by finding the peaks in each 410 

experiment where a specific called motif was present, limiting the analysis to the 293 411 

high-confidence motifs from the 171 TFs in the data set. Upon identification of the 412 

primary motif, we looked for associations between motifs 1-40 bp away (Supplementary 413 

Figure 12). This analysis reveals the TFs (and motifs) that are more likely to associate 414 

with any other particular TF’s motif. Of note, we observed that RAD21 is highly 415 

associated with CTCF motifs, as expected, and we also found several other known 416 

complexes as well as some novel associations. We found that FOXA1 peaks with the 417 

canonical Forkhead motif are more likely to contain relatively few motifs for other 418 

factors, but that many factors, such as HNF4A, HNF4G, and RXRB, are enriched for 419 

nearby FOXA1 motifs.  420 
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Figure 4. Co-localization of factors. A. Correlation matrix based on the cumulative principal component 

distances weighted by the proportion of variance explained by each component between all factors, 

derived from the PCA of all genomic loci with a peak containing at least two factors. B. Subset of network 

plot derived from peak overlaps between all factors showing strong associations between a subset of 

factors. C. Self-organizing map for FOXA2 in HepG2, with metaclusters showing major associations with 

specific factors. 

 421 

For an independent assessment of co-occupancy, we trained a chromatin self-422 

organizing map (SOM) [66] using all 208 DAPs with the SOMatic package [67]. This 423 

analysis generated 196 distinct clusters of SOM units, with each such “meta-cluster” 424 

sharing similar profiles, and corresponding decision trees that trace the supervised 425 

learning path used to determine the unique features of each metacluster profile (Figure 426 

4C, Supplementary Figures 13, 14). Focusing on the key HepG2 transcription factors 427 

FOXA1/2 and HNF4A, we found that 18 distinct metaclusters accounted for nearly half 428 

of the peaks for these 3 TFs (43% for FOXA1, 43% for FOXA2, and 49% for HNF4A). 429 
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DAPs important for liver development, nucleosome remodeling, and the cohesin 430 

complex show high co-binding signal in these key 18 metaclusters.  431 

Looking closer at the DAPs that distinguish these 18 key clusters, we found that five of 432 

these (numbered as 32, 34, 56, 120, and 137) show strong signal from CEBPB, 433 

SAP130, and RAD21 (Figure 4C, Supplementary Figure 13). In particular, metacluster 434 

32 had a collection of unique features related to the NuRD complex and liver processes 435 

(Supplementary Figure 13). A decision tree trained on regions in this cluster highlighted 436 

the presence of TAF1 and MTA1 (part of the NuRD complex) and the absence of a high 437 

signal of KLF16 (a known TF displacer) as sufficient to predict association with MBD1, 438 

HBP1, and HDAC2 (a sub-unit of the NuRD complex) with ~91% accuracy. GREAT 439 

(Genomic Regions Enrichment of Annotations Tool [68]) analysis of these regions 440 

revealed a related set of negative regulation and response GO terms (Supplementary 441 

Figure 13), which provides further evidence that the NuRD complex is involved in tissue 442 

specific gene regulation.  443 

The indirect motif, co-occupancy, and SOM analyses led us to find novel factors 444 

associated with GATAD2A, a core component of the NuRD complex. GATAD2A has 445 

been recalcitrant to antibody ChIP-seq and therefore was one of the targets for our 446 

CETCh-seq protocol. The experiments revealed that 53% of the GATAD2A peaks in 447 

HepG2 are annotated as active enhancers (Figure 5A), a surprising observation given 448 

the association of the NuRD complex with transcriptional repression and enhancer 449 

decommissioning [69-71]. GATAD2A has a very degenerate DNA binding domain, and 450 

is not predicted to bind DNA independently, and indeed we found the called GATAD2A 451 

motif to match FOXA3 (Figure 5B). In our co-association analysis in HepG2, we 452 

identified 6 factors that co-occur in discrete genomic regions with GATAD2A (Figure 453 

5C). We analyzed our GATAD2A-FLAG protein immunoprecipitation by mass 454 

spectrometry, and this revealed that multiple components of the NuRD complex also co-455 

immunoprecipitate with GATAD2A (Supplementary Table 5). Of the GATAD2A-456 

associated proteins, ZNF219 [72], SMAD4 [73], and RARA [74] have previously been 457 

associated with the NuRD complex (Figure 5C). We additionally identified ARID5B, 458 

FOXA3, and SOX13 as proteins associated with the known NuRD group, specifically at 459 
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active enhancers with enrichment of Forkhead binding sites (Figures 5B, 5C). The 460 

classic NuRD complex has been suggested to function at enhancer regions associated 461 

with tissue-specific gene regulation [75], and our data confirms that the core NuRD 462 

component GATAD2A is recruited into these regions. Of note, NuRD binding at these 463 

open and presumably active regions is thought to function through a NuRD complex 464 

containing MBD3 and not MBD2, and our GATAD2A-FLAG IP-mass spectrometry data 465 

confirmed this, as we observed MBD3 peptides but no MBD2 peptides 466 

immunoprecipitated with GATAD2A (Supplementary Table 5) [76]. 467 

 

Figure 5. GATAD2A co-localization analysis. A. IDEAS state binding for GATAD2A showing 
enrichment at enhancers. B. Presence of top motifs at GATA2DA bound regions and the top motif called 
at these peaks. C. NuRD complex members and their identification through IP mass spec of GATAD2A 
IPs, and through co-binding at GATAD2A bound loci. 

Highly occupied regions are driven by individual TF binding 468 

We examined how many factors were bound at each putative cis-regulatory element by 469 

merging all peaks from all 208 DAP experiments, with a maximum merged size of 2 kb. 470 

This analysis yielded a total of 282,105 genomic sites with at least one associated DAP, 471 

a mean of 7.36 associated DAPs, and maximum of 168 DAPs. We asked if certain 472 

DAPs are more likely to co-occupy at genomic loci with a high number of other DAPs. 473 

To answer this, we performed hierarchical clustering of the degree of co-association for 474 

each DAP, which results in three distinct clusters (Figure 6). The first is  475 
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a cluster of 33 proteins, 476 

including previously 477 

described key pioneer 478 

factors such as FOXA1 and 479 

FOXA2 [77], which exhibit a 480 

low degree of co-occupancy 481 

with other DAPs at a 482 

relatively high proportion of 483 

their binding sites [78]. The 484 

second cluster, comprised of 485 

32 DAPs, displays frequent 486 

association at higher co-487 

occupancy regions and is 488 

composed of DAPs already 489 

known to be recruited by, or 490 

to interact with, a large 491 

number of other factors, 492 

such as MYC and DNMT3B 493 

[79,80]. The third cluster contains the remaining DAPs, which exhibit an intermediate 494 

degree of co-occupancy, including key HepG2 TFs such as HNF4A and FOXA3. 495 

As previously described [81-83], there are many regions in the genome occupied by 496 

large numbers of DAPs in ChIP-seq assays (example shown in Supplementary Figure 497 

15). There are several possibilities to explain these High Occupancy Target (HOT) 498 

regions [84]. Some researchers have filtered all or the majority of these regions from 499 

analyses under the assumption they are artifacts [54,85]. It is also possible that they are 500 

the result of stochastic shuffling of direct binding of many DAPs in a population of cells; 501 

when assayed across the millions of cells used for an individual ChIP-seq experiment, 502 

this could result in apparent co-localization of peaks for many DAPs which are not 503 

actually co-occupied at the same time in the same cell. Mechanisms underlying this 504 

might include indiscriminant recruitment driven by key factors or some unknown 505 

property of these regions of open chromatin, or by densely packed DNA sequence 506 

 

Figure 6. Factor enrichment at loci with increasing number of 

factors bound.  
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motifs. It is also conceivable that three-dimensional genomic interactions, including 507 

enhancer looping and/or protein complexes, lead to ChIP-seq cross-linking of DAPs in 508 

close proximity.  509 

We define HOT regions in these data as those sites with 70 or more DAPs within a 2 kb 510 

region (n=5,676). Intersecting HOT regions with the previously described IDEAS 511 

segmentations revealed that greater than 92% of HOT regions map to candidate 512 

promoter or “strong” enhancer-like states (42.25% and 49.88% respectively). We 513 

determined using GREAT analysis that promoter-localized HOT regions are associated 514 

with housekeeping genes and that distal enhancer HOT regions are near genes 515 

associated with liver-specific pathways (Supplementary Figure 16). Additionally, we 516 

observed that higher numbers of factors in a particular locus correlates with higher 517 

expression of the nearest gene (as discussed above) and with higher sequence 518 

conservation (Supplementary Figures 17, 18). While previous researchers have noted 519 

apparent general ChIP bias favoring highly expressed genomic regions [54], we are 520 

able to perform ChIP in untagged cells with an antibody raised against the epitope tag 521 

used in CETCh-seq experiments, normalizing for this background in peak-calling, and 522 

the HOT regions continue to be strongly enriched (data not shown). 523 

We computationally examined the general DNA motif structure of the HOT sites using 524 

PIQ (Protein Interaction Quantification) [86]. Using TF footprints identified in ENCODE 525 

HepG2 DNaseI hypersensitivity data by PIQ, we observed that at a given locus the 526 

number of TF footprints is significantly positively correlated with the number of factors 527 

that have called peaks in the locus (Supplementary Figure 19). This observation was 528 

true at multiple PIQ purity (positive predictive value) thresholds and also when using TF 529 

footprints called in the same data set from JASPAR motifs. This is consistent with HOT 530 

regions having TF motif-driven architecture as a major characteristic. To determine 531 

whether factor occupancy at highly bound regions is driven by specific DNA motifs, we 532 

trained a Support Vector Machine (SVM) on “HOT-motif” sites, a set of peaks with 50 or 533 

more co-localized motifs derived from the HOT sites (n=2,040). We tested the SVM’s 534 

predictive ability as the number of TFs increased, and observed that predictions 535 

remained constant, rather than declining, further strengthening the notion that these 536 
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sites are not artifacts (Supplementary Figure 20). Precision Recall Area Under Curve 537 

(PR-AUC) scores for the SVM averaged at ~0.74 for motif-level predictions, and ~0.66 538 

for peak-level predictions, scores substantially higher than expected, given the random 539 

sample of a positive set of 5,000 sites tested against 10X GC-matched null sequences 540 

as the negative set (Supplementary Figure 21). We also found, using the k-mers 541 

generated by the SVM, that there are 1-5 TFs at each site with very high motif affinity, 542 

and ~25-50 TFs with degenerate or weaker motifs (Supplementary Figure 22), and this 543 

observation was true when examining both HOT-motif sites and the broader HOT sites.  544 

We asked whether this observation was unique to HOT regions (n=5,676) when 545 

compared to an equal number of enhancer regions with only 2-10 associated factors or 546 

to a null set of random enhancer elements with any number (0-208 DAPs) of associated 547 

factors (as defined by IDEAS segmentation). We observed that the sites with 2-10 548 

factors had significantly fewer numbers of both high-affinity and low-affinity TF motifs, 549 

and that the random enhancers were essentially devoid of strong motifs (Supplementary 550 

Figures 22, 23). Indeed, the distribution of SVM scores in HOT sites was significantly 551 

higher than that of the SVM scores of sites with 2-10 associated factors, and both were 552 

significantly higher than that of the null set of random enhancer elements, indicating that 553 

the information imparted by the DNA sequence of HOT sites exceeds that of other cis-554 

regulatory elements (Supplementary Figure 24). Moreover, in HOT sites, the strongest 555 

affinity TF at any individual peak varied across sites, indicating regulatory roles 556 

attributable to many different factors. The analysis identified important liver factors, such 557 

as FOXA3, HNF1A, and CEBPA exhibiting the strongest putative motif affinity at many 558 

of these sites (Supplementary Figure 25). This supports the notion that HOT sites are 559 

driven by a few strong and specific TF-DNA interactions and non-specific recruitment of 560 

other factors, likely through both protein complexes and binding to degenerate motifs, 561 

and possibly linking together multiple distal genomic regions through DAP interactions. 562 

This further justifies the importance of generating complete DAP maps to determine the 563 

full complement of DAPs associated at each locus, an outcome that would not occur by 564 

analysis of functional motifs only.  565 

Discussion 566 
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This study introduces a community data resource of occupancy maps for human 567 

transcription factors, transcriptional co-factors, and chromatin regulators that illustrates 568 

the strengths of building toward a complete catalog of DAP interactions in an individual 569 

cell type. At this intermediate stage of factor-completeness (~22% of all expressed 570 

DAPs in HepG2) the aggregated data enabled us to identify multiple known complexes 571 

and associations through various analyses, and to identify putative novel associations 572 

for future research. We also gained new insights into gene regulatory principles, clearly 573 

showing the segregation of categories of factors associated with varying localization at 574 

particular genomic states. 575 

We approached our analysis from complementary directions, analyzing occupancy from 576 

the perspective of factor occupancy patterns and from the perspective of genomic loci 577 

and the factors that associate at those sites. Multiple analyses showed that some DAPs, 578 

including TFs, associate preferentially at promoters, while others, including different 579 

TFs, prefer enhancers. They are parts of a continuous distribution, and many factors are 580 

associated with both proximal and distal elements in varying degrees. This broad 581 

gradient of function among DAPs now poses questions about the underlying 582 

mechanisms.  583 

The large number of factors assayed provided the capacity to identify and study regions 584 

of the genome associated with very high numbers of DAPs, compared with expectations 585 

from detailed work on specific enhancer complexes like the interferon enhanceosome 586 

[87]. Multiple lines of evidence argue that, as a group, the regions with high numbers of 587 

factors detected are neither biological noise associated with general open chromatin nor 588 

ChIP-seq/CETCh-seq technical artifacts. HOT regions have been previously described 589 

as being depleted of TF motifs, but we now suggest that this was likely due to the fact 590 

that earlier analyses lacked a large enough sampling of key TFs with strong “anchoring” 591 

motifs. Our current analyses were informed by a much larger sampling of TFs and other 592 

DAPs, and they lead us to propose a model in which HOT regions are nucleated by 593 

anchoring DNA motifs and their cognate TFs. They would form a core, with which many 594 

other DAPs can and do associate by presumed protein:protein interactions, protein:RNA 595 

interactions, and relatively weak DNA interactions at poorer sequence-motif matches. 596 
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Extensive apparent co-occupancy at domains possessing few or zero anchor motifs can 597 

potentially be explained when the ChIP assay captures, through presumed 598 

protein:protein fixation, non-adjacent DNA regions that associate with each other by 599 

looping interactions.  600 

It is important to appreciate that the standard ChIP assay is performed on large cell 601 

populations. This means that patterns of computational co-occupancy, which we report 602 

on here, cannot discriminate between the simultaneous association of many factors in a 603 

single large molecular complex versus diversified smaller complexes that are distributed 604 

at any given time across the cell population, with each containing a smaller number of 605 

secondary associations, that sum to give massive computational co-occupancy. We 606 

can, however, state that at individual known transcriptional enhancers with >70 factors, 607 

the ChIP signal for identified anchor factors was significantly higher in magnitude.  608 

The results thus far argue that a fully comprehensive catalog of all DAPs will help us to 609 

parse among these possibilities, which are not mutually exclusive. Completeness 610 

should also contribute to identification of additional novel motifs, and, in the cases of 611 

indirect motifs found for factors with known direct motifs, allow for more accurate motif-612 

calling. Additionally, a complete catalog of factors in a single cell type will support 613 

imputation of critical contacts in DAP networks for three dimensional assembly of 614 

genomic enhancer-promoter organization not possible from a few individual DAP 615 

binding maps, as demonstrated by our findings regarding the NuRD complex. 616 

We anticipate the continued addition of data from more DAPs, and aim to achieve factor 617 

completeness in at least one cell line, and hopefully more. We are very interested in 618 

learning which of the patterns we observe are specific to HepG2, and which will be 619 

recapitulated in other cell lines and, importantly, in primary cells or tissues. The 620 

ENCODE Project also continues to expand cellular contexts for these assays. We 621 

anticipate more large-scale analyses such as this, and hope that the perspectives 622 

gained from these inform more targeted research endeavors and generate meaningful 623 

hypotheses. 624 

 625 
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Methods 626 

Data access: 627 

Data sets generated from this study are available at the ENCODE portal and at Gene 628 

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) under accession number 629 

GSE104247 630 

ChIP-seq/CETCh-seq: 631 

All protocols for ChIP-seq and CETCh-seq are previously published and available at the 632 

ENCODE web portal (www.encodeproject.org/documents) [17,52]. Briefly, pools of cells 633 

were grown separately to represent replicate experiments. Crosslinking of cells was 634 

performed with 1% formaldehyde for 10 minutes at room temperature and the chromatin 635 

was sheared using a Bioruptor® Twin instrument (Diagenode). Antibody 636 

Characterization Standards are published on the ENCODE web portal and consist of a 637 

primary validation (western blot or IP-western blot) and a secondary validation (IP 638 

followed by mass spectrometry) for traditional antibody ChIP-seq. With CETCh-seq 639 

experiments, a molecular validation (PCR or Sanger sequencing confirmation of edited 640 

genes) in addition to one of the immunological validations (western blot, IP-western blot, 641 

or IP-mass spectrometry) is required for release. Raw fastq data were downloaded from 642 

the publicly available ENCODE Data Coordination Center, and aligned to human 643 

reference genome (hg19) using BWA-0.7.12 (Burrows Wheeler Aligner) alignment 644 

algorithm [88]. Post alignment filtering steps were carried out by samtools-1.3 [89] with 645 

MAPQ threshold of 30, and duplicate removal was performed using picard-tools-1.88 [ 646 

http://picard.sourceforge.net ]. Followed by filtering, each TF’s genome-wide binding 647 

sites (peak enrichment) were computed using phantompeakqualtools, implementing 648 

SPP algorithm [43,46], with replicate consistency and peak ranking determined by 649 

Irreproducible Discovery Rate (IDR) using the IDR-2.0.2 tool [56] to generate 650 

narrowpeaks passing IDR cutoff 0.02 (soft-idr-threshold). ENCODE blacklisted regions 651 

(wgEncodeDacMapabilityConsensusExcludable.bed.gz, downloadable from UCSC 652 

genome browser https://genome.ucsc.edu/) were filtered out. Additionally, we note that 653 

plasmids used to generate edited cells with epitope-tagged TFs are deposited to 654 
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Addgene, the non-profit plasmid repository, and are available for researchers to tag 655 

these factors in other cell lines of interest. We also note that GC content of DNA has 656 

been reported as a source of bias in ChIP-seq data, leading to over-representation of 657 

TFBSs and false positive peak calls, which could confound subsequent analyses 658 

[90,91]. To address this concern, we have performed ChIP-seq experiments in unedited 659 

cell lines using the FLAG antibody (Sigma F1804) utilized in CETCh-seq, and used 660 

these libraries as background for peak-calling. In these experiments, the only variable is 661 

the edited cell line used as foreground, and most biases should be accounted for. 662 

De novo sequence motif analysis: 663 

To identify enriched sequence motifs in the binding sites of sequence-specific factors, 664 

de novo sequence motif and motif enrichment analysis was performed using MEME-665 

ChIP [56] suite and pipeline was built as previously described [57], on 500 bp regions 666 

centered on peak summits based on hg19 reference genome fasta. Top 5 motifs per 667 

dataset were reported from top 500 peaks based on signal value, using 2X random/null 668 

sequence with matched size, GC content and repeat fraction as a background. Central 669 

motif enrichment analysis was performed using Centrimo [21], to infer most centrally 670 

enriched motifs with de novo motifs generated from the pipeline against the 2X null 671 

sequence background.  672 

Comparative motif analysis: 673 

De novo motifs generated from DNA binding factors were filtered for high confidence 674 

motifs, including only highly significant and strongly enriched in binding sites, based on 675 

MEME E-value < 1e-05, Centrimo E-value < 1e-10 and Centrimo binwidth < 150. High 676 

confidence motifs were then compared, and quantified for similarity against the 677 

previously derived or known motifs available in the CIS-BP build 1.02 and JASPAR 678 

2016/2018 databases [4,59,60] using TOMTOM quantification tool [58]. TOMTOM E-679 

values < 0.05 represent highly similar motifs, and > 0.05 represent the motifs with 680 

increasing magnitude of dissimilarity, or more distantly related motifs. 681 

Gene expression: 682 
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RNA-Seq quantification data (TPM, transcripts per million) for 56 cell lines and 37 683 

tissues were retrieved from Human Protein Atlas (version 17, downloadable from 684 

https://www.proteinatlas.org/) [92], and used to identify 57 genes highly and specifically 685 

expressed in liver as compared to all other cell and tissue types, and also found in 686 

HepG2 with at least 10 TPM. On average, these 57 liver specific genes were 151.21 687 

times expressed than any other cell types.  688 

IDEAS segmentation: 689 

IDEAS segmentation for six cell-types -- HepG2, GM12878, H1hESC, HUVEC, 690 

HeLaS3, and K562 – were collected from the Penn State Genome Browser 691 

(http://main.genome-browser.bx.psu.edu/). All promoter-like and enhancer-like regions 692 

identified in at least one of five other cell lines, were merged using pybedtools [93,94] 693 

and these regions were filtered from the HepG2 segmentation. Significant enrichment of 694 

TF’s in the cis-regulatory regions was evaluated using Fisher’s exact test (pval 695 

adjusted<0.001, BH FDR corrected) against random or null sequence with matched 696 

length, GC content and repeat fraction using null sequence python script from Kmer-697 

SVM [95]. Heatmaps were generated using heatmap.2 function from R gplots package 698 

[https://cran.r-project.org/web/packages/gplots/].  699 

GREAT analysis: 700 

Cis-regulatory associated highly TF bound sites were binned into promoter-associated 701 

and enhancer-associated sites using IDEAS segmentation. To assess the biological 702 

function and relevance of these highly TF occupied sites, GREAT (Genomic Regions 703 

Enrichment of Annotations Tool) [68] analysis was performed to predict the function of 704 

TF bound cis-regulatory regions (http://bejerano.stanford.edu/great/public/html/) 705 

associating the genomic regions to genes from various ontologies such as GO 706 

molecular function, MSigDB and BioCyc pathway. The parameters used for GREAT 707 

analysis were Basal+extension (constitutive 5.0 kb upstream and 1.0 kb downstream, 708 

up to 50.0 kb max extension) for all enhancer-associated sites, and Basal+extension 709 

(constitutive 5.0 kb upstream and 1.0 kb downstream, up to 5.0 kb max extension) for 710 
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all promoter-associated regions with whole genome background. MSigDB pathway 711 

[96,97] was noted for genomic region enrichment analysis. 712 

GERP analysis: 713 

GERP (Genomic Evolutionary Rate Profiling) was performed to assess if highly TF 714 

bound cis-regulatory sites, categorized into promoter and enhancer-associated, 715 

correlates with increased evolutionary constraints. Highly constrained elements bed file 716 

containing high confidence regions (significant p-value) generated from per 717 

base GERP scores was retrieved from Sidow lab 718 

(http://mendel.stanford.edu/SidowLab/downloads/gerp/). Fraction of overlapping bases 719 

for each bins of “TF bound category” (low to high) with highly constrained elements was 720 

computed using bedtools-2.26.0 [94] and pandas-0.20.3, python2.7, further normalized 721 

by the fraction of “highly constrained elements” overlapping per 100 bp sized-region of 722 

TF bound categories. Additionally, Kolmogorov-Smirnov (KS) test was performed to 723 

evaluate statistically significant differences in distribution between the highly bound (20+ 724 

TF bound) and lowly bound regions (1-19 TF bound sites) for both promoter- and 725 

enhancer-associated sites. 726 

Co-binding analysis: 727 

Pairwise overlap of binding sites between each of the 208 TFs was performed with 50 728 

bp up and downstream from the summit of peaks using python based pybedtools 729 

[93,94]. All other computations, and the pairwise peak overlap percentage for each TF 730 

to build the pairwise matrix, were performed using pandas-0.20.3, python2.7 [Python 731 

Software Foundation] to construct network plots, using R igraph, implementing 732 

Fruchterman Reingold algorithm. The interconnection between TF shared binding sites 733 

for 208 TFs was built with a minimum threshold of 75% or more overlap between any 2 734 

factors. The sizes of vertices and nodes in the graph are representative of the number 735 

of connections each TF has with its connected partner, while edges represent the 736 

degree of overlap between TFs.  737 

Co-binding was characterized by merging IDR-passing narrow peak files from 208 TFs 738 

with the “merge” function from the bedtools software package [98]. A minimum of 1 bp 739 
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overlap was required and resultant peaks greater than 2 kb (~1%) were filtered from 740 

downstream analysis. Hierarchical clustering, using the Euclidean distance metric and 741 

Ward clustering method, of TFs based on degree of co-binding was performed in R with 742 

the “heatmap.2” function of the gplots package.  743 

LS-GKM SVM analysis: 744 

At peak level, LS-GKM support vector machines (SVMs) [99] were trained on a random 745 

sample of up to 5,000 narrow peaks (using all peaks for those with fewer) as a positive 746 

set against 10X random/null sequence with matched size, GC-content and repeat 747 

fraction as a negative set. At motif level, LS-GKM support vector machines (SVMs) [99] 748 

were trained on a sample of 5,000 random motif sites found by FIMO (MEME-suite), 749 

extending +/- 15 bp, for all DNA binding factors (n=171), as a positive set against the 750 

10X random-null sequence with GC content and repeat fraction matched sequence as a 751 

negative set. 752 

Null genomic sequences matched to observed binding events were obtained using the 753 

“nullseq_generate.py” function available with the LS-GKM package. The fold number of 754 

sequences (-x) was set to ten and the random seed (-r) was set to 1. SVMs were 755 

trained using the “gkmtrain” function with a kmer length (-l) of 11, kernel function (-t) of 756 

4, regularization parameter (-c) of 1, number of informative columns (-k) of 7, and 757 

maximum number of mismatches (-d) of 3. Precision-recall area under the curves (PR-758 

AUC) were calculated by obtaining the 10-fold cross-validation results from “gkmtrain” 759 

(after setting the –x flag to 10), and inputting the results into the “pr.curve” function of 760 

the PRROC R package, resulting in mean PR-AUC of 0.66 at the peak level, and 0.74 761 

at the motif level. Classifier values for all bound sequences were obtained using the 762 

“gkmpredict” function, and HOT sites (n=5,676) were scored with each DNA associated 763 

factor to assess their putative binding affinity at HOT regions, and percentile ranked to 764 

obtain top 5 percent and bottom 75 percent k-mer compared to enhancers with 2-10 765 

associated TFs (n=5,676) and to random enhancers with any number of associated 766 

factors (0+) (n=5,676).   767 

Random Forest and PCA analysis: 768 
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Principal Component Analysis (PCA) was performed on a DAP binding matrix 769 

composed of the presence or absence of motif in merged peaks as a binary matrix of 770 

loci, and implementing the python based ML library scikit-learn Sklearn (0.19.0) [100]. 771 

Plots for motif-based analyses were generated using the R package ggplot2 [101] and 772 

complex Heatmap [102]. Random Forest Classifier was trained on merged DAP binding 773 

matrices at both motif and peak level to predict cis-regulatory elements (promoter or 774 

enhancer, by IDEAS annotation) using the R package ranger [103], a faster 775 

implementation of random forest in R, and also tested using Sklearn 0.19.0. Median 776 

OOB (Out-of-bag) error estimate was computed for 100 instances of randomly sampled 777 

(n=1000) loci iterations, to compute the element classification and misclassification 778 

accuracy using confusion matrix. 779 

IP-mass spectrometry: 780 

Whole cell lysates of FLAG-tagged or unedited HepG2 cells (~20 million) were 781 

immunoprecipitated using a primary antibody raised against FLAG or the transcription 782 

factor, respectively. The IP fraction was loaded on a 12% TGX™ gel and separated with 783 

the Mini-PROTEAN® Tetra Cell System (Bio-Rad). The whole lane was excised and 784 

sent to the University of Alabama at Birmingham Cancer Center Mass 785 

Spectrometry/Proteomics Shared Facility. The sample was analyzed on a LTQ XL 786 

Linear Ion Trap Mass Spectrometer by LC-ESI-MS/MS. Peptides were identified using 787 

SEQUEST tandem mass spectral analysis with probability based matching at p < 788 

0.05. SEQUEST results were reported with ProteinProphet protXML Viewer (TPP v4.4 789 

JETSTREAM) and filtered for a minimum probability of 0.9. For ENCODE Antibody 790 

Characterization Standards, all protein hits that met these criteria were reported, 791 

including common contaminants. Fold enrichment for each protein reported was 792 

determined using a custom script based on the FC-B score calculation [104]. Following 793 

ENCODE Antibody Characterization Guidelines, the transcription factor must be in the 794 

top 20 enriched proteins identified by IP-MS, and the top transcription factor overall for 795 

release. For GATAD2A co-associated TFs, the peptides with minimum 0.9 probability 796 

were present in less quantities than those of GATAD2A. 797 
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Transcription factors footprints analysis: 798 

 799 

To identify TF footprints for comparison to ChIP-seq binding sites, we used PIQ (Protein 800 

Interaction Quantification) [86]. ENCODE HepG2 DNAse-seq raw FASTQs (paired-end 801 

36 bp) of roughly equivalent size (Accession Numbers: ENCFF002EQ-G,H,I,J,M,N,O,P) 802 

were downloaded from the ENCODE portal and processed using ENCODE DNAse-seq 803 

standard pipeline (available at https://github.com/kundajelab/atac_dnase_pipelines) with 804 

flags: -species hg19 -nth 32 -memory 250G -dnase_seq -auto_detect_adapter -nreads 805 

15000000 -ENCODE3. Processed BAM files were merged and used as input for PIQ TF 806 

footprinting using each TF's top motif PWM. Next, identified TF footprints from every TF 807 

meeting a specified PIQ Purity (positive predictive value) were intersected with all 808 

identified ChIP-seq binding sites using BEDtools to correlate the number of unique TF 809 

footprints with the number of ChIP-seq factors identified at a given ChIP-seq binding 810 

site. 811 

SOM analysis: 812 

The self-organizing map was trained with the SOMatic package [67] using the previous 813 

chromatin analysis partitioning strategy [66] with modifications as described below We 814 

calculated the RPKM of each dataset’s first replicate over each of the 951,022 genomic 815 

segments to build a training matrix. We used each dataset’s second replicate to build a 816 

separate scoring matrix. The training matrix was used to train 5 trial self-organizing 817 

maps with a toroid topology with size 40 by 60 units using 10 million time steps (~10 818 

epochs) and selected the best, based on fitting error using the scoring matrix, for further 819 

analysis, and segments were assigned to their closest units based on the scoring 820 

matrix.  821 

To properly fit the data, SOM units with similar profiles across experiments were 822 

grouped into metaclusters using SOMatic. Briefly, metaclustering was performed using 823 

k-means clustering of the unit profiles to determine centroids for groups of units. 824 

Metaclusters were built around these centroids so that all of the units in a cluster remain 825 

connected. SOMatic’s metaclustering function attempts all metacluster numbers within a 826 
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range given and scores them based on Akaike information criterion (AIC) [105]. The 827 

penalty term for this score is calculated using a parameter called the “dimensionality,” 828 

which is the number of independent dimensions in the data, which in this case are the 829 

individual cell subtypes. To estimate this number, we used a 60% cut on a hierarchical 830 

clustering done on the SOM unit vectors. For this work, the dimensionality was 831 

calculated to be 6. For metaclustering, all k between 50 and 250, with 64 trials, was 832 

tested and metacluster number 196 had the lowest AIC score and was chosen for 833 

further analysis. 834 

To generate decision trees for these metaclusters, each of the segments in the training 835 

matrix was labeled with its final metacluster. For each metacluster, if the metacluster is 836 

of size n, n segments of other clusters were chosen randomly, and this set of positive 837 

and negative examples was split, using 80% of the examples for training and 20% for 838 

scoring. The training data was fed through an R script using the rpart and rattle 839 

packages to create, score, prune, and re-score a tree for each metacluster. This entire 840 

process was repeated for 100 trials with only the tree with the highest accuracy drawn. 841 
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