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Abstract: Analyzing the spatial organization of molecules in cells and tissues is a cornerstone of 
biological research and clinical practice. However, despite enormous progress in profiling the 
molecular constituents of cells, spatially mapping these constituents remains a disjointed and 
machinery-intensive process, relying on either light microscopy or direct physical registration and 
capture. Here, we demonstrate DNA microscopy, a new imaging modality for scalable, optics-free 
mapping of relative biomolecule positions. In DNA microscopy of transcripts, transcript molecules 
are tagged in situ with randomized nucleotides, labeling each molecule uniquely. A second in situ 
reaction then amplifies the tagged molecules, concatenates the resulting copies, and adds new 
randomized nucleotides to uniquely label each concatenation event. An algorithm decodes 
molecular proximities from these concatenated sequences, and infers physical images of the 
original transcripts at cellular resolution. Because its imaging power derives entirely from diffusive 
molecular dynamics, DNA microscopy constitutes a chemically encoded microscopy system. 
 
Introduction 
 
The spatial organization of genomes and 
gene products within cells and tissues is at the 
foundation of differentiation, specialization, 
and physiology in higher organisms. For 
example, in the central nervous system, 
neurons express protocadherins and 
neurexins in highly diverse spatial patterns 
that govern the cell’s intrinsic state and how 
it forms synapses (1,2). In the immune 
system, spatial co-localization of B- and T-
lymphocytes expressing diverse immune 
receptors permits signaling feedback critical 
for immune clonal selection (3). In the gut, 
epithelial, immune, endocrine, and neural 
cells are spatially distributed in specific ways 
that impact how we sense and respond to the 
environment, with implications for 

autoimmune disease, food allergies, and 
cancer. In tumors, cell microenvironments 
may be critical for tumorigenesis (4,5), 
immune surveillance and dysfunction, 
invasion, and metastasis. 
 
Although imaging of cells and tissues has 
been a cornerstone of biology ever since cells 
were discovered under the light microscope 
centuries ago, a gap has emerged between 
these methods and genomic measurements. 
Although both forms of measurement 
characterize a single biological reality, they 
profile the microscopic world differently. 
Microscopy in itself illuminates spatial 
detail, but does not capture genetic 
information unless it is performed in tandem 
with separate genetic assays. Conversely, 
genomic and transcriptomic sequencing do 
not inherently capture spatial details.  
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Recent approaches to bridge this gap rely on 
optical readouts that require elaborate 
experimental systems (6), physical 
registration and capture of molecules on grids 
(7,8), or an assumption of similarity among 
multiple samples so that distinct experiments 
performed on distinct specimens may be 
correlated (9,10). These approaches closely 
follow the two ways in which microscopic 
images have been acquired to date: (1) 
detecting electromagnetic radiation that has 
interacted with or been emitted by a sample, 
or (2) interrogating known locations by 
physical contact or ablation.  
 
Here, we propose a novel third modality for 
microscopy, which requires neither optics 
nor physical capture from known 
coordinates, but relies on image 
reconstruction from point-proximity of 
individual molecules (Fig. 1). This principle, 
of determining coordinates not in relation to 
an absolute “Archimedean point” but instead 
in relation to one another, features 
prominently in the theory of sensor 
localization (11). Numerical work has further 
shown that sparse and noisy measurements of 
pairwise distances between points can be 
used to reconstruct their positions (12). We 
build on this theoretical concept to 
demonstrate a novel form of microscopy, 
called DNA microscopy. DNA microscopy 
reformulates the point-localization problem 
by reconstructing the positions of molecules 
using the stochastic output of a stand-alone 
chemical reaction. We confirm that DNA 
microscopy is able to resolve the physical 
dimensionality of a specimen, and then 
demonstrate that it is able to accurately 
reconstruct a multicellular ensemble de novo 
without optics or any prior knowledge on the 
organization of biological specimens. 

Finally, we demonstrate its ability to resolve 
and segment individual cells for 
transcriptional analysis. 
 
Results 
 
DNA microscopy for spatio-genetic 
imaging 
 
Intuitively, DNA microscopy generates 
images by first randomly tagging individual 
DNA or RNA molecules with DNA-
molecular identifiers. Each deposited DNA-
molecular identifier then “communicates” 
with its neighbors through two parallel 
processes. The first process broadcasts 
amplifying copies of DNA-molecular 
identifiers to neighbors in its vicinity via 
diffusion. The second process encodes the 
proximity between the centers of overlapping 
molecular diffusion clouds: DNA-molecular 
identifiers undergo concatenation if they 
belong to diffusion clouds that overlap. 
Finally, an algorithm infers from these 
association rates the relative positions of all 
original molecules.  
 
DNA microscopy is premised on the notion 
that DNA can function as an imaging 
medium in a manner equivalent to light. In 
the same way that light microscopy images 
molecules that interact with photons (either 
due to diffraction or scattering or because 
these molecules emit photons themselves) 
and encodes these images in the wavelengths 
and directions of these photons, DNA 
microscopy images molecules that interact 
with DNA (including DNA, RNA, or 
molecules that have been tagged with either 
DNA or RNA) and encodes these images in 
the DNA sequence products of a chemical 
reaction.  
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Fig. 1. DNA microscopy. (A-B) Method steps. Cells are fixed and cDNA is synthesized for beacon 
and target transcripts with randomized nucleotides (UMIs), labeling each molecule uniquely (A). 
In situ amplification of UMI-tagged cDNA directs the formation of concatemer products between 
beacon and target copies (B). The overhang-primers responsible for concatenation further label 
each concatenation event uniquely with randomized nucleotides, generating unique event identifier 
(UEIs). Paired-end sequencing generates read-outs including a beacon-UMI, a target-UMI, the 
UEI that associates them, and the target gene insert (C). A bird’s-eye view of the experiment (D) 
shows the manner in which the DNA microscopy reaction encodes spatial location. Diffusing and 
amplifying clouds of UMI-tagged DNA overlap to extents that are determined by the proximity of 
their centers. UEIs between pairs of UMIs occur at frequencies determined by the degree of 
diffusion cloud overlap. These frequencies are read out by DNA sequencing, and inserted into a 
UEI matrix (E) that is then used to infer original UMI positions (F). 
 
With this analogy in mind, we can imagine 
superposing two distinct physical processes: 
a fluorophore radially emitting photons at a 
specific fluorescence wavelength, and a 
DNA molecule with a specific sequence 
undergoing PCR amplification, and its copies 
diffusing radially. Optical microscopes use 
lenses to ensure that photons hitting a 
detector or the human eye will retain some 
information, based on where they hit, 
regarding their point of origin. However, the 

“soup” of DNA molecules generated in a 
DNA microscopy reaction does not afford 
this luxury. We therefore need a different 
way to distinguish the identities of point 
sources so that all data is encoded into the 
DNA itself. 
 
To molecularly distinguish point sources we 
rely on Unique Molecular Identifiers, or 
UMIs (13), consisting of randomized bases 
that tag a molecule before any copy of it has 
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been made (Fig. 1A). Because the diversity 
of UMIs scales exponentially with their 
length, we have high confidence that when 
one long UMI tags a molecule, no other 
molecule in the rest of that sample has been 
tagged with that same long UMI. We can now 
use overlap extension PCR to concatenate the 
diffusing and amplifying copies of these 
UMIs (with any biological DNA sequences 
they tag simply carried along). The rate at 
which they concatenate will reflect the 
distance between their points of origin. 
 
However, once we sequence the final DNA 
products, we are still left with the problem of 
how to quantitatively read out these 
concatenation rates from DNA sequence 
alone. Using read-abundances belonging to 
concatenated DNA products carries serious 
drawbacks. For example, trace cross-
contamination between samples could easily 
introduce artifactual UMI-UMI associations, 
and biases in downstream DNA library 
preparation could heavily distort association 
frequencies. Most serious, however, would 
be PCR chimerization: any ex situ 
amplification of the DNA library would 
necessarily introduce template-switching at 
some rate that would corrupt the data.  
 
We reasoned that if the overlap extension 
primers contained randomized bases that did 
not participate in priming themselves, then 
although each priming event would result in 
replacement of this randomized sequence, 
each overlap extension event would fix the 
new bases in between the now-concatenated 
sequences (Fig. 1B). The concatenated 
sequences would then carry these 
randomized bases forward, intact, as they 
amplified. These bases would from then on 
be a unique record of that individual 
concatenation event. We called these new 
concatenated randomized sequences Unique 
Event Identifiers, or UEIs, and used them to 

encode molecular positions into the DNA 
microscopy reaction.  
 
Experimental assay for DNA microscopy 
to encode relative positions of molecules in 
cells 
 
To demonstrate DNA microscopy, we aimed 
to image transcripts belonging to a mixed 
population of two co-cultured human cell 
lines, GFP-expressing MDA-MB-231 cells 
and RFP-expressing BT-549 cells. We 
reasoned that an initial proof of concept 
would be to recover images that appear cell-
like and where GFP and RFP transcripts are 
positioned in mutually-exclusive cells, 
whereas GAPDH and ACTB, expressed in 
both cell lines, are ubiquitous. 
 
In the first step of the experiment, we tag with 
Unique Molecular Identifiers (UMIs) cDNA 
synthesized in situ. We designed reaction 
chambers to both grow cells and perform all 
reactions (Fig. S1, Supp. Info.). We cultured 
the cells, and, following fixation and 
permeabilization, synthesized cDNA by 
reverse transcription from GFP, RFP, 
GAPDH, and ACTB gene transcripts (Tables 
S1-S2), with primers tagged with 29nt long 
UMIs (Fig. 1A, Fig. S2). Notably, we 
designed the reaction to distinguish two types 
of UMI-tagged cDNA molecules: “beacons”, 
synthesized from ACTB (chosen as a 
universally expressed gene whose sequence 
would not be analyzed in later stages), and 
“targets” (everything else). We achieved this 
distinction between beacon and target 
amplicons by the artificial sequence-adapters 
assigned to the primers annealing to each.  
 
In the second step of the experiment, we 
allow beacon-cDNA and target-cDNA 
molecules, along with the UMIs that tag 
them, to amplify, diffuse, and concatenate in 
situ in a manner that generates a new Unique 
Event Identifier, or UEI, distinct for each 
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concatenation event (Fig. 1B and S2) 
through overlap-extension PCR (14). By 
design, target amplicon-products will only 
concatenate to beacon amplicon-products, 
thereby preventing self-reaction, and the 
middle of each overlap-extension primer 
includes 10 randomized nucleotides, such 
that each new concatenation event generates 
a new 20-nucleotide UEI. Paired-end 
sequencing of the final concatenated products 
generates reads each containing a beacon 
UMI, a target UMI, and a UEI associating 
them (Fig. 1C). 
 
The key to DNA microscopy is that because 
UEI formation is a second order reaction 
involving two UMI-tagged PCR amplicons, 
UEI counts are driven by the co-localization 
of UMI concentrations, and thus contain 
information on the proximity between the 
physical points at which each UMI began to 
amplify (Fig. 1D). In particular, as UMI-
tagged cDNA amplifies and diffuses in the 
form of clouds of clonal sequences that 
overlap to varying extents, the degree of 
overlap (Fig. 1D, circle intersection) – and 
thus the probability of concatenation and UEI 
formation – depends on the proximity of the 
original (un-amplified) cDNA molecules 
(Fig. 1D, small dark circles). UMI-diffusion 
clouds with greater overlap generate more 
UEIs/concatemers, whereas those clouds 
with less overlap generate fewer 
UEIs/concatemers.  
 
To obtain reliable estimates of UEIs between 
every pair of UMIs, we must address sources 
of noise, such as sequencing error. We cluster 
beacon-UMIs, target-UMIs, and UEIs by 
separately identifying “peaks” in read-
abundances using a log-linear time clustering 

algorithm (Supp. Info., Fig. S3A) in a 
manner analogous to watershed image 
segmentation, but in the space of sequences. 
For target UMIs, this allows us to aggregate 
biological gene sequences originating from 
single target molecules and achieve low error 
rates by taking a consensus of the associated 
reads (Fig. S3B). We then assign each 
identified UEI a single consensus beacon-
UMI/target-UMI pair based on read-number 
plurality, and prune the data (by eliminating 
UMIs associating with only one UEI) to form 
a sparse matrix whose elements contained 
integer counts of UEIs pairing each beacon-
UMI (matrix rows) and each target-UMI 
(matrix columns) (Fig. 1E, Supp. Info.). The 
resulting UEI matrices, containing on the 
order 105 -106 total UMIs, and averaging ~10 
UEIs per UMI (Table S3), form the data sets 
upon which we built an engine for image 
inference.  
 
A “zoom” function infers local spatial 
encodings from UEI matrices 
 
Next, we developed an algorithmic approach 
to use UEI prevalence to infer UMI proximity 
and reconstruct an image of the original 
sample and its transcripts (Fig. 1F). We first 
appreciate that if the UEI matrix had 
successfully encoded relative UMI 
coordinates, these coordinates would be 
reflected in the rows and columns of the 
matrix. The matrix rows and columns would 
span a space having a dimensionality scaling 
with the total number of UMIs. However, if 
they encoded UMI coordinates within a 
sample, they would collectively sweep out a 
far smaller dimensionality, only equal to the 
physical dimensionality of the sample.  
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Fig. 2. Encoding and decoding molecular localization with DNA microscopy. Diffusion 
profiles with length scale Ldiff belonging to different amplifying UMIs overlap to degrees that 
depend on the distance between their points of origin (A). Greater overlaps between diffusion 
profiles result in larger reaction rates (B), which in turn result in higher UEI formation frequencies 
(C). Because UEI counts are therefore proper functions of position, as a UMI relocates it sweeps 
out a curve along the UEI count axes equal to the dimensionality of space it occupies (D). (E-H) 
Data segmentation permits individual sets of 104 strongly interacting UMIs to be visualized 
independently. The top three non-trivial eigenvectors for the largest data segments of samples 1 
and 2 are shown, along with a different, magnified view of the same plot. Transcripts are colored 
by sequence identity: grey = ACTB (beacons), white = GAPDH, green = GFP, red = RFP.  
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As a toy example, consider a comparison 
between three systems in which a single 
target UMI (“2”) is in each of three positions 
in one dimension relative to two beacon 
UMIs (“1” and “3”) with which it forms UEIs 
(Fig. 2A). The target UMI begins closest to 
one of the two beacon UMIs, and as a result, 
its diffusion cloud overlaps most with that 
beacon UMI’s diffusion cloud. Thus, its 
reaction rate with that beacon UMI is 
relatively higher (Fig. 2B) and results in a 
correspondingly larger number of UEIs (Fig. 
2C). If the target UMI is further away, the 
balance of overlaps between diffusion clouds 
changes. Indeed, plotting expected UEI 
matrix elements for the target UMI on two 
axes, we see that its trajectory remains one-
dimensional (Fig. 2D). Extending to a large 
population of target UMIs across many 
positions, these new target UMIs, just like the 
target UMI in the original example, also 
interact with the same two beacon UMIs. 
Therefore, we can also plot them on the same 
two axes, and wherever they land, we could 
expect them to scatter around the same one-
dimensional manifold followed by the target 
UMI of the original example. In any real data 
set, UEI count is affected not only by position 
but also by additional variables (such as 
amplification biases and diffusion rates), 
each potentially adding to the data’s total 
dimensionality. However, these sources of 
variation would be suppressed along the 
principle dimensions of a UEI matrix so long 
as their effect on neighboring UMIs is not 
systematically correlated.  
 
To identify the principle dimensions of the 
UEI matrix, we can analyze the graph of UMI 
vertices and weighted UEI count edges by 
constructing a Graph Laplacian matrix from 
the raw UEI matrix (with its diagonal 
elements set so that each row sums to zero). 
The Graph Laplacian eigenvectors with the 
smallest-magnitude eigenvalues would 

visualize the most systematic forms of 
variation in the DNA microscopy data (Supp. 
Info.) and illuminate the low-dimensional 
manifold, if any, it occupied. However, even 
a low-dimensional manifold could be folded 
in complex ways in the high-dimensional 
space formed by a full UEI matrix, making it 
difficult to analyze the manifold’s shape over 
large distances, especially in areas of the 
manifold that were sparsely populated. 
Analyzing the UEI matrix manifold therefore 
first requires analyzing UMI subsets 
corresponding to local regions of the original 
sample. We return to global relations in 
subsequent sections. 
 
To perform this local investigation, we 
developed a “zoom” function for DNA 
microscopy data by applying a recursive 
graph-cut algorithm, identifying putative cuts 
by using the spectral approximation to the cut 
of minimum-conductance (15) (Supp. Info.). 
This criterion separates sub-sets of UMIs 
exhibiting UEI-flux between them that was 
relatively small given the number of UMIs 
they comprised. The algorithm first finds the 
sparsest cut to the entire data set, then the 
sparsest cuts to the resulting halves, and so on 
until a further sparse cut cannot be made 
(Supp. Info.). We then visualize each of 
these sub-regions by the eigenvectors 
corresponding to the smallest-magnitude 
eigenvalues of their UEI-Graph Laplacian 
sub-matrix. 
 
Successful inference of local structure 
identifies cell-like structures with specific 
marker expression 
 
Strikingly, and consistent with our theoretical 
reasoning, although the UMIs in these sub-
sets fully spanned at least all three 
eigenvector dimensions, the manifolds swept 
out by the UMIs were only two-dimensional 
(Fig. 2E-H). This confirmed that 
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neighborhoods of points had been 
successfully encoded into the UEI matrix: the 
dimensionality of their spatial relationships 
within the sample was correctly preserved.  
 
The two-dimensional manifolds exhibited 
clusters of UMIs that recapitulated the 
genetic composition of the cell lines used in 
the experiment: a pervasive distribution of 
the constitutively-expressed ACTB and 
GAPDH sequences, but a mutually exclusive 
distribution of GFP and RFP, recapitulating 
their correct cell specific expression (Fig. 
2E-H). An observer unaware of the spatial 
dimensionality of the specimen or that cells 
even existed could discover both by 
analyzing the DNA microscopy sequencing 
data alone. Together, these two observations 
confirmed both cellular and local supra-
cellular resolution in DNA microscopy. 
 
Inference of global molecular positions 
from DNA microscopy data 
 
Next, we expanded our inference beyond the 
local scope of a few thousands of proximal 
transcript molecules, by developing a 
framework for evaluating the likelihood of a 
global position-estimate solution.  
 
We reasoned that each UEI’s occurrence is 
analogous to a “coin-toss” experiment 
performed on every UMI-pair, with each 
pair’s “meeting” probability proportional to 
the corresponding reaction rate (Fig. 3A, 
Supp. Info.). In this probability function, 
UEIs in DNA microscopy act in the same 
manner as photons do in optical super-
resolution localization microscopy (16): both 
narrow a point-spread function governed by 
a physical length scale (wavelength in the 
case of light, diffusion distance in the case of 
DNA) as they accrue in number (Fig. 3B,C). 
In real data sets, UEIs increase progressively 
with increasing read depth, whereas UMIs 
saturate more quickly (Fig. 3D,E). In this 

way, read depth in DNA microscopy 
constitutes a dial to increase the number of 
UEIs per UMI, enhancing an image’s 
resolution. 
 
Unlike its optical counterpart, however, DNA 
microscopy resolves a molecule’s position by 
orienting it relative to other molecules, and 
its uncertainty is therefore a function of these 
relationships. A relationship between two 
UMIs may come in two forms: those that are 
direct and involve UEIs linking them, and 
indirect relationships that occur via 
intermediaries. The latter emerges in the 
structure of the data, but will not strongly 
influence UMI positions if these positions are 
optimized independently. This may be seen 
in the logarithm of the UEI-count probability 
function (Fig. 3F). This log-probability is the 
sum of two components: (1) a sum of 
squared-differences between positions, 
weighted by individual UEI counts; and (2) a 
function of total UEI counts and total 
expected reaction rates (which are 
themselves functions of UMI positions) 
across the entire data set. In order to still 
calculate the log-probability as a whole in a 
scalable way, we implemented the Fast Gauss 
Transform (17) (Fig. S6).  
 
If each UMI’s position is updated 
independently to maximize this log-
probability function, it will experience two 
forces, corresponding to the function’s two 
added components: the first which pulls 
together UMIs that have directly formed 
UEIs between them, and the second which 
repels all UMIs from all other UMIs. The 
likelihood of the position-solution is 
maximized when these two forces balance. 
During the maximization update-process, the 
only way in which an indirect relationship 
between UMIs will influence their position-
solution is if intermediary UMIs that directly 
form UEIs with them separately have already 
changed position. 
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Fig. 3. Image inference from DNA microscopy data. (A) Modeling diffusion of amplifying 
UMIs as isotropic across length scale Ldiff allows the likelihood of a UMI-position solution to be 
evaluated given observed UEI counts. (B,C) Uncertainty in DNA vs. super-resolution microscopy. 
Given its reacting partners’ positions, DNA microscopy (left) defines a UMI’s uncertainty as a 
physical length-scale (DNA diffusion distance, Ldiff) divided by the square-root of the number of 
individual quanta measured (UEIs) in a manner analogous to quanta (photons) in super-resolution 
microscopy (right). (D,E) Rarefaction of UMI and UEI data. Shown are curves with an upper-
bound, indicating total UMI/UEI counts, and a lower-bound, indicating those from the final pruned 
UEI matrix, for samples 1 (D) and 2 (E). (F) The sMLE algorithm uses eigenvector solutions to 
part of the position-probability function to identify a linear basis for the solution to the full 
likelihood function. (G) sMLE enhances performance in free-diffusion simulation tests. From left: 
original image, results from point-MLE on simulated images with 100 or 10 UEIs/UMI, and from 
sMLE with 10 UEIs/UMI. 
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To ensure that large-scale optimization 
captures these indirect UMI relationships 
encoded in the data, we developed a new 
maximum likelihood framework, which we 
called spectral maximum likelihood 
estimation or sMLE, to generate global 
representations of the DNA microscopy data. 
Because maximizing the first component of 
the log-probability entails minimizing the 
magnitude of the sum of squared-differences, 
it can be individually solved by identifying 
the smallest-magnitude 
eigenvalue/eigenvector pairs of the UEI 
Graph Laplacian introduced earlier (Fig. 3F, 
Supp. Info.). Each eigenvector represents a 
distinct way in which UMIs can be globally 
rearranged to suit orientation requirements 
expressed by the sum of squared-differences 
between local points. The eigenvector with 
the smallest-magnitude eigenvalue 
represents the best arrangement, the second 
smallest-magnitude eigenvalue the second 
best, and so on. Because sums of eigenvector 
solutions to the local linear problem would 
produce solutions that themselves satisfy 
local constraints, sum-coefficients of these 
eigenvectors could act as variables in a 
larger-scale likelihood maximization. By 
seeding a solution with the two eigenvectors 
corresponding to the smallest-magnitude 
eigenvalues, optimizing their coefficients, 
then incorporating successive eigenvectors 
and repeating, we could find global solutions 
that were also well-constrained locally. 
These sMLE solutions showed strong 
advantages in simple simulations over 
maximizing the likelihood while treating 

every UMI independently, especially when 
UEI counts were limiting (Fig. 3G). 
 
DNA microscopy correctly recapitulates 
optical microscopy data 
 
We next sought to apply the sMLE inference 
framework to determine whether DNA 
microscopy could resolve supra-cellular 
coordinates compared to optical microscopy. 
To this end, we constructed reaction 
chambers with glass slides (Fig. S1B) and 
plated GFP- and RFP-expressing cells in a 
highly localized pattern within the chamber 
(Fig. S1C). We then imaged GFP- and RFP-
expression in cells across the entire area of 
the reaction chamber using an 
epifluorescence microscope before the DNA 
microscopy reaction (Fig. 4A,B), sequenced 
the resulting DNA library to saturation (Fig. 
4C), and applied the sMLE inference 
algorithm.  
 
Strikingly, the resulting image recapitulates 
optical microscopy data without systematic 
distortion (Fig. 4D) in both the shape of the 
cell population boundary, as well as the 
distribution of GFP- and RFP-expressing 
cells within it. Importantly, the inferred 
image preserves the correct aspect ratio: 
although needing to be rotated and reflected, 
the individual axes did not need to be 
independently re-scaled. This demonstrated 
that DNA microscopy is capable of 
generating accurate physical images of cell 
populations. 
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Fig. 4. Accurate reconstruction by DNA microscopy of fluorescence microscopy data. (A) 
Full reaction chamber view of co-cultured GFP- and RFP-expressing cells (scale bar = 500 um). 
(B) Zoomed view of the same cell population (scale bar = 100 um). (C) Rarefaction of UMIs and 
UEIs with increasing read-sampling depth. (D) sMLE inference applied to DNA microscopy data, 
reflected/rotated and rescaled for visual comparison with photograph. Transcripts, sequenced to 
98 bp, are colored by sequence identity: grey = ACTB (beacons), white = GAPDH, green = GFP, 
red = RFP. Grid-line spacings: diffusion length-scales (Ldiff), emerging directly from the 
optimization (Supp. Info.). 
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Large length-scale optimization and the 
folded manifold problem  
 
We next sought to apply DNA microscopy to 
optimization at larger length scales. Applying 
sMLE inference to the original data 
generated from several hundred cells used to 
generate the original eigenvector 
representations (Fig. 2) gave images that 
reproduced the individual cell compositions 
of the earlier visualizations (Fig. 5). These 
large-scale optimizations were also robust to 
data down-sampling (Fig. S4). Nevertheless, 
the reconstructed images exhibited “folding” 
that indicated how the process of projecting 
large and curved high-dimensional manifolds 
onto two-dimensional planes was vulnerable 
to distortions. The causes for this “manifold 
folding” problem could be understood by 
examining the illustration of how low-
dimensional manifolds come into being 
within a high-dimensional UEI data matrix 
(Fig. 2). Eigenvector calculation (Fig. 3F) 
involves identifying hyperplanes that can be 
drawn through these low-dimensional 
manifolds that maximally account for 
variation in the UEI data. It does this in a 
manner similar to linear regression, 
balancing the advantage of fitting certain 
parts of the data with the costs of not fitting 
other parts of the data.  
 
However, this balancing can yield errors in 
several ways. If a large number of UMIs in 
one part of the data set rotate the top 
calculated eigenvectors (with the smallest-
magnitude eigenvalues) away from UMIs in 
a different part of the data set, then projecting 
the global data set onto these eigenvectors 
will cause these neglected UMIs to fold on 

top of one another. This will produce the type 
of artifact observed for large scale 
optimization (Fig. 5). If we avoid eigenvector 
calculation entirely and optimize each UMI’s 
position independently (Fig. S5A,B) we 
avoid such defects, but obtain close-packed 
images, as predicted by simulation (Fig. 3G), 
that do not preserve empty space. This 
highlights the distinct nature of DNA 
microscopy’s imaging capabilities compared 
to light’s, where density rather than sparsity 
is the key challenge.  
 
Cell segmentation can be performed on the 
UEI matrix based on diffusion distance 
 
We next analyzed the degree to which the 
UEI matrix could be used to segment cells 
and analyze single cell gene expression. 
Importantly, up to this point, no step in the 
process – experimental or computational – 
had knowledge that cells even exist. To 
perform segmentation, we applied the same 
recursive graph cut algorithm as used earlier 
to generate local eigenvector visualizations 
of the data. By increasing the conductance-
threshold dictating whether segments of the 
data should be left intact, we assigned 
transcripts to putative cells (Fig. 6A,B), again 
without regard to transcript identity (i.e., GFP 
vs. RFP). To quantify segmentation quality, 
we calculated the probability that, within 
each putative cell, the minority fluorescent 
gene transcript would occur at or lower than 
its current value, given its prevalence in the 
data set. We found the median p-value 
decayed rapidly, over a range of conductance 
thresholds, to <10-10, with increasing reads 
and resolved cells analyzed (Fig. 6C,D). 
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Fig. 5. Inferred large scale DNA microscopy images preserve cellular resolution. Inference 
using the sMLE global inference approach for sample 1 (A-E) and sample 2 (F-J), with each 
transcript type shown separately (A-D, F-I) or together (E and J) (although inferences are 
performed on all transcripts simultaneously and are blinded to transcript identity). Grid-line 
spacings: diffusion length-scales (Ldiff), emerging directly from the optimization (Supp. Info.). 
 
Imaging large numbers of different 
transcripts in DNA microscopy 
 
To demonstrate that DNA microscopy and its 
associated cell segmentation could be 
extended to larger numbers of genes, we 

synthesized cDNA by reverse transcription 
from up to 20 additional genes that were 
known to be differently enriched in MDA-
MB-231 and BT-549 cell lines (Tables S4-
S5, Supp. Info.). We performed global 
image inference (Fig. S5) and applied the 
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same hierarchical cell segmentation 
algorithm as earlier. Pearson correlations 
between GFP-fraction (out of total transgene 
transcripts per cell) and fraction of 
endogenous genes expected enriched in the 
GFP cell line (out of total endogenous gene 
transcripts enriched in either cell line) gave r 
= 0.29-0.41 (n=764 and 265) for two 

experiments, respectively (p-value<10-6, 
permutation test). This demonstrated that the 
transgenes labeling these cell types retained 
information about cell type-specific 
endogenous expression, and that this 
information could be read out from DNA 
microscopy data. 

 

 
 
Fig. 6. Segmentation of DNA microscopy data recovers cells de novo. (A,B) Data segmentation 
recovers putative cells without a priori knowledge. Cell segmentation for samples 1 (A) and 2 (B) 
by recursive graph-cutting of the UEI matrix is shown with a random color assigned to each 
inferred cell, qualifying if it contained at least 50 UMIs and had at least one transcript each of 
ACTB and GAPDH. The minimum conductance threshold was set to 0.2. (C,D) Segmentation 
performance. The effects of cell segmentation for samples 1 (C) and 2 (D) with minimum 
conductance thresholds 0.14 (black), 0.2 (cyan), and 0.26 (magenta) are shown on binomial p-
values quantifying segmentation fidelity (solid lines) and putative cell count (dotted lines). 
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Discussion 
 
The fundamental advance of DNA 
microscopy is to physically image biological 
specimens using an unstructured and stand-
alone chemical reaction. This makes it a 
distinct microscopic imaging modality in 
itself. As a technology, we have drawn a 
close parallel between DNA microscopy and 
optical super-resolution: both take advantage 
of stochastic physics to reduce measurement 
uncertainty beyond what may seem 
superficially to be a limit imposed by 
physics.  
 
However, the two differ in several 
fundamental ways. Optical super-resolution 
microscopy relies on the quantum mechanics 
of fluorescent energy decay. DNA 
microscopy, however, relies entirely on 
thermodynamic entropy. The moment we tag 
biomolecules with UMIs in the DNA 
microscopy protocol, the sample gains 
spatially-stratified and chemically-
distinguishable DNA point sources. This 
process thereby introduces a spatial chemical 
gradient across the sample that did not exist 
previously. Once these point sources begin to 
amplify by PCR and diffuse, this spatial 
gradient begins to disappear. This entropic 
homogenization of the sample is what drives 
different UMI diffusion clouds to interact and 
UEIs to form. It is therefore this increase in 
the system’s entropy that most directly drives 
the DNA microscopy reaction to record 
meaningful information about a specimen. 
 
One key point of weakness for DNA 
microscopy remains the resolution of empty 
space, and future work will be needed to 
eliminate this obstacle to produce high 
quality reconstructions of samples over large 
lengths where there are gaps. It is possible 
that a “landmark” based approach, in which 
specific DNA sequences are deposited at 
known physical locations to assist in the 

image reconstruction process, will ultimately 
prove the most cost-effective way to achieve 
this. Better analytical techniques to correct 
for large length scale distortions may prove 
equally effective, without complicating the 
experiment itself. Nevertheless, the fact that 
DNA microscopy is performed entirely by 
pipette means that large numbers of samples 
can easily be processed simultaneously. The 
technology is therefore structurally 
conducive to massive throughput. 
 
DNA microscopy offers a new form of 
optics-free imaging that leverages the large 
economies of scale in DNA sequencing. The 
technology does not require sacrificing 
spatial resolution for sequence accuracy, 
since it benefits, rather than suffers, from 
high signal density and it does not hinge on 
optical resolution of diffraction-limited 
“spots” in situ. By using chemistry itself as 
its means of image acquisition, DNA 
microscopy decouples spatial resolution from 
specimen penetration depth (otherwise linked 
by the properties of electromagnetic 
radiation) and thereby side-steps a tradeoff 
imposed by the physics of wave propagation.  
 
Finally, because it does not rely on 
specialized equipment and can be performed 
in a multi-well format with normal lab 
pipettes, DNA microscopy is highly scalable. 
It is fully multiplex-compatible (imaging any 
PCR template) and uses sequencing-depth as 
a dial to enhance spatial and genetic detail. 
Moreover, because DNA microscopy reads 
out single-nucleotide variation in biological 
DNA or RNA sequences it targets, it spatially 
resolves the astronomically large potential 
variation that exists in somatic mutations, 
stochastic RNA splicing, RNA editing, and 
similar forms of genetic diversity in cell 
populations. We have demonstrated that it 
achieves this at high accuracy over long read 
lengths. 
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Our development of a chemically-encoded 
microscopy system leaves open both 
fundamental theoretical and experimental 
questions. On the one hand, future 
experimental and computational 
enhancements will help better resolve large 
length scales that include spatial gaps. On the 
other hand, the UEI, by effectively 
functioning in these experiments as a DNA-
analogue of the photon, has illuminated a 
wider potential role for DNA as a medium for 
artificial biological recordings. Most directly, 
DNA microscopy can be applied in principle 
beyond the transcriptome, for example, 
directly to DNA sequences or to proteins 
detected with DNA-labeled antibodies. 
Looking to the future, a full exploration of 
individual and idiosyncratic spatial structures 
in the biological world by encoding them into 
DNA bases, instead of photonic pixels, may 
reveal new layers of information otherwise 
hidden by the limits of optical- and electron-
based imaging. 
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1 Experimental methods

1.1 Bead-plate reaction chambers
Reaction chambers for large cell populations in samples 1-2 and 4-5 (Fig. S1A) were designed
in order to maximally adhere cells while providing a thermally robust container for PCR ther-
mocycling. 3 mm glass beads (Sigma Z265926) were acid washed in 1 M HCl at 50-60 C for
4-5 hours in a glass beaker with occasional agitation and then kept sealed in 90% ethanol at
room temperature until further use. After an initial rinse in acetone, beads were treated for 60
seconds in a 2% solution of (3-aminopropyl)triethoxysilane/APTES (Sigma 440140) in ace-
tone. Beads were then rinsed 4 times in ddH2O, rinsed in isopropanol, and allowed to dry in
a laminar flow hood 1 hour in a polystyrene petri dish. Dried beads were kept sealed at room
temperature until further use.

PDMS (R.S. Hughes RTV615) was mixed at a ratio of 1:10 w/w cross-linker:potting reagent,
and mixed/degassed 3 minutes at 2000 rpm. Uncured PDMS was immediately dispensed into
PCR plate wells (Axygen PCR-96-HS-C) at ∼ 20 ul in volume. Plates were then spun down
at 500×g for 1 minute. Volumes were carefully equalized across wells, and the plate was spun
down again. APTES-treated glass beads were then placed into each PDMS-filled well of the
PCR plate using plastic tweezers. The PCR plate was then spun down again at 500×g for 5
minutes, and beads were checked to ensure a small amount of surface was exposed above the
PDMS. Bead-plates (illustrated in Fig. S1A) were then cured at 80 C for 2 hours, and stored
sealed at room temperature until further use.

1.2 Glass-slide reaction chambers
Reaction chambers for imaged cells in sample 3 are shown in Fig. S1B-C. PDMS was mixed
at a ratio of 1:10 w/w cross-linker:potting reagent as before, and mixed/degassed 3 minutes at
2000 rpm. Uncured PDMS of mass 33-35 g was immediately dispensed into 10 cm petri dishes
and degassed under vacuum for 1 hour. PDMS was then cured at 80 C for 150 minutes, and
holes were punched using Integra biopsy punches with diameter 6 mm in the pattern indicated
(Fig. S1B). Cut PDMS blocks were then bonded with oxygen plasma to plain glass slides
(VWR 16004-422) and cured at 80 C for 3 hours. 100-120 ul of mineral oil (Sigma M5904)
was then added to all wells and degassed 45 minutes. Slides were then baked at 80 C for 5 hours,
then allowed to cool, and mineral oil was aspirated. Slides were washed heavily with acetone
and isopropanol to get rid of residual mineral oil and allowed to dry. 2% APTES solution was
prepared in acetone as above, and the bottom of the wells were immersed with 35 ul of this
solution for 60 seconds. Wells were immediately rinsed 5 times with 120 ul water, 2 times with
isopropanol, allowed to dry, and stored sealed at room temperature until further use.
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1.3 Cell seeding
Before cell seeding, bead-plates were rinsed twice with 70% EtOH and allowed to dry 45 min-
utes under UV in a cell culture hood. All wells were then washed once with 100 ul DPBS
(Sigma D8537). A fibronectin solution (Sigma F1141) was then prepared at a 1:100 dilution in
DPBS and used to cover wells, which were left at room temperature for 1 hour. BT-549-RFP
(Cell Biolabs AKR-255) and MDA-MB-231-GFP (Cell Biolabs AKR-201) cell lines were then
resuspended at 5000 cells/ml and 2500 cells/ml, respectively, in medium containing 10% FBS
(Seradigm 1500), 1% NEAA (Thermo Fisher 11140), 1% pen-strep (Thermo Fisher 15140) in
DMEM (Thermo Fisher 10569). After aspirating fibronectin, 50 ul of this cell suspension (to-
taling ∼ 250 and 125 cells of the two cell lines, respectively) was then added to the bottom of
each beat-plate well.

For glass-slide reaction chambers, 85 ul of growth medium (without cells) was added, and
parafilm was used to cover the top of the reaction chamber assemblage. Holes were cut in the
middle of cell culture wells (the four interior wells in Fig S1B). 10 ul pipette tips were then cut
(S1C) and cell suspension was added from the wide end so that it traveled to the narrow end,
and was held in place by capillary action. Parafilm was then added to wide end to create suction
that would hold the cell suspension in place after the pipette tip was placed into growth medium.
Pipette tips containing cell suspension and covered by parafilm were then placed vertically into
the slide reaction chambers, and cells were allowed to settle.

Cells in all reaction chambers were then cultured 36-48 hours.

1.4 In situ preparation
After culturing, growth medium was removed and cells were washed once with 1x PBS (pre-
pared from Thermo Fisher AM9625). Cells were fixed in 4% formaldehyde (prepared from
Thermo Fisher 28906) in 1× PBS for 15 minutes at room temperature. Formaldehyde solution
was aspirated and replaced by 3× PBS, and left for 10 minutes. Samples were washed twice for
10 minutes in 1× PBS, and then permeabilized with a solution of 0.25% Triton X-100 (Sigma
93443) in 1× PBS for 10 minutes. Samples were then washed twice in 1× PBS, treated with
0.1 N HCl (VWR BJ318965) for 2-3 minutes and then washed an additional three times in 1×
PBS. Samples were then kept at 4 C during preparation of the reverse transcription reaction.

Immediately before reverse transcription, samples were rinsed once in ddH2O. After as-
piration, reverse transcription mixes were added containing 400 uM dNTP (Qiagen N2050L),
Superase-In (Thermo Fisher AM2696) at 1 U/ul, Superscript III (Thermo Fisher 18080) at 10
U/ul, 1× Superscript III buffer, and 4 uM DTT. RT ultramers containing UMI’s (Table S1 for
4-plex, Table S4 for 24-plex) were included at 850 nM (for Samples 1-2) or 100 nM (for all
others) each. These reactions were then incubated 60 C for the 3 minutes, followed by 42 C
for 1 hour, and then held at 4 C. After aspiration, samples were washed three times in 1× PBS,
and kept at 4 C in the final wash overnight. Samples were rinsed with ddH2O, and after aspira-
tion, 40 ul of an enzymatic digestion mix was added including 1× exonuclease-I buffer (NEB
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Figure S1: DNA microscopy reaction chambers, related to Fig. 1. (A) Bead-plate reaction
chambers for the DNA microscopy on samples 1-2 and 4-5. Uncured PDMS is centrifuged
to the bottom of polypropylene PCR plates. APTES-treated glass beads (coated with primary
amines) are then added and spun into the uncured PDMS. The ensemble is then cured to gener-
ate a reaction chamber suitable for cell culture, multichannel pipetting, thermocycling, iterative
enzymatic reacitons, and post-PCR containment. (B) PDMS cut used for glass-slide reaction
chambers used to process sample 3. The interior four wells are used for cell plating, whereas
the wells along the slide perimeter are used as reservoirs, containing 1× PBS. (C) Side view of
glass slide reaction chamber when plasma-bonded to glass.
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Figure S2: Assembly of the DNA microscopy amplicon in multiple steps, related to Fig.
1.The product achieved from the post-amplification step contains Illumina paired-end sequenc-
ing adapters.
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B0293S) and 1.4 U/ul exonuclease I (NEB M0293). Reactions were incubated at 37 C for 40
minutes, and then washed three times in 1× PBS.

Amplification mixes were prepared that included 400 nM each of primers OE1a and OE4b,
300 nM each of primers psbs12s (Lbs12s for 24-plex samples, Table S5) and s8B, 30 nM each
of LF-primers (Table S2, or for 24-plex amplification, 10 nM each of the sF-primers in Table
S5), 1.6 mM MgCl2, 200 uM dNTP, 0.5 mg/ml BSA (NEB B9000S), 8% glycerol (Thermo
Fisher 15514011), Platinum Taq DNA polymerase (Thermo Fisher 10966018), 1× Platinum
Taq PCR buffer, a 4-arm acrylate PEG (Laysan Bio 4ARM-PEG-ACRL-10K) at 64 ug/ul, and
a 2-arm thiol PEG (Laysan Bio SH-PEG-SH-3400) at 44 ug/ul. Solutions were prepared in two
parts, one containing the 2-arm thiol PEG, BSA, and glycerol, and one containing all other com-
ponents. Following an additional sample rinse with ddH2O and aspiration, these two distinct
components were mixed by pipetting and immediately added in 20 ul volumes (as a combined
mixture) to the sample to allow for a 10.8% w/v hydrogel to polymerize for 1 hour at room
temperature. This hydrogel would slow diffusion during the amplification reaction (18).

Samples were then thermo-cycled at 95 C 2 min, 10×(95 C 30 s, 68 C 1 min), 2×(95 C 30
s, 55 C 30 s, 68 C 1 min), 16×(95 C 30 s, 60 C 30 s, 68 C 1 min), 68 C 1 min, 4 C. For 24-plex
samples, samples were instead thermocycled 95 C 2 min, 1×(95 C 30 s, 55 C 30 s, 68 C 1 min),
10× (95 C 30 s, 68 C 1 min), 1× (95 C 30 s, 55 C 30 s, 68 C 1 min), 16× (95 C 30 s, 60 C 30 s,
68 C 1 min), 68 C 1 min, 4 C. The initial sets of 10 cycles at high temperature in these programs
were designed to prime only one end of the cDNA amplicon. This would thereby confine initial
amplification to increasing molecule copy numbers linearly with time, rather than exponentially.
It would thereby minimize the effect of potentially stochastic amplification start-times.

Following in situ amplification, samples were stored at -20 C until further use.

1.5 Library preparation
Frozen amplified samples were allowed to thaw on ice. A PEG-dissolution mix containing 460
mM potassium hydroxide (VWR BJ319376), 100 mM EDTA (Sigma 03690), and 40 mM DTT
(Thermo Fisher P2325) was added directly on top of the hydrogel at 4 ul per sample while the
sample was still on ice, and left for 2 hours at that temperature. Samples were then heated to
72 C 5 minutes, and mixed by pipetting 10 times. 4 ul of a neutralization solution made by
combining 400 ul 1N HCl (Sigma H9892) and 600 ul 1M Tris-HCl pH 7.5 (TekNova T5075),
adding this to the samples, and immediately mixing the solution again by pipetting. 11.1 ul
of a proteinase mix was then added that contained 0.35% Tween 20 (Sigma P9416) and 0.35
mg/ml proteinase K (NEB P8107) in 10 mM Tris-HCl pH 8 (TekNova T1173). After mixing
the samples by pipetting, incubation was performed at 50 C for 25 minutes.

55 ul of 10 mM Tris-HCl pH 8 was then added to each sample, and mixed by pipetting.
85 ul of the mixture was transferred to a new PCR plate, and 0.65× volumes of Ampure XP
beads (Beckman Coulter A63881) were added, mixed by pipetting, and left to incubate at room
temperature 10 minutes. After twice washing with 70% ethanol, DNA was eluted into 35 ul
10 mM Tris-HCl pH 8. Product was then diluted 1:2 into a PCR reaction containing final con-
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Sample SAMPLE1

Barcode i388

Run, R1, R2 i388_run1, 103, 151

Run, R1, R2 i388_run2, 103, 151

Run, R1, R2 i388_run3, 103, 151

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCAGAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCAGTCAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Target RT oligo TGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTTACTCCTTGGAGGCCATGT

Target RT oligo TGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCTTGAAGTTCACCTTGATGC

Target RT oligo TGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNCCATGGTCTTCTTCTGCATT

Sample SAMPLE2

Barcode i786, 103, 151

Run, R1, R2 i786_run1, 103, 151

Run, R1, R2 i786_run2, 103, 151

Run, R1, R2 i786_run3, 103, 151

Beacon RT oligo ggtgtcctaaacttacgcTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGTAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGTCAAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Target RT oligo TGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTTACTCCTTGGAGGCCATGT

Target RT oligo TGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCTTGAAGTTCACCTTGATGC

Target RT oligo TGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNCCATGGTCTTCTTCTGCATT

Sample SAMPLE3

Barcode i289

Run, R1, R2 i289, 103, 151

Beacon RT oligo GAGGTGTCCTAAACTTACGCTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Beacon RT oligo GAGGTGTCCTAAACTTACGCNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACTGAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Beacon RT oligo GAGGTGTCCTAAACTTACGCNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACTGACAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN

Target RT oligo CGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTTACTCCTTGGAGGCCATGT

Target RT oligo CGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTCTTGAAGTTCACCTTGATGC

Target RT oligo CGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCATGGTCTTCTTCTGCATT

Table S1: Oligonucleotides used for each sample during 4-plex (ACTB, GAPDH, GFP,
RFP) reverse transcription, related to Figs. 2, 4-6, and S5. Lower case nucleotides indicate
sequence areas during read parsing for which a 6% error rate is accepted, whereas upper case
nucleotides afford zero error tolerance. Read-lengths labeled R1 (beginning at the 3’ end of
the beacon UMI) and R2 (beginning at the 5’ end of the target UMI) are shown. All reverse
transcription oligonucleotides were obtained as ultramers from IDT Inc.
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OE1a /5Acryd/tattcccatggcgcgccaNNNNNATNNNNNttgaggtgtcctaaacttacgc

OE4b /5Acryd/ggcgcgccatgggaataaNNNNNATNNNNNtggagtggtctcaacatatcgc

psbs12s GTTCAGACGTGTGCTCTTCCGATCT

s8B ATGAGTGGCTTCAAATTCACGC

s4B17-GAPDH-LF3 TGGTCTCAACATATCGCATGACATCAAGAAGGTGGTGAAGCAGGC

s4B17-RFP-LF2B TGGTCTCAACATATCGCTCAGTTCATGTACGGCTCCAAGGCCTAC

s4B17-GFP-LF1B TGGTCTCAACATATCGCACCATCTTCTTCAAGGACGACGGCAACT

s8B17-actb-LF1 TGGCTTCAAATTCACGCAAACTGGAACGGTGAAGGTGACAGCAG

SBS3LC CCCACTTCTCTCGACGCTCTTCCGATCT

rev-ill-214 CAAGCAGAAGACGGCATACGAGATAGGATCTAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

for-ill-sbs3 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT

10T-OEc-P TTTTTTTTTTTATTCCCATGGCGCGCCA/3Phos/

10T-OE-P TTTTTTTTTTGGCGCGCCATGGGAATAA/3Phos/

Table S2: Oligonucleotides used for all samples during amplification and library prepara-
tion, related to Figs. 4-6 and Fig. S5. Lower case nucleotides indicate sequence areas during
read parsing for which a 6% error rate is accepted, whereas upper case nucleotides afford zero
error tolerance. 5’-acrydite modified oligonucleotides were HPLC-purified by the manufacturer.

centrations of 300 nM SBS3LC primer, 300 nM rev-ill-214 primer, 3.3 uM each of 10T-OE-P
and 10T-OEc-P interference primers (following on the strategy employed in Turchaninova et al
(14) to prevent new concatemers from forming), 0.02 U/ul Platinum Taq HiFi DNA polymerase
(Thermo Fisher 11304029), 1× Platinum HiFi Buffer, 1.5 mM MgSO4, and 200 uM dNTP.
Reactions were thermo-cycled 95 C 2 min, 20×(95 C 30 s, 68 C 2 min), 4 C.

Reaction products were Ampure XP-purified just as before, with 0.65× volumes of Ampure
XP beads added, and eluted into 40 ul 10 mM Tris-HCl pH 8. As part of a final sequence-
barcoding step, 10 ul of sample eluent was added to a reaction containing 300 nM for-ill-sbs3,
300 nM rev-ill-X (with a sample-specific barcode where indicated on the sequence), 0.02 U/ul
Platinum Taq HiFi DNA polymerase, 1× Platinum HiFi Buffer, 2 mM MgSO4, and 200 uM
dNTP. Reactions were then thermo-cycled 95 C 2 min, 5×(95 C 30 s, 58 C 30 s, 68 C 2 min),
and 1-5 ×(95 C 30 s, 68 C 2 min), 4 C in order to obtain sufficient DNA library for sequencing.

1.6 Sequencing
Following a final Ampure XP purification as above, with 0.7× volumes of Ampure XP beads
added, NGS libraries were sequenced on an Illumina NextSeq 550 instrument using manufacturer-
standardized protocols for paired-end sequencing. Sequenced reads were de-multiplexed us-
ing the Illumina bcl2fastq pipeline using the 8nt sequence-barcode included 5’-adjacent to the
SBS12 adapter

5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

(Fig. S2, Table S2). Paired-end reads were sequenced from the SBS3 sequencing primer
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5’-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3’

to 103 bp, and from the SBS12 sequencing primer to either 57 bp or 151 bp, as indicated in
Tables S1 and S4, depending on whether full amplicon sequences were intended to be captured
(instead of simply a minimum number of identifying bases).

1.7 Additional considerations
1.7.1 UMI/UEI design

The number of N’s to use in a UMI/UEI will depend on the expected diversity of molecules
and/or events being tagged. Assuming an upper-bound for this diversity is known, the question
reduces to the so-called “birthday-problem”. Given a UMI/UEI length ` (with each of ` bases
having all 4 base possibilities), the probability that two randomly-drawn UMIs/UEIs will match
(assuming uniform base-distributions) is P0(`) = 4−`. Similarly, the probability that there will
be another UMI/UEI within 1 bp is

P≤1(`) =
1 + 3`

4`
(1)

because there is 1 way for a randomly drawn sequence to be precisely the sequence of a previ-
ously drawn sequence, and 3` ways for it to be the same except for exactly 1 mismatch. The
probability that no two UMIs/UEIs out of N will overlap in this way is

Prob(0 overlap) = (1− P≤1(`))(1− 2P≤1(`)) · · · (1− (N − 1)P≤1(`))

Define Ncrit(`) through the relation

1/2 = (1− P≤1(`))(1− 2P≤1(`)) · · · (1− (Ncrit(`)− 1)P≤1(`))

ThenNcrit(`) is the maximum diversity of templates beyond which it becomes likely that at least
1 pair of UMI/UEI sequences will be within 1 bp of one another. For UMI/UEI sequences in
which there are `4 bases that are randomly selected across all 4 nucleotides and `2 bases that are
randomly selected across 2, we can re-write equation 1:

P≤1(`4, `2) =
1 + (3× `4) + (1× `2)

4`4 × 2`2

Since the UMIs used in our experiments (Table S1, Table S4) have `4 = 20 and `2 = 9, this
gives us Ncrit = 3.3× 106 for each beacon- and target-UMI data set presented here.

Note that for UEIs, the picture is far simpler. Because a UEI brings together exactly two
UMIs, two UEIs that are grouped together will get one vote (assigned via plurality). Therefore,
the less abundant indistinguishable UEI will simply be ignored. From here we can see that we
can bring UEI diversity far closer to the upper limit of that which is physically possible (4`, or
in our case ∼ 1012) without substantial problems.
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Sample Total sequenced Fraction retained Beacon UMIs (>1 read) Target UMIs (>1 read) UEIs (>1 read)
1 26832238 0.76 892372 535216 5056844
2 21355785 0.76 898039 488100 3915689
3 34846809 0.60 63857 31960 732428
4 44032216 0.82* 402575 109482 1291422
5 42669570 0.85* 152875 48577 457148

Sample Beacon UMIs (MLE) Target UMIs (MLE) UEIs (MLE) UEI/Beacon UMI (MLE) UEI/Target UMI (MLE)
1 413574 268752 4149473 10.0 15.4
2 329848 215285 2989182 9.1 13.9
3 38307 21192 695307 18.2 32.8
4 146653 48354 757502 5.2 15.7
5 52359 19951 274540 5.2 13.8

Table S3: Read and UMI/UEI counts for all samples, related to Figs. 2, 4-6, S5. Columns
labeled “>1 read” denote status of UMIs/UEIs identified by independent clustering, whereas
columns labeled “MLE” denote those that made it into the final UEI matrices for image infer-
ence. “UEI/Beacon UMI” and “UEI/Target UMI” denote ratios, important for analyzing data
quality in the context of resolution defined in equation 11. Asterisks denote 24-plex samples,
for which amplicon-filtering was done after UMI/UEI clustering, and therefore those discarded
on this basis were not counted during initial read parsing.

Note furthermore that even for UMIs, things get easier if the target sequences are used to
separate out UMIs (this is not done for any data-set presented here). For a set of target sequence
frequencies {p1, p2, . . . , pS} (normalized to sum to one) of S distinct sequence-types labeled by
UMIs, the probability that two randomly selected sequences will be the same is λ =

∑
i p

2
i . This

measure, also known as Simpson’s diversity index, affects the calculation above by multiplying
P≤1. The more diverse and distributed the population of sequences, the smaller the product
λP≤1 and the larger the value of Ncrit(`).

1.7.2 Remark on reagent quality control

Although reagent quality control is crucial for every protocol, PEG reagents used for the in situ
PCR step are especially sensitive to variation. Basic precautions that must be taken include
desiccation with Drierite (Sigma 238961) or a similar agent in a sealed bag at -20 C. Lot-to-lot
variation must be controlled by keeping a careful log of the lots used for each experiment. We
found that in general this variation could be pre-checked by performing routine bulk PCR’s
within the hydrogel, and comparing the results on a gel. UV/Vis comparison may also be used
as a way to compare inorganic salt content that may have carried over from manufacture.
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2 Analysis

2.1 Read parsing
Reads were parsed by first gating out those with a mean quality score of less than 30 on either
the forward or reverse read. Forward and reverse reads were then checked for inclusion of
primer and stagger sequences, depending on the primers used and indicated in Tables S1 and
S4. Capitalized bases were used to indicate those base positions intolerant of a single mismatch,
whereas consecutive stretches of lower-case bases were used to indicate pieces of sequence that
were permitted to contain mismatches up to the indicated maximum of 0.06 as a fraction of
total. For 4-plex data, 5 bases after gene-specific primer sequences were used to gate reads in
order to remove unrecognized gene inserts. Read counts and fractions retained for each data set
are shown in Table S3.

2.2 UMI/UEI clustering
In order to identify UEI and UMI sequences in a way that would make efficient use of the
data available and in a manner specifically accommodating to long-tailed distributions of PCR
error, we developed a simple clustering algorithm, which we here on refer to as EASL, or
Extended Abundance Single-Linkage. EASL relies on single-mismatch alignments alone to
identify clouds of erroneous sequences that decay in density the further in sequence-space they
exist from an abundant, putatively correct, original sequence.

EASL clustering (Fig. S3A) initiates by grouping every UMI/UEI (from each read location
separately, so that it disregards the rest of that read) within a data set by perfect identity. The
abundance (by read-count) is assigned to each UMI/UEI sequence. Each pair of UMIs/UEIs
is compared by un-gapped alignment. This may be performed by local similarity hashing in a
way that permits full pairwise comparison in O(NL2) time, where N is the number of unique
UMIs/UEIs, and L is the length of the UMI/UEI sequence. In brief, this may be achieved by
generating L hash-tables/dictionaries of UMI/UEI sequences, where each of these dictionaries
has a specific sequence-position removed. For each dictionary, the full collection of L − 1
length UMI/UEI sequences generated by removing that corresponding position are added to the
dictionary. Those found grouped together will be those sets related by a single base mismatch.

EASL clustering then proceeds as follows (Fig. S3A). UMI/UEI i directionally links to
UMI/UEI j if and only if the read-abundance of UMI/UEI i is greater than or equal to the read-
abundance of UMI/UEI j. Read number densities (RNDs) are calculated for each UMI/UEI
sequence by summing read-abundances belonging both to the sequence itself and to all se-
quences (of equal or lower abundance) it links to. Each UMI/UEI data set is then independently
sorted by decreasing RND, and accordingly clustered independently, as follows.

The UMI/UEI with the largest RND initiates clustering as the first cluster-seed. All UMIs/UEIs
to which this seed links by the aforementioned criterion are accepted into its cluster. The algo-
rithm then proceeds to the UMI/UEI with the next largest RND that has not already been as-
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Figure S3: Sequence-error handling at the level of UMIs, UEIs, and transcript inserts,
related to Fig. 1. (A) An illustration of the EASL clustering method for UMI and UEI se-
quence clustering in log-linear time. (B) Quality score (−10 log10 Prob(incorrect)) dependence
on position for target amplicons belonging to GFP and RFP after the annealing primers in Table
S1. Samples 1, 2, and 3 (blue, red, and yellow, respectively) were sequenced out to ∼ 100 bp
past the annealing primer site. and they are therefore shown here. Plot begins ∼ 5 bp into the
transcript, since the first 5 bp were used during initial read-filtering.

signed a cluster. This UMI/UEI becomes a new cluster seed and all UMIs/UEIs not yet assigned
to a prior cluster are accepted to that belonging to the new seed. This process proceeds among
all un-assigned UMIs/UEIs down the RND-sorted list. When no un-assigned UMIs/UEIs re-
main, the algorithm terminates.

2.3 UEI-UMI pairing
After clustering, UMIs were accepted to further analysis if they associated with at least two
reads (UMIs and UEIs remaining after this preliminary filtering step are represented by the
upper-curves in the rarefaction plots in Figs. 3-4 and S5). UEI clusters were then matched with
the beacon UMI/target UMI cluster-pair to which they were found to associate with the most
reads in the original data. This filtering was intended to remove incorrect associations between
beacon UMIs and target UMIs caused by, among other things, PCR chimera formation during
downstream library preparation steps (we reasoned that the original UMI-UEI-UMI pairings
would have a head-start before late-stage amplification – once a new and incorrect UMI-UEI-
UMI pairing would form, it would begin amplifying from a quantity of 1 molecule later in
downstream amplification).

The resulting “consensus” UMI-UEI-UMI pairings were then iteratively filtered by elimi-
nating UMIs associating with fewer than 2 UEIs. After the initial set of UMIs were removed on
account of having too few UEIs, the UEIs they associated with were removed, the matrix was
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re-filtered to exclude UMIs that no longer had at least 2 UEIs, and so on, until no remaining
UMIs could be found associated with fewer than 2 UEIs. The resulting pruned data set is shown
in the lower-curves of the rarefaction plots in Figs. 3-4 and S5.

The target sequences grouped by UMI-clustering further allowed errors owing to PCR and
sequencing to be suppressed. Aggregating the votes at every position for the reads grouped
under a particular target UMI gave quality scores (−10 log10 Prob(incorrect)) that mostly stuck
to Q=30 until 60-70 bp after the end of the primer, after which Q hovered between 25-30 until
it ended nearly 100 bp into the transcript (Fig. S3B).

2.4 Image inference
2.4.1 Formalization

Consider the evolving concentration distribution of products of a single UMI with index i,
centered at position ~x′i, during a DNA microscopy reaction. This can be modeled as isotropic
diffusion using the Gaussian profile for concentration at position ~x′ at time t:

ci(~x
′
i, ~x
′, t) ∝ t−d/2e−||~x

′−~x′i||2/4dDt+At (2)

where d is the dimensionality (of physical space),D is the diffusion constant, andA = log 2/∆t
where ∆t is the time-scale of a PCR cycle. The rate of UEI/concatemer formation between
UMIs i and j with the same diffusion constant will then be the volume-integral

wij(t) ∝
∫
~x′
ci(~xi

′, ~x′, t)cj(~xj
′, ~x′, t)dV (3)

∝ t−de−||~x
′
i−~x′j ||2/8dDt+2At

∫
~x

e−||~x
′−(~x′i+~x′j)/2||2/2dDtdV (4)

∝ t−d/2e−||~x
′
i−~x′j ||2/8dDt+2At (5)

Note that although the UEI formation rate is time-dependent – and that therefore the total
observed reaction rate is in fact a sum of functions above from each PCR cycle – provided
amplification happens quickly, prior time-dependence to some final reaction time τ will be
swamped out by the reaction rate at that time τ . Therefore, for the sake of simplicity, we will
drop the time dependence from our probability model, and say that UMIs i and j located at
t = 0 at positions ~xi ≡ ~x′i/

√
8Ddτ and ~xj ≡ ~x′j/

√
8Ddτ , respectively, will have an expected

cumulative reaction rate of
wij ∝ e−||~xi−~xj ||

2+Ai+Aj (6)

whereAi andAj , are amplification “biases”, ie the cumulative effective amplitudes of the UMIs’
diffusion profiles. The length scale above is denoted

Ldiff ≡
√

8Ddτ

in the main text.
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Figure S4: Data down-sampling and re-parameterization of sMLE inference, related to
Fig. 5. Downsampling of samples 1 and 2 at various read-depths (A-C and D-F, respectively).
A and D correspond to all-inclusive data-sets (20273379 retained reads for sample 1, 16248577
retained reads for sample 2). B and E correspond to 12800000 sub-sampled reads and C and F
correspond to 6400000 sub-sampled reads. sMLE-initialization to I2×2

√
n·· for samples 1 (G)

and 2 (I), instead of initialization to just the identity matrix I2×2, the conditions used in panels
A and F. sMLE inference stopped at 50 (instead of 100) eigenvectors for samples 1 (H) and 2
(J).
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The probability of observing UEI counts {nij} for each UMI-pair 〈i, j〉 is then the multino-
mial expression

Pr ({nij}|{wij(~xi, ~xj)}) ∝
∏
ij

(
wij
w··

)nij

(7)

where dots “·” represent index summation (so that w·· ≡
∑

ij wij). From this, we can write the
log-likelihood

L =
∑
ij

nij log
wij
w··

+ const

and, relying on the functional form from equation 6, its gradient with respect to UMI position
~xk:

1

2

∂

∂~xk
L = −

∑
j

nkj(~xk − ~xj)︸ ︷︷ ︸
Part #1: linear, sparse

+
n··
w··

∑
j

(~xk − ~xj)wkj︸ ︷︷ ︸
Part #2: non-linear, dense

(8)

A solution to the above occurs when the gradient is zero for every ~xk, and where contribu-
tions from equation 8 parts #1 and #2 balance. Parts #1 and #2 of equation 8 differ in several
important ways.

The first of these differences is the role they play: part #1 dictates how to center each UMI
relative to one another, and attracts all UEI-associated UMIs together, whereas part #2 regulates
how to separate them, by repelling all UMIs from all other UMIs at the strengths dictated by
the intrinsic lengthscale of the function wij . The second difference is the ease of calculation:
part #1 involves summing only the UEIs observed in the experiment, the summation is sparse
in the same way our observations are sparse; part #2 meanwhile makes no distinction between
UEIs that are observed and UEIs that are not, and requires the summation over all UEIs that are
possible.

Third and finally, the two expressions differ in the length scales over which they operate.
Optimization over small length scales containing minimal point density variation will make part
#2 of equation 8 approach zero, since it involves the summation of repulsive forces pointed in
all directions. In these circumstances, part #1 will dominate. However, over long distances in
which large-scale point densities may vary, part #2 will contribute heavily.

2.4.2 Local linearization of the image inference problem

We can write part #1 of equation 8 as −nk·~xk +
∑

j nkj~xj = N~x, where ~x is now a solution to
all UMI positions simultaneously, and where we’ve defined the zero row-sum UEI matrix, or
what in the main text is referred to as the UEI Graph Laplacian:

Nij ≡
{
−ni· i = j
nij otherwise

Note that N is a sparse square matrix (all UMIs × all UMIs), re-written from the rectangular
form in Fig. 1E, which has exclusively beacon UMIs as rows and exclusively target UMIs as
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columns. N will always have a “trivial” eigenvector of all 1’s (with eigenvalue 0) that solves
the equation by making all positions equal. Solving equation 8 part #1, by obtaining the non-
trivial solution nearest to 0 means setting ~x = arg min ||~xTN~x|| s.t. ~xT~x = 1, and amounts
to maximizing the numerator of the multinomial probability in equation 7. We will write the
solution to this eigenvalue problem in a row-normalized form

~x = arg min
∣∣∣∣~xTΛ−1N~x

∣∣∣∣ s.t. ~xT~x = 1 (9)

where we use the diagonal matrix

Λij ≡
{
ni· i = j
0 otherwise

to equalize contributions to the gradient by each UMI.
Because the solution to the maximum likelihood problem is only linear locally, we need a

way to zoom in on local portions of the data in order to use it. We can do this by applying simple
and approximate graph cut/spectral partitioning algorithms previously described (15). Specifi-
cally, we take the symmetric normalized form of the UEI Graph Laplacian, Λ−1/2NΛ−1/2, and
find its second smallest-in-magnitude (after the trivial solution) eigenvalue/eigenvector pair. We
then perform a sweep of possible cuts within that eigenvector to minimize the conductance be-
tween the resulting UMI sub-sets A and B: N(A,B)/min(N(A), N(B)), where N(A,B) is
the number of UEIs associating UMI sub-sets A and B, and N(A) and N(B) are the total
number of UEIs belonging to those two UMI sub-sets, respectively.

Minimizing this conductance value allows for the “sparse cut” described in the main text.
By iteratively cutting the matrix, re-forming the matrix Λ−1/2NΛ−1/2, and continuing until the
minimum available conductance-cut is above a threshold, we can obtain local linear data subsets
depicted in Fig. 2E-H.

Setting the threshold higher provides for more extensive cutting, and results in the cell
segmentation shown in Fig. 6A-B. The accompanying binomial p-values in Fig. 6C-D present,
for putative cells with ≥ 50 UMIs and at least one ACTB and one GAPDH transcript:

p ≡
k′∑
k=0

(
m
k

)
qk(1− q)m−k

where k′ is the number of UMIs belonging to the minority transgene (GFP or RFP) within that
putative cell, m is the total number of transgene UMIs observed, and q is the frequency of the
minority transcript within the entire data set. It therefore describes the probability of observing
the cell as-is under a random partitioning hypothesis.

2.4.3 Global likelihood maximization

Moving to larger length scales means dealing with part #2 of equation 8. In order to handle
the large-scale summation of every pair of UMIs (otherwise prohibitive due to its quadratic
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Figure S5: Global point-MLE solutions for 4-plex and 24-plex gene targeting, related to
Figs. 5-6. Point-MLE solutions for 4-plex samples 1 (A) and 2 (B), in which each UMI is
optimized independently. Grid-lines are used to denote spacings of Ldiff (or ∆x = 1.0 in
equation 8, used for image inference). For 4-plex data, grey = ACTB/beacon, white = GAPDH,
green = GFP, and red = RFP. (C-D) Point-MLE solutions for samples 4 and 5, respectively,
with 24-plex targeting performed on sub-sets of genes known enriched in BT-549 and MDA-
MB-231 cell lines (Tables S4 and S5). All targeted genes were found at non-zero frequencies
except for GRIN2D, MEA1, FAM170B, and C11ORF44. Gene colorings are the same as in
A-B, but included are genes previously found enriched in the MDA-MB-231 (yellow), which
here expresses GFP, and BT-549 (magenta), which here expresses RFP. Rarefaction plots for
samples 4 (E) and 5 (F) are also shown, with top and bottom curves indicating data immediately
following clustering and data entered into the UEI matrix for image inference, respectively.
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Figure S6: Simulated fractional error histogram (A) and correlogram (B) using an adapted
Fast Gauss Transform, related to Fig. 3-6. The Fast Gauss Transform allows sums of O(N2)
Gaussian interactions between point-sources (here, UMIs) to be calculated in O(N) time. The
Fast Gauss Transform is applied above to the weight sums wi· ≡

∑
j wij of 2000 simulated

UMIs (1000 beacons and 1000 targets) normally distributed with σ = 10, and with amplitudes
Ai, Aj (from equation 6) normally distributed with σ = 1. Maximum fractional error bound is
set to 30% for weights wi·.

scaling), we adapted the Fast Gauss Transform (17) that allowed calculation of this sum with
bounded error in linear time. Error bounds were parametrized as the maximum possible fraction
of the calculation of the weight-sum wk· for each UMI. This was set to 30%, which sufficed to
constrain actual error levels to orders of magnitude smaller (Fig. S6).

2.4.4 Point-MLE solution

The most straightforward way solve equation 8 is to randomly initialize the global solution with
an “educated guess” of what the global solution might look like and perform a gradient ascent
of the global likelihood function using each UMI position as an independent variable. Since the
eigenvector solutions to equation 9 satisfy local constraints, they provide a logical starting-point
to initialize this solution. To this end, we let the top 100 eigenvectors of the full data-set’s row-
normalized UEI matrix Λ−1N be columns in the matrix Z. The d-dimensional (with all samples
here having d = 2) initial UMI positions ~xinit were then defined through the linear combination

~xinit = Z~yrand

where ~yrand was a d-column matrix, with each row corresponding to a different eigenvector, and
its elements being linear coefficients used to sum the columns of eigenvectors in Z. The ele-
ments of ~yrand were normally distributed coefficients generated fromN (µ = 0, σ =

√
n··/100).
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Amplitudes Ai were set to log ni· (an approximation asserting that, on average, UMI density
was uniform at the length scale of diffusion) and gradient ascent proceeded using the calcula-
tion from equation 8 (and applying the L-BFGS optimization method from the SciPy library).
This point-MLE approach was applied in Fig. S5A-D.

These global solutions illustrate, however, the difficulty in capturing information on empty
space when each point is being optimized independently. Clusters of points are unable to sepa-
rate by more than the length-scale Ldiff indicated by grid-lines (which is defined as the unit-less
value of 1.0 in the physical model of equation 6).

2.4.5 Spectral MLE (sMLE) solution

In order to capture more information on empty space than the point-MLE solution allows, we
can expand on the local linear solutions previously described, and require our global solutions
to remain linear combinations of the top eigenvectors of the full data-sets’s row-normalized UEI
matrix Λ−1N. Again assembling these top eigenvectors as columns in the matrix Z, the global
d-dimensional (with all samples here having d = 2) solution ~x of size M × d for all M UMIs
was then defined as the linear combination

~x = Z~y (10)

where, as before, ~y was a d-column matrix, with each row corresponding to a different eigen-
vector, and its elements being the linear coefficients used to sum the columns of eigenvectors in
Z. Using equation 10 made ~y a low-dimensional variable set that we could optimize directly.
The coefficients in ~y therefore dictated the UMI positions ~x and the gradients of each UMI in
~x were then calculated using equation 8. These individual UMI gradients were then projected
back onto the linear eigenspace defined by Z, allowing ~y to be updated accordingly. Because
eigenvectors in Z were not orthogonal, the back-projection of high-dimensional gradient ∆~x to
low-dimensional gradient ∆~y was defined (through equation 10) by ∆~y = (ZTZ)−1ZT∆~x.

We approached this low-dimensional optimization within the eigenspace Z in as incremen-
tal a way as possible. We called this incremental approach “spectral maximum likelihood es-
timation”, or sMLE. On iteration 1 of sMLE, the first 2 eigenvectors of matrix Z were taken
in isolation (corresponding to the non-trivial eigenvalues with smallest magnitude), and per-
forming a gradient-ascent optimization of equation 8 with their coefficients alone gave optimal
coefficients for generating a solution ~x from a linear combination of these two eigenvectors
alone. On iteration 2, the eigenvector with the next smallest-magnitude eigenvalue/eigenvector
pair in Z was added to those allowed to contribute to the solution ~x, thereby adding to the
number of optimizable coefficients in ~y. This larger vector ~y was then optimized for the now 3
eigenvectors. This was repeated until all top eigenvectors (numbering 100 in the presented data
sets) were integrated into the linear combination defining solution ~x.

The outputs are plotted in Figs. 4-6 and – for down-sampled read counts – in Fig. S4A-
F. It should be noted that the two parameters that need to be fixed for this algorithm are the
scaling factor that multiplies the initial 2 eigenvectors that seed the solution and the choice of
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total eigenvectors after which the algorithm terminates (Fig. S4G-J). Although alterations in the
initial scaling factor result in isomorphic images (due to their using a common set of eigenvec-
tors to construct a solution), certain manifold folding-defects can be mitigated by scaling factor
choice. A comparison is made between initializing ~y in equation 10 to the identity matrix I (ap-
plied to solutions in the main text and Figs. S4A, and S4D) versus initializing ~y to I√n··, where
n·· is the total UEI count (applied to Figs. 4, S4G, and S4I). The total number of eigenvectors
at which the sMLE algorithm terminates (shown at 50 in Figs. S4H and S4J, compared to 100
everywhere else) similarly alters manifold folding by freezing out certain degrees of freedom
the solution can use to maximize the position likelihood function.

2.4.6 Resolution and UEI count

The relationship between the uncertainty of a UMI’s position given its neighbors’ can be un-
derstood as the equivalent of the standard-error in a statistical average (namely, the standard-
deviation divided by the square-root of the number of independent measurements). However
we sketch it out explicitly here in the context of the solution-likelihood function in equation 7.
If we assert that in regions where the local linear conditions previously discussed apply (gradi-
ents in point density at the diffusion length-scale Ldiff are small), a solely varying UMI k has
solution-likelihood at position ~Xk about some maximal likelihood ~xk

Prob( ~Xk) ∼ e−||
~Xk−~xk||2/2σ2

then we can simply calculate

σ =

(
− ∂2

∂ ~X2
k

log Prob( ~Xk)

)−1/2
Since under the local linear conditions, the multinomial probability in equation 7 becomes a
simple product of Gaussians, we get

log Prob( ~Xk) ≈
∑
j

nkj log wkj + const

= −
∑

j nkj||~xk − ~xj||2

L2
diff

+ const

where we’ve retained the physical length Ldiff in equation 6. From this we can finally write

σ =

(
2nk·
L2

diff

)−1/2
=
Ldiff/

√
2

√
nk·

(11)

meaning a UMI’s positional uncertainty will shrink with the square root of the total number of
UEIs with which it associates. This relationship is highlighted in Fig. 3B-C.
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2.4.7 Simulation

The efficacy of the sMLE algorithm was evaluated in a more controlled setting using simulated
data exhibited in Fig. 3G.

Simulations proceeded as follows. For each UMI i, molecular-copy numbers mi(t) at am-
plification cycle t was initiated at mi(t = 0) = 1. For discrete linear amplification cycles
t = 1, 2, . . . , τlin, with τlin being the total linear-amplification cycle number, the total molecular-
copy numbers were updated as

mi(t+ 1)← mi(t) + Binom(mi(t = 0) = 1, pdup)

where 0 < pdup ≤ 1 was the efficiency at which each template (UMI-tagged cDNA) molecule
was copied. As in the experimental protocol, linear amplification was followed by exponential
PCR amplification, in which molecular-copy numbers were updated as

mi(t+ 1)← mi(t) + Binom(mi(t), pdup)

for t = τlin + 1, τlin + 2, . . . , τlin + τexp. Meanwhile, during exponential PCR cycles t = τlin +
1, τlin + 2, . . . , τlin + τexp the expected rate of UEI formation wij(t) between every beacon i and
target j was calculated according to the previously derived equation 5

wij(t) ∝
(
t−d/2e−||~xi−~xj ||

2/8dDt
)
mi(t)mj(t)

where the expectation values of the total molecular abundance of beacon UMI i and target UMI
j are here explicit – mi(t) and mj(t), respectively. For a given total final UEI count N , we then
calculated an expected UEI count for time t

〈nij(t)〉 = N
wij(t)∑
ijt′ wij(t

′)

The number of actual UEI formation events for every triplet (i, j, t) were then assigned ran-
domly using Poisson statistics

nij(t)← Pois (〈nij(t)〉)

The kth UEI forming event generated by UMI-UMI pair (i, j), would then come into existence
at its time-of-creation t′ with a molecular count aijk(t = t′) = 1. That abundance would evolve
in time until the end of the reaction t = τlin + τexp according to the iteration relation

aijk(t+ 1)← aijk(t) + Binom(aijk(t), pdup)

Each UEI’s final read-abundance, given an expected total read depth Ω, was then assigned

ωijk(τlin + τexp)← Pois

(
Ω

aijk(τlin + τexp)∑
ijk aijk(τlin + τexp)

)
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Image inference algorithms were then applied to this simulated data set in Fig. 3G. Here,
freely diffusing products from 5000 beacons and 5000 targets, incorporating amplification
stochasticity and sparse UEI sampling (50000 UEIs). “Original” coordinates are ground truth.
UEIs in simulation are generated from an amplification reaction the same as in the experi-
ment (see section In situ preparation), with 10 linear amplification cycles and 16 exponential
amplification cycles. Amplification stochasticity was introduced by making each molecular du-
plication event 5% likely to not occur at all (pdup = 0.95). Each cycle taking place over ∆t = 1
with a D = 1 diffusion constant: both of these are in arbitrary units, with ground-truth posi-
tions normalized to the length scale Ldiff =

√
8 · 1 · 3 · 26 (the length scale from equation 5),

since D = 1, d = 3, and τ = 26 (note that diffusion is still simulated in 3 dimensions, even
though initial molecules are stationed in 2). Image inferences from simulations are re-scaled
and registered (rotation/reflection) relative to ground-truth.

22

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 19, 2018. ; https://doi.org/10.1101/471219doi: bioRxiv preprint 

https://doi.org/10.1101/471219
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene targeted

Sample SAMPLE4

Barcode i800

Run, R1, R2 i800_run1, 103, 57

Run, R1, R2 i800_run2, 103, 151

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN ACTB

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCGAAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN ACTB

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCAGTCAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN ACTB

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTTACTCCTTGGAGGCCATGT GAPDH

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTCTTGAAGTTCACCTTGATGC GFP

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCATGGTCTTCTTCTGCATT RFP

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGACGGAGAAGTCCACGATCT GRIN2D

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNATGGCCAAAGTCCGCTATCTTG CDK20

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATGCCCCTGGGTCTTACTCAC TMEM234

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCCAAAGACCCGCTTCATC FAM127B

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTTCACCAGCAACTCCAACAG HACD1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGTAGCGCTCGCTCAGGTAGA IER5L

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNGTCTCTGGGCAAAGGCTTC CDC25B

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTAGATGGCAAAGACTTCAAC POLR1E

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCTGGTGTCCCACGAGGT SECTM1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTGTGCCTCCCTTGGTCTGG FAM3A

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTCATGCGCAGAAAAACAGTC C6ORF52

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATGGGTGGGGAGGAGTTATTTC PLP2

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCTTGATGTGGAAAGGGAGA MEA1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTTACTGGGAGTAGGACTGGTA FAM170B

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNAATCCACCATCTCTCCTTTCC COL13A1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCAGAAAAGCAAGGGCTCAG MRPL14

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNATTCCCAGGCACCAATCTGA C11ORF44

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCACTGTACAGGCCCACGAA CCRL2

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAACACATAACCGCAGCGACA ZFAND3

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCGCAGTGGCAGAGCAGAGGAT RRP36

Sample SAMPLE5

Barcode i293

Run, R1, R2 i293_run1, 103, 57

Run, R1, R2 i293_run2, 103, 151

Beacon RT oligo ggtgtcctaaacttacgcTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTAAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN ACTB

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGTAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN ACTB

Beacon RT oligo ggtgtcctaaacttacgcNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGTCAAGATCGGAAGAGCGTCGAGAGAAGTGGGGTGGCTTTN ACTB

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTTACTCCTTGGAGGCCATGT GAPDH

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTCTTGAAGTTCACCTTGATGC GFP

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCATGGTCTTCTTCTGCATT RFP

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGACGGAGAAGTCCACGATCT GRIN2D

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNATGGCCAAAGTCCGCTATCTTG CDK20

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATGCCCCTGGGTCTTACTCAC TMEM234

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCCAAAGACCCGCTTCATC FAM127B

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTTCACCAGCAACTCCAACAG HACD1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNAGTAGCGCTCGCTCAGGTAGA IER5L

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNGTCTCTGGGCAAAGGCTTC CDC25B

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTAGATGGCAAAGACTTCAAC POLR1E

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCTGGTGTCCCACGAGGT SECTM1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTGTGCCTCCCTTGGTCTGG FAM3A

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCTCATGCGCAGAAAAACAGTC C6ORF52

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATGGGTGGGGAGGAGTTATTTC PLP2

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCTTGATGTGGAAAGGGAGA MEA1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTTACTGGGAGTAGGACTGGTA FAM170B

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNAATCCACCATCTCTCCTTTCC COL13A1

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNACCAGAAAAGCAAGGGCTCAG MRPL14

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNATTCCCAGGCACCAATCTGA C11ORF44

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTGANNNNNNNWWSNNNWWWNNNSWWNNNNNNNATCACTGTACAGGCCCACGAA CCRL2

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTACTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNAACACATAACCGCAGCGACA ZFAND3

Target RT oligo GGAGTTCAGACGTGTGCTCTTCCGATCTTNNNNNNNWWSNNNWWWNNNSWWNNNNNNNTCGCAGTGGCAGAGCAGAGGAT RRP36

Table S4: Oligonucleotides used for 24-plex samples during reverse transcription, related
to Fig. S5. Genes previously found (http://amp.pharm.mssm.edu/Harmonizome/, CCLE Cell
Line Gene Expression Profiles) enriched in BT-549 cells are highlighted red, and genes pre-
viously found enriched in MDA-MB-231 cells are highlighted green. Lower case nucleotides
indicate sequence areas during read parsing for which a 6% error rate is accepted, whereas up-
per case nucleotides afford zero error tolerance. Read-lengths labeled R1 (beginning at the 3’
end of the beacon UMI) and R2 (beginning at the 5’ end of the target UMI) are shown. All
reverse transcription oligonucleotides were obtained as ultramers from IDT Inc.
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OE1a /5Acryd/tattcccatggcgcgccaNNNNNATNNNNNttgaggtgtcctaaacttacgc

OE4b /5Acryd/ggcgcgccatgggaataaNNNNNATNNNNNtggagtggtctcaacatatcgc

Lbs12 GGAGTTCAGACGTGTGCTCTTCCGATCT

s8B ATGAGTGGCTTCAAATTCACGC

s8B-actb-LF1 ATGAGTGGCTTCAAATTCACGCAAACTGGAACGGTGAAGGTGACAGCAG

s4B17-GAPDH-sF TGGTCTCAACATATCGCAGAAGGTGGTGAAGCAGGC

s4B17-GFP-sF TGGTCTCAACATATCGCTCAAGGACGACGGCAACT

s4B17-RFP-sF TGGTCTCAACATATCGCTACGGCTCCAAGGCCTAC

s4B17-GRIN2D-sF TGGTCTCAACATATCGCTCAACCGAACCCACAGC

s4B17-CDK20-sF TGGTCTCAACATATCGCATGGAGGACAATCAGTATGTGG

s4B17-TMEM234-sF TGGTCTCAACATATCGCTTGAATACTGAGTACCTGATGCC

s4B17-FAM127B-sF TGGTCTCAACATATCGCAGGAACCCGATTCCCTTTC

s4B17-HACD1-sF TGGTCTCAACATATCGCTGCCTTGCTTGAGATAGTTCAC

s4B17-IER5L-sF TGGTCTCAACATATCGCGAACCTCTGACCCGGACTC

s4B17-CDC25B-sF TGGTCTCAACATATCGCATCCGGATCATTCGAAACGAGC

s4B17-POLR1E-sF TGGTCTCAACATATCGCGTGACTGCTCTGGTCAGC 

s4B17-SECTM1-sF TGGTCTCAACATATCGCTCAGAATGAAGGCTGGGAC

s4B17-FAM3A-sF TGGTCTCAACATATCGCATGACCCAGCCACCAAGATG 

s4B17-C6ORF52-sF TGGTCTCAACATATCGCTCTGTCGTTAATAGGTTTCTGGG

s4B17-PLP2-sF TGGTCTCAACATATCGCATCCCTGGAGTGATTTCTTCCG

s4B17-MEA1-sF TGGTCTCAACATATCGCATCCATGGACCCAGAACATGTAG 

s4B17-FAM170B-sF TGGTCTCAACATATCGCTGCTACTTCACAGATCACAGG 

s4B17-COL13A1-sF TGGTCTCAACATATCGCATCCAGGAACCAAGGGTGAGAAGGG

s4B17-MRPL14-sF TGGTCTCAACATATCGCTTGCAGGACTCGTGAATGG

s4B17-C11ORF44-sF TGGTCTCAACATATCGCTCCCAGGAGACTACAACTCAG

s4B17-CCRL2-sF TGGTCTCAACATATCGCATCGATGAGGCAGAGCAATGTG

s4B17-ZFAND3-sF TGGTCTCAACATATCGCATCGAGTAAAGAGGAGTGTGGG

s4B17-RRP36-sF TGGTCTCAACATATCGCTTCAGCGAATGGAGCAGC 

Table S5: Oligonucleotides used for 24-plex PCR, related to Table S4 and Fig. S5. For PCR,
as indicated in the Experimental methods section, gene-specific primers (each ending here in
“sF”) were used at a final concentration of 10 nM each (in contrast to 30 nM each for the oligos
in Table S2 used for 4-plex PCR). 5’-acrydite modified oligonucleotides were HPLC-purified
by the manufacturer.
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