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Abstract

The proportion of phenotypic variance attributable to the additive effects of a given set of

genotyped SNPs (i.e. SNP-heritability) is a fundamental quantity in the study of complex traits.

Recent works have shown that existing methods to estimate genome-wide SNP-heritability often

yield biases when their assumptions are violated. While various approaches have been proposed

to account for frequency- and LD-dependent genetic architectures, it remains unclear which esti-

mates of SNP-heritability reported in the literature are reliable. Here we show that genome-wide

SNP-heritability can be accurately estimated from biobank-scale data irrespective of the under-

lying genetic architecture of the trait, without specifying a heritability model or partitioning

SNPs by minor allele frequency and/or LD. We use theoretical justifications coupled with ex-

tensive simulations starting from real genotypes from the UK Biobank (N=337K) to show that,

unlike existing methods, our closed-form estimator for SNP-heritability is highly accurate across

a wide range of architectures. We provide estimates of SNP-heritability for 22 complex traits

and diseases in the UK Biobank and show that, consistent with our results in simulations, ex-

isting biobank-scale methods yield estimates up to 30% different from our theoretically-justified

approach.
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Introduction

SNP-heritability, the proportion of phenotypic variance attributable to the additive effects of a given set

of SNPs, is a fundamental quantity in the study of complex traits [1]; it provides an upper bound on

risk prediction from a linear model relating genotypes to phenotype [2] and, when defined as a function

of all SNPs on a genotyping array, yields insights into the “missing heritability” of complex traits [3–5].

Traditionally, SNP-heritability is estimated by fitting variance components models with REML [3, 6–9].

With some notable exceptions [8], REML-based methods are typically not scalable to biobanks that assay

hundreds of thousands of individuals (e.g., UK Biobank contains genotype measurements for more than

half a million individuals [10]). SNP-heritability can also be estimated from summary-level GWAS data by

assessing the deviation in marginal association statistics as a function of the LD score of each SNP [11–14],

thus making SNP-heritability estimation scalable to hundreds of thousands or even millions of individuals.

More recently, a randomized extension of Haseman-Elston (HE) regression [15] was shown to estimate a single

genetic variance component from individual-level data as accurately as REML methods but in a fraction of

the run-time [16].

To facilitate inference, all existing methods for genome-wide SNP-heritability inference make various as-

sumptions on the underlying genetic architecture of the trait, which is typically parametrized by polygenicity

(the number of variants with effect sizes larger than some small quantifiable constant δ) and MAF/LD-

dependence (the coupling of effect sizes with minor allele frequency (MAF), local linkage disequilibrium (LD),

or other functional genomic annotations such as regions of open chromatin) [17]. Since the true genetic archi-

tecture of any given trait is unknown, existing methods are susceptible to bias and often yield vastly different

estimates of SNP-heritability for the same traits, even when applied to the same data [9, 14, 18]. Although

multi-component methods that stratify SNPs by MAF and LD can ameliorate some of the robustness issues of

single-component methods [7,18,19], fitting multiple variance components to biobank-scale data with REML

is highly resource-intensive [8] and it is currently unclear whether stratifying by MAF/LD produces accurate

estimates of total SNP-heritability for methods based on summary statistics. Alternate methods explicitly

model MAF- and LD-dependent architectures when estimating SNP-heritability [6, 9, 14]; however, these

approaches can produce drastically different estimates when their assumptions are violated [6, 9, 14, 18, 19].

In addition, genetic architecture is unlikely to be the same across traits or populations due to, for example,

variable degrees of negative selection acting on different traits in different populations [17, 20–25]. Methods

that jointly infer SNP-heritability and other parameters such as the strength of negative selection or poly-

genicity have been proposed [14,23,26] but are computationally intensive and/or sensitive to LD-dependent

architectures. Thus, it remains unclear which estimates of genome-wide SNP-heritability computed from

biobank-scale data (e.g., UK Biobank [10]) are reliable.

In this work, we investigate whether genome-wide SNP-heritability can be accurately estimated under

a generalized random effects (GRE) model that makes minimal assumptions on the genetic architecture of

complex traits. Under this model, every causal effect can have an arbitrary SNP-specific variance, and SNP-

heritability is defined as the sum of the SNP-specific variances (Methods). To the best of our knowledge,

all existing methods make additional assumptions on top of the GRE model (Table 1). For example, the

infinitesimal model assumed by single-component GREML [3] (and several other methods [8, 16]) imposes

an inverse relationship between MAF and effect size by assuming that every standardized effect size explains

an equal portion of total SNP-heritability, whereas the single-component LDAK model assumes that each
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SNP-specific variance is inversely proportional to both MAF and the LD neighborhood of the SNP [6, 9].

We derive a closed-form estimator for SNP-heritability under the GRE model as a function of GWAS

marginal association statistics and in-sample LD and show that this estimator is consistent (i.e. the estimator

approaches the true SNP-heritability as sample size increases) and unbiased (i.e. the expectation of the

estimator is equal to the true SNP-heritability) when the number of individuals is larger than the number

of SNPs. Most importantly, the accuracy of this estimator does not depend on the underlying genetic

architecture of the trait. The GRE estimator has the same analytical form as previously proposed “fixed

effect estimators” [27, 28] that aim to estimate the variance explained by a set of fixed (non-random) SNP

effects at a particular genomic region – a different quantity from the estimand of interest here (i.e. SNP-

heritability defined as the sum of per-SNP variances; see Methods).

Through theoretical derivations and extensive simulations across a wide range of MAF- and LD-dependent

architectures starting from real genotypes from the UK Biobank [10] (337K individuals and 593K SNPs), we

find that the GRE estimator provides nearly unbiased estimates of SNP-heritability across all architectures

whereas existing methods are sensitive to model misspecification. For example, across 126 distinct archi-

tectures, the maximum bias we observe with the GRE estimator is 2% of the simulated SNP-heritability

whereas state-of-the-art methods such as stratified LD score regression (S-LDSC) [12, 13] and SumHer [14]

yield biases between -84% and 28% of the simulated SNP-heritability. For completeness, we also contrast the

GRE estimator with several REML-based methods in simulations at lower sample sizes (due to the compu-

tational burden of most REML methods) and find that, consistent with recent reports [18], all REML-based

methods are biased when their model assumptions are violated. Across a similar set of 126 architectures,

the bias of the GRE estimator ranges from -5% to 6% of the simulated SNP-heritability whereas single-

component REML methods [3, 6, 8, 9] are biased by anywhere between -44% and 18% of the simulated

SNP-heritability. We confirm that multi-component REML methods that stratify SNPs by MAF and LD

score (GREML-LDMS-I [18]) are more accurate than single-component REML methods if favorable SNP

stratification criteria are used (i.e. if SNPs are stratified by the same MAF bins used to define the causal

variant MAF spectrum). The performance of the GRE estimator, which does not stratify SNPs or assume a

specific heritability model [6,9,14], is similar to that of GREML-LDMS-I with favorable stratification criteria,

thereby confirming that SNP-heritability can be accurately estimated without knowledge of the underlying

genetic architecture.

Finally, we use marginal association statistics and in-sample LD from N = 290K unrelated British

individuals genotyped at M = 460K SNPs (MAF > 1%) to provide estimates of SNP-heritability for 22

complex traits and diseases in the UK Biobank [10]. Consistent with our simulations, across the 18 traits

with SNP-heritability estimates greater than 0.05, we find that estimates from S-LDSC (controlling for

the baseline-LD model [13]) and SumHer differ from the GRE estimates by a median of -9% and 11%,

respectively. For example, for height, estimates from S-LDSC (0.56) and SumHer (0.63) are approximately

7% lower and 5% higher, respectively, than our estimate of 0.60. Similarly, for hypertension, estimates

from S-LDSC (0.14) and SumHer (0.18) are ±12.5% different from our estimate of 0.16. Taken together,

our results demonstrate that SNP-heritability can be accurately estimated from biobank-scale data without

prior knowledge of the genetic architecture the trait, motivating the development of new methods to make

inferences from biobank-scale data under fewer modeling assumptions.
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Results

Overview of the approach

We investigate the utility of an estimator for SNP-heritability derived under a model that makes minimal

assumptions on genetic architecture. We assume the standardized phenotype of an individual is a linear

function of their genotypes: y = xTβ + ε, where x is a vector of standardized genotypes at M SNPs, β

is a vector of standardized effect sizes corresponding to the M SNPs, and ε ∼ N(0, σ2
e) is environmental

noise (Methods). We assume the effects can follow any distribution as long as the effect size of every SNP

i is zero-centered (E[βi] = 0) with a finite SNP-specific variance (Var[βi] = σ2
i ) that is allowed to be 0,

and that the covariance between the effects of any pair of SNPs is zero (E[βiβj ] = 0 for all i 6= j). We

term this model the “generalized random effects” (GRE) model as, to the best of our knowledge, all existing

methods to estimate SNP-heritability impose additional assumptions on top of this model. For example,

setting σ2
i = h2

g/M for i = 1, . . . ,M results in the single-component GREML model [3], whereas setting

σ2
i ∝ wi[fi(1 − fi)]0.75 (where wi is a function of the “LD score” of SNP i and fi is the MAF of SNP i)

results in the most recent LDAK model [9] (Table 1). Under the GRE model, the SNP-heritability explained

by the M SNPs is the sum of SNP-specific variances: h2
g ≡ Var[xTβ]/Var[y] =

∑M
i=1 σ

2
i (Methods).

In this work, we are interested in accurately estimating h2
g from genotype measurements across N individ-

uals at M typed SNPs. When N > M , the estimator ĥ2
g = Nβ̂T V̂†β̂−q

N−q , where β̂ is the vector of standardized

SNP effects estimated by ordinary least squares (OLS), V̂† is the pseudoinverse of the in-sample LD matrix,

and q is the rank of the in-sample LD matrix, is an unbiased estimator of SNP-heritability under the GRE

model. That is, E[ĥ2
g] =

∑M
i=1 σ

2
i = h2

g (Methods). The GRE model allows each SNP-specific variance

(σ2
i ) to be an arbitrary finite value satisfying the constraints σ2

i ∈ [0, 1] and
∑M
i=1 σ

2
i ∈ [0, 1]. Thus, σ2

i

can capture any relationship between effect size and MAF/LD, which in turn implies that ĥ2
g is unbiased

under most genetic architectures. Unfortunately, even the largest biobank-scale datasets currently available

contain fewer unrelated individuals than typed SNPs (i.e. UK Biobank has genotyped M ≈ 593K SNPs

in N ≈ 337K unrelated British individuals), which limits the utility of the above estimator. We therefore

extend our approach by partitioning the genome by chromosome into 22 approximately independent regions:

ĥ2
GRE =

22∑
k=1

N β̂Tk V̂†kβ̂k − qk
N − qk

(1)

where for each chromosome k with pk typed SNPs, β̂k is the pk-vector of standardized SNP effects estimated

by ordinary least squares (OLS), V̂†k is the pseudoinverse of the in-sample LD matrix, and qk is the rank

of the in-sample LD matrix. Although this genome-wide estimator does not provide theoretical guarantees

of unbiasedness, we show through extensive simulations that the magnitude of the bias is extremely small

across all architectures when N is sufficiently larger than pk.

Accurate estimation of SNP-heritability irrespective of disease architecture

To investigate the bias and variance of ĥ2
GRE, we perform simulations starting from the real genotypes of

N = 337205 unrelated British individuals in the UK Biobank [10]. First, we use data from chromosome

22 (M = 9654 typed SNPs) to simulate 64 distinct MAF- and LD-dependent architectures by varying the
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SNP-heritability (h2
g), the proportion of causal variants (pcausal), the distribution of causal variant MAF

(CV MAF), and the strength of coupling between effect size and MAF/LD; we use “LDAK-LD-dependent”

to describe architectures where causal effects are coupled with “LDAK weights” (see Methods). To enable

comparison of estimates across different values of h2
g, we assess bias as a percentage of the simulated value

of h2
g (relative bias) or the error of a single estimate as a percentage of h2

g (relative error). Consistent

with analytical derivations, the GRE estimator restricted to chromosome 22 provides unbiased estimates

across the 64 architectures after correcting for 16 independent tests at each value of h2
g (bias p-value <

0.05/16 is considered significant; see Methods) (Figure 1ac, Supplementary Table S1). The average relative

bias across the 64 architectures is 0.00015% of the simulated h2
g, and the largest bias we observe under

any single architecture is approximately ±0.2% × h2
g (Supplementary Figure S1a, Supplementary Table

S1). We confirm that the analytical estimator of the standard error (Methods) is well-calibrated across

all genetic architectures (Supplementary Figure S3a, Supplementary Table S4). We then investigate the

bias induced by partitioning chromosome 22 into non-independent blocks and find that, as expected, our

estimator accrues statistically significant upward bias as the average block size decreases (Supplementary

Figure S2, Supplementary Table S2). For example, in simulations on chromosome 22 where h2
g = 0.1, α = −1,

pcausal = 1%, and causal variants were chosen randomly from all SNPs, using a single chromosome-wide LD

block produces approximately unbiased estimates (bias = 6.9× 10−5, p-value = 0.55) whereas partitioning

the chromosome into 2 disjoint blocks of equal size induces a small but significant upward bias (bias =

4.3× 10−4, p-value = 5.3× 10−4) (Supplementary Figure S2, Supplementary Table S2).

Next, we investigate the accuracy of the GRE estimator in genome-wide simulations (N = 337K unrelated

individuals and M = 593K array SNPs) where we use 22 chromosome-wide LD blocks to compute ĥ2
GRE.

Despite the 22-block approximation, we find that ĥ2
GRE is highly accurate and robust across all 64 MAF- and

LDAK-LD-dependent architectures (Figure 1bc). The average bias across the 64 architectures is 0.97% ×
h2
g, with the relative bias under any single architecture ranging from 0.07% to 2.1% of the simulated h2

g

(Supplementary Figure S1b, Supplementary Table S3). The largest error we observe for a single estimate

across all 6400 simulations (64 genetic architectures × 100 simulation replicates) is approximately 17%× h2
g

(Figure 1c) and as N/M increases, the variance of ĥ2
GRE decreases while the relative bias across the 64

architectures appears to be approximately fixed, ranging between 0.91% (N = 100K) and 0.99% (N = 200K)

(Figure 1d). This small but statistically significant upward bias in the genome-wide estimates is likely due

to the 22-chromosome approximation, which ignores stochastic correlations between genotypes of SNPs on

different chromosomes. These trends hold for a range of values of pcausal (Supplementary Table S3). Most

importantly, the accuracy of the GRE estimator does not correlate with the simulated trait architecture

(Figure 1b). We also assess the calibration of our analytical estimator for the standard error in the genome-

wide simulations and observe a small downward bias with respect to the empirical standard deviation of

ĥ2
GRE estimates (Supplementary Figure S3b, Supplementary Table S5). For example, across 16 distinct

architectures where h2
g = 0.25, the empirical standard deviation computed from 100 independent estimates

of h2
g ranges from 0.0049 to 0.0064, whereas our estimate of the standard error is approximately 0.0036

across all architectures (Supplementary Figure S3b, Supplementary Table S5). In all subsequent analyses,

we compute ĥ2
GRE with the 22 chromosome-wide LD block approximation as this provides sufficiently accurate

estimates and a fair comparison to other methods.
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Comparison of methods to estimate SNP-heritability

We compare ĥ2
GRE with existing state-of-the-art approaches to estimate SNP-heritability that are easily

scalable to the full UK Biobank data (N = 337K): LD score regression with no annotations (LDSC), which

assumes α = −1 and no coupling of effect size with LD [11]; stratified LD score regression (S-LDSC), which

partitions h2
g by a set of annotations of interest [12, 13]; and SumHer, a recent scalable extension of LDAK

which explicitly models MAF- and LD-dependent architectures through a specific form of the SNP-specific

variances [14] (Table 1). To ensure a fair comparison among the methods, LD scores for LDSC, S-LDSC, and

SumHer are computed using in-sample LD among the M SNPs, and in all simulations we aim to estimate

the SNP-heritability explained by the same set of M SNPs (see Methods).

We find that ĥ2
GRE is highly accurate and robust across all simulated architectures while LDSC, S-

LDSC, and SumHer are sensitive to deviations from their respective model assumptions. For example,

when h2
g = 0.25 (Figure 2), LDSC is approximately unbiased under the “single-component GREML model”

(relative bias = 0.04%, p = 0.86) but is sensitive to the MAF spectrum of causal variants and the degree

of coupling between effect size and MAF/LD (e.g., across the 12 architectures where pcausal = 1%, relative

bias ranges from -44% to 50%) (Supplementary Table S6). Similarly, SumHer is accurate under the “LDAK

model” (relative bias = 5.3%) but highly sensitive to other plausible genetic architectures (when pcausal = 1%,

relative bias ranges from -19% to 22%) (Figure 2, Supplementary Table S7). Estimates from S-LDSC (MAF),

which partitions h2
g by 10 MAF bins (Supplementary Table S8; Methods), are less biased compared to

estimates from LDSC when causal effects are coupled with only MAF, but are significantly downward biased

when causal effects are also coupled with LDAK weights (for h2
g = 0.25, relative bias range is [1.9%, 7.0%]

when γ = 0 and [-58%, -37%] when γ = 1) (Figure 2, Supplementary Table S9). S-LDSC with 10 MAF

bins and an additional continuous “level of LD” (LLD) annotation, which we denote S-LDSC (MAF+LLD)

(Methods), produces similar results on the same architectures (for h2
g = 0.25, relative bias range is [1.8%,

6.5%] when γ = 0 and [-80%, -33%] when γ = 1) (Supplementary Table S10). In contrast, the relative bias of

ĥ2
GRE ranges from 0.45% to 1.3% across the same 16 genetic architectures where h2

g = 0.25 and pcausal = 1%

(Figure 2, Supplementary Table S3). These trends hold for a range of values of h2
g and pcausal: across 112

distinct LDAK-LD- and/or MAF-dependent architectures, the average and range of the relative bias of each

method are 0.96% [-0.06%, 2.1%] for ĥ2
GRE, -2.2% [-71%, 70%] for LDSC, -22% [-62%, 8.7%] for S-LDSC

(MAF), -29% [-89%, 9.0%] for S-LDSC (MAF+LLD), and 2.8% [-27%, 28%] for SumHer (Figure 1b, Figure

2, Supplementary Figures S4-S7, Supplementary Tables S3, S6-S7, S9-S10). We also perform simulations

under 14 alternative LD-dependent architectures where the variance of each SNP is coupled with its inverse

LD score instead of its LDAK weight (i.e. “LD-score-dependent” architectures; see Methods, Supplementary

Figure S8) and find that ĥ2
GRE remains nearly unbiased (relative bias ranges from 0.52% to 1.3%) whereas

estimates from S-LDSC (MAF), S-LDSC (MAF+LLD), and SumHer are downward-biased on average across

the 14 architectures (Supplementary Figure S9, Supplementary Table S11).

For completeness, we also compare to four widely used REML-based methods: single-component GREML

(GREML), which assumes α = −1 and no coupling of effect size with LD [3]; GREML-LDMS-I, a multi-

component extension of GREML that partitions SNPs by MAF and LD score [18]; BOLT-REML, a compu-

tationally efficient variance components estimation method with assumptions similar to those of GREML [8];

and LDAK, which assumes a specific form of the coupling of effect size with LD and recommends setting

α = −0.25 [6, 9] (Table 1). Because it is computationally intractable to apply the REML-based methods
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to thousands of genome-wide simulations with 337K individuals, we perform simulations using a reduced

number of individuals and SNPs (N = 8430 individuals and M = 14821 array SNPs; see Methods). We find

that the single-component REML methods (GREML, BOLT-REML, and LDAK) are sensitive to MAF- and

LD-dependent architectures that deviate from their respective model assumptions, whereas our estimator is

robust to all architecture parameters. For example, when h2
g = 0.25 (Figure 3), GREML and BOLT-REML

are accurate under the “single-component GREML model” (GREML: relative bias = -1.4%, p = 6.0× 10−3,

Supplementary Table S12; BOLT-REML: relative bias = -0.16%, p = 0.75, Supplementary Table S13) and

LDAK is approximately unbiased under the “LDAK model” (relative bias = 0.16%, p = 0.77, Supplementary

Table S14), but all single-component methods are sensitive to the MAF spectrum of causal variants and to

the coupling of causal effects with MAF/LD. Across the 12 architectures in Figure 3 where pcausal = 1%,

the relative biases of the single-component methods range from -15% to 7.9% (GREML), -14% to 9.1%

(BOLT-REML), and -34% to 8.2% (LDAK) (Supplementary Tables S12-S14). In contrast, for the same 12

architectures, ĥ2
GRE yields relative biases in the range [-2.1%, 1.7%], which is comparable to the relative

bias observed with GREML-LDMS-I (range [-2.9%, 1.5%]) when using 8 GRMs defined by 4 LD quartiles

and 2 MAF bins (MAF > 5% and MAF ≤ 5%) that align with the causal variant MAF spectrum (Figure

3, Supplementary Tables S15, S16). These trends are consistent across a range of values of h2
g and pcausal:

across the 112 distinct LDAK-LD- and/or MAF-dependent architectures shown in Supplementary Figures

S10-S14, the average and range of the relative bias are 0.09% [-4.9%, 6.4%] (GRE), -0.6% [-5.9%, 2.3%]

(GREML-LDMS-I), -2.9% [-27%, 15%] (GREML), -1.8% [-25%, 18%] (BOLT-REML), and -8.2% [-44%,

13%] (LDAK) (Supplementary Tables S12-S16). Similar trends are observed in additional simulations under

14 LD-score-dependent architectures (Supplementary Figure S15, Supplementary Table S17). We note that

the performance of GREML-LDMS-I depends on the resolution of the MAF and LD bins used to partition

SNPs; in an extreme example where all causal variants are drawn from a MAF range tightly concentrated

near 1%, running GREML-LDMS-I with the same 8 GRMs as before yields downward-biased estimates

whereas our estimator remains robust (Supplementary Figure S16, Supplementary Tables S12-S16). While

the variance of our estimator is larger than the variances of the REML-based methods (Figure 3), our

approach is designed for biobank-scale GWAS data with sample sizes several orders of magnitude larger

than what we used in these small-scale simulations. In summary, our results confirm that it is possible to

accurately estimate h2
g under minimal assumptions about genetic architecture.

Estimating SNP-heritability of 22 complex traits in the UK Biobank

Finally, we apply our approach to estimate h2
g for 22 complex traits and diseases in the UK Biobank (N =

290K unrelated British individuals, M = 460K array SNPs; see Methods) [10]. For comparison, we also

provide estimates of h2
g from LDSC (no annotations), S-LDSC (controlling for the baseline-LD model [13,29]),

and SumHer. Of the 22 traits analyzed (6 quantitative and 16 binary), we focus on 18 traits for which

ĥ2
GRE > 0.05 (Table 2). Using our approach, estimates of SNP-heritability for the 6 quantitative traits

range from 0.12 (smoking status) to 0.60 (height). Across the 12 binary traits, our estimates range from

0.064 (autoimmune disorders) to 0.16 (hypertension) (Table 2). To enable a direct comparison between

ĥ2
GRE and the SNP-heritability quantities estimated by LDSC, S-LDSC, and SumHer, we run each of the

summary-statistics-based methods with LD scores and regression weights computed from in-sample LD

among the typed SNPs, and we estimate SNP-heritability as the sum of the per-SNP variances across all M
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SNPs (Methods). Across the 18 traits, the median difference (as a percentage of ĥ2
GRE) between S-LDSC

(baseline-LD/in-sample) and ĥ2
GRE is -9%; the median difference between SumHer (in-sample) and ĥ2

GRE

is 11% (Figure 4, Supplementary Table S18). This pattern is roughly consistent with the global trends

we observed in genome-wide simulations (Figure 2). As expected [11], LDSC (in-sample) yields inflated

estimates across all 18 traits. To enable a comparison between ĥ2
GRE and SNP-heritability estimates from

summary-statistics-based methods reported in the literature, we also run LDSC, S-LDSC, and SumHer with

their recommended parameter settings [11, 12, 14, 29] and with LD scores and regression weights computed

from 489 Europeans in the 1000 Genomes Phase 3 reference panel [30] – we note that when running these

methods as recommended, their SNP-heritability estimands are not equivalent to our definition of h2
g (see

Methods and refs. [11, 12, 14, 19] for details). Across the 18 traits for which ĥ2
GRE > 0.05, the median

differences with respect to ĥ2
GRE are -11% for LDSC (1KG), -14% for S-LDSC (baseline-LD/1KG), and 38%

for SumHer (1KG) (Supplementary Figure S17, Supplementary Table S18). Across 9 traits (a subset of the

18 traits with ĥ2
GRE > 0.05) for which a previous study reported estimates from single-component BOLT-

REML computed from approximately 337K unrelated white British individuals in the UK Biobank [31], the

median difference between the previously reported BOLT-REML estimates and ĥ2
GRE is 8% (Supplementary

Table S18).

Runtime and memory requirement

Since our approach is designed to be applied to biobank-scale data, we report the runtime and memory

requirements for computing ĥ2
GRE with 22 chromosome-wide LD blocks in the UK Biobank (N = 337K

individuals, M = 593K array SNPs). First, we compute chromosome-wide LD; this has complexity O(Np2k)

for chromosome k with pk SNPs. In practice, this step does not impose a computational bottleneck because

the LD computations can be parallelized over SNP partitions (e.g., given a pair of SNP partitions contain-

ing 1000 SNPs each, computing the pairwise LD matrix takes about 10 minutes and 16GB of memory).

Second, the pseudoinverse of each chromosome-wide LD matrix is computed via truncated singular value

decomposition (SVD), which has complexity O(p3k) for chromosome k. This step is parallelized over chro-

mosomes; for chromosome 2, which has the largest number of typed SNPs, computing the truncated SVD

and pseudoinverse of the LD matrix takes about 3 hours and 60GB of memory. Lastly, given the precom-

puted pseudoinverse of each chromosome-wide LD matrix and OLS association statistics, computing ĥ2
GRE

genome-wide has complexity O(p21 + · · ·+ p222). For any of the UK Biobank traits analyzed in this work, this

takes less than 1 hour and requires 24GB of memory; most of this time is spent loading the pseudoinverse

LD matrices into memory.

Discussion

In this work, we show that highly accurate estimation of SNP-heritability can be achieved under minimal

assumptions on the genetic architecture of complex traits. In particular, our proposed estimator assumes

that each SNP effect has a fixed SNP-specific variance that can capture any arbitrary relationship between

effect size and genomic features such as MAF and LD. We show that all existing methods to estimate SNP-

heritability impose additional assumptions on the GRE model, and we confirm through extensive simulations

that these methods are susceptible to bias when their modeling assumptions are not met. Additionally, we
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confirm that REML-based methods that partition SNPs by MAF and LD score generally yield much smaller

bias compared to single-component REML methods [18]. In contrast, our estimator, derived under the GRE

model, provides accurate estimates of SNP-heritability regardless of the underlying genetic architecture,

without specifying a heritability model or partitioning SNPs by functional categories. On average across

18 heritable traits in the UK Biobank (ĥ2
GRE > 0.05), our approach yields estimates that are higher than

S-LDSC estimates (controlling for the baseline-LD model [29]) and lower than SumHer estimates (with the

recommended heritability model [9, 14]). One practical advantage of our approach over methods such as

LDSC, S-LDSC, and SumHer is that the estimand of our approach is always the same for a given genotype

matrix, whereas the definitions and interpretations of the estimands of LDSC, S-LDSC, and SumHer can

vary drastically depending on what sets of SNPs are used in each step of the inference procedure (e.g., the

set of SNPs used to compute LD scores need not be the same set of SNPs that defines the SNP-heritability

estimand of interest) [11, 12, 19]. Overall, our results show that while existing methods can yield biases, for

the purpose of estimating total SNP-heritability of complex traits, most methods are relatively accurate and

robust to plausible genetic architectures.

We conclude with several caveats and future directions. First, the utility of GRE estimator critically

depends on the ratio between the number of SNPs (M) and the number of individuals (N) in the data

– as M/N increases, the eigenstructure of the in-sample LD matrix (and sample covariance matrices in

general) becomes increasingly distorted (larger eigenvalues are overestimated and smaller eigenvalues are

underestimated) [32]. We mitigate this by assuming that the genome-wide LD matrix has a block diagonal

structure (specifically, one block per chromosome); since the number of unrelated British individuals in the

UK Biobank is larger than the number of array SNPs per chromosome, our approach is able to provide

meaningful estimates of the SNP-heritability attributable to common SNPs (MAF > 1%) in individuals of

British ancestry. A major limitation of our approach remains with respect to imputed and/or whole-genome

sequenced data, in which the number of SNPs will continue to be orders of magnitude larger than the number

of individuals for the foreseeable future. We defer a thorough investigation of regularized estimation of LD

in high-dimensional settings (M > N) to future work.

Second, this work focuses on accurate estimation of SNP-heritability given OLS association statistics

and chromosome-wide LD matrices estimated from the same genotype data. While summary statistics have

been made publicly available for hundreds of GWAS, in-sample LD is usually unavailable or impossible to

obtain since most large-scale GWAS are meta-analyses [33], and publicly available reference panels such

as 1000 Genomes [30] currently have sample sizes in the hundreds or thousands at most. In addition,

many publicly available summary statistics were computed using linear mixed models rather than OLS in

order to control for population structure/cryptic relatedness. Previous works have noted (in the context of

statistical fine-mapping) that the LD computation must be adjusted to accommodate association statistics

computed from mixed models [33,34]. The sensitivity of our estimator to reference panel LD (with or without

regularized LD estimation) and/or mixed model association statistics remains unclear [28, 35]; we leave an

investigation of both for future work. Furthermore, our simulations use typed SNPs to draw phenotypes

because imputed genotypes have highly irregular LD patterns [9, 18]. Although it would be more realistic

to simulate causal variants and phenotypes from a denser set of genotyped SNPs or from whole-genome

sequencing data [18], our simulation design was dependent on the availability of individual-level genotype

measurements in biobank-scale sample sizes.
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Third, the GRE estimator does not correct for population structure/cryptic relatedness. We mitigate this

in our analysis of real UK Biobank traits by considering only unrelated individuals (> 3rd degree relatives)

and by including age, sex, and the top 20 principal components as covariates in the linear regression when

computing OLS association statistics. However, recent work has found significant evidence of assortative

mating for some traits in the UK Biobank (e.g., height) and not others [36], suggesting that our estimator

might be more susceptible to bias for some traits over others. Currently, it remains unclear how to quantify

the bias of our estimator due to population structure and/or assortative mating in real data. In addition,

we derive the GRE estimator under no ascertainment in case/control data. Future work is needed to extend

the GRE approach to control for ascertainment bias [15,16,37,38].

Finally, while previous works have applied similar estimators in the context of fixed effects models to

estimate local SNP-heritability within small regions (e.g., LD blocks) [27, 28], additional work is needed to

extend our approach to perform functional partitioning of SNP-heritability by higher-resolution annotations.

Existing methods for partitioning genome-wide SNP-heritability by small and/or overlapping annotations

make various assumptions on genetic architecture [8,12–14,29], motivating the development of new methods

in this area under fewer assumptions.

URLs

GRE estimator: https://bogdan.dgsom.ucla.edu/pages/software

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/

GCTA: https://cnsgenomics.com/software/gcta/

LDAK: http://dougspeed.com/ldak/

LDSC: https://github.com/bulik/ldsc/

baseline-LD annotations: https://data.broadinstitute.org/alkesgroup/LDSCORE/

PLINK: https://www.cog-genomics.org/plink2

UK Biobank: https://www.ukbiobank.ac.uk
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Methods

The generalized random effects model

We model the phenotype for an individual n randomly sampled from the population as yn = xTnβ + εn,

where xn = (xn1 . . . xnM )T is a vector of standardized genotypes measured at M SNPs for individual n,
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β = (β1, . . . , βM )T is an M -vector of the corresponding standardized SNP effect sizes, and εn ∼ N(0, σ2
e)

is environmental noise. We assume Var[yn] = 1 and that the genotype at each SNP i is centered and

scaled in the population such that E[xni] = 0 and Var[xni] = 1; i.e. xni = (gni − 2fi)/
√

2fi(1− fi), where

gni ∈ {0, 1, 2} is the number of copies of the effect allele at SNP i for individual n, and fi is the population

frequency of the effect allele at SNP i. We define the population LD between two SNPs i and j to be

vij ≡ E[xnixnj ] for all i 6= j. The population LD matrix among the M SNPs is therefore V ≡ Cov[xTn ]. For

simplicity, we use “SNP effect sizes” in lieu of “standardized SNP effect sizes” to refer to β. We assume that

the genotypes xn and effect sizes β are independent given allele frequencies (f1, . . . , fM ) and V.

Under the generalized random effects (GRE) model, the first two moments of the distribution of the effect

size of SNP i are E[βi] = 0 and Var[βi] = σ2
i , where σ2

i can be any arbitrary nonnegative finite number.

We assume the covariance between the effects of different SNPs is 0 (i.e. Cov[βi, βj ] = E[βiβj ] = 0 for all

i 6= j). Because the SNP-specific variances (σ2
1 , . . . , σ

2
M ) can capture any polygenicity (number of variants

with effects larger than some measurable constant) and any degree of coupling between genomic features

(e.g., MAF and LD) and effect size, the GRE model encompasses most realistic genetic architectures (Table

1).

We define total SNP-heritability (h2
g) to be the proportion of phenotypic variance attributable to the

additive effects of a set of M SNPs whose genotypes are directly measured:

h2
g ≡ Var[xTnβ]/Var[yn] (2)

= E[Var[xTnβ|β]] + Var[E[xTnβ|β]]

= E[βTVar[xTn ]β] + Var[E[xTn ]β]]

= E[βTVβ] + 0

= E[tr(VββT )]

= tr(VE[ββT ])

h2
g =

M∑
i=1

σ2
i (3)

Thus, h2
g is defined with respect to a given population and a given set of SNPs. By definition, 0 ≤ h2

g ≤ 1.

Similarly, we define regional SNP-heritability (h2
k) to be the proportion of phenotypic variance due to the

additive effects of the genotyped SNPs in region k. We assume that the set of SNPs that defines h2
k is a

subset of the M SNPs that define h2
g (thus, 0 ≤ h2

k ≤ h2
g). If region k is the whole genome, h2

k = h2
g.

Estimating SNP-heritability under the GRE model

We are interested in estimating h2
g under the GRE model (Equation 3). In a GWAS with N individuals

genotyped at M SNPs, let X = (xT1 , . . . ,x
T
N )T be the N ×M matrix of standardized genotypes (i.e. each

column of X has been standardized to have mean 0 and variance 1), let y = (y1, . . . , yN )T be the N -vector

of standardized phenotypes, and let V̂ = (1/N)XTX be the M ×M in-sample LD matrix (an estimate of

population LD, V) with rank q, where 1 ≤ q ≤ M . Let X = (X1, . . . ,XK) be a set of K approximately

independent genome partitions spanning all M SNPs (e.g., chromosomes). For each region k containing

pk SNPs, Xk is the N × pk standardized genotype matrix and V̂k is the corresponding pk × pk in-sample
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LD matrix with rank qk, where 1 ≤ qk ≤ pk. We propose the following estimator for genome-wide SNP-

heritability:

ĥ2
GRE =

K∑
k=1

N β̂Tk V̂†kβ̂k − qk
N − qk

(4)

where β̂k = (1/N)XT
k y is the pk-vector of marginal SNP effects estimated by ordinary least squares (OLS)

for region k and V̂†k is the pseudoinverse of V̂k.

In the following sections, we first derive ĥ2
GRE in the simplest case where K = 1 and N > M by finding

an estimator that satisfies E[ĥ2
GRE] = h2

g. We then describe modifications to this estimator to allow N < M

as well as rank-deficient LD matrices. Lastly, we derive an analytical form for the standard error of ĥ2
GRE.

Derivation for ĥ2
GRE assuming fixed β and N > M

Recall that Var[yn] = 1 and Var[xTn ] = V. Our goal is to find an estimator ĥ2
GRE that satisfies E[ĥ2

GRE] = h2
g =

Var[xTnβ] = E[Var[xTnβ|β]] + Var[E[xTnβ|β]] = E[βTVβ] (Equation 2). If β were fixed and we observed V

and β, we could estimate h2
g as ĥ2

g = βTVβ. However, in reality, we observe noisy estimates of β and V from

GWAS. Given a GWAS of N unrelated individuals and M SNPs, we observe X, the standardized genotype

matrix, and y, the standardized phenotype vector. We assume that when N > M , V̂ → V as N → ∞
(in practice, the assumption that N > M is untrue; in subsequent sections we show how we partition the

genome into K blocks such that N > pk for each block k). In a typical GWAS, the marginal SNP effects are

estimated through ordinary least squares (OLS) regression as β̂ = (1/N)XTy = (1/N)XTXβ+(1/N)XT ε =

V̂β + (1/N)XT ε. Given X and fixed β, it follows that

E[β̂|β,X] = E[V̂β + (1/N)XT ε|β,X] (5)

= V̂β + (1/N)XTE[ε]

= V̂β

Cov[β̂|β,X] = Cov[V̂β + (1/N)XT ε|β,X] (6)

= (σ2
e/N

2)XTX

=
σ2
e

N
V̂

Thus, as N → ∞, β̂ → Vβ. Substituting V̂−1β̂ ≈ β and V̂ ≈ V, we obtain the revised estimator

ĥ2
g = βTVβ ≈ (V̂−1β̂)T V̂(V̂−1β̂) = β̂T V̂−1β̂. The expectation of this estimator is

E[β̂T V̂−1β̂|β,X] = E[tr(β̂T V̂−1β̂)|β,X]

= E[tr(V̂−1β̂β̂T )|β,X]

= tr(V̂−1E[β̂β̂T |β,X])

= tr(V̂−1Cov[β̂|β,X]) + tr(V̂−1E[β̂|β,X]E[β̂|β,X]T )

= tr((σ2
e/N)V̂−1V̂) + βT V̂β

=
M

N
σ2
e + βT V̂β (7)
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We define ĥ2
GRE to be an estimator that satisfies E[ĥ2

GRE|β,X] = βT V̂β. Substituting into Equation 7, we

obtain

E[β̂T V̂−1β̂|β,X] =
M(1− E[ĥ2

GRE|β,X])

N
+ E[ĥ2

GRE|β,X]

=
M

N
+
N −M
N

E[ĥ2
GRE|β,X]

E[ĥ2
GRE|β,X] =

(
E[β̂T V̂−1β̂|β,X]− M

N

)
N

N −M

=
NE[β̂T V̂−1β̂|β,X]−M

N −M

ĥ2
GRE =

N β̂T V̂−1β̂ −M
N −M

(8)

Unbiasedness of ĥ2
GRE under the GRE model when N > M

Recall that under the GRE model, E[βi] = 0 and Var[βi] = σ2
i , where σ2

i ≥ 0 for all SNPs i. In the previous

sections, we showed that E[ĥ2
GRE|β,X] = βT V̂β and h2

g =
∑M
i=1 σ

2
i . Recalling that Cov[βiβj ] = 0 for all

i 6= j, it follows that

E[ĥ2
GRE|X] = E[E[ĥ2

GRE|β,X]|X] (9)

= E[βT V̂β|X]

= E[tr(βT V̂β)|X]

= tr(V̂E[ββT ])

=

M∑
i=1

σ2
i (10)

Therefore, E[ĥ2
GRE] = E[E[ĥ2

GRE|X]] =
∑M
i=1 σ

2
i = h2

g. This result implies that ĥ2
GRE is an unbiased estimator

for h2
g under a wide range of genetic architectures that fall under the GRE model.

Practical considerations for implementation

For most GWAS, because the number of genotyped SNPs M is much larger than the number of individuals

N in the study, V̂ is a poor estimator of V genome-wide; as M/N increases, the eigenstructure of V̂ becomes

increasingly distorted (larger eigenvalues are overestimated and smaller eigenvalues are underestimated) [32].

In addition, it is generally computationally intractable to compute and invert V̂ genome-wide. Thus, in

practice, we divide the genome into a set of K approximately independent blocks (e.g., by chromosome) and

implement ĥ2
GRE as

ĥ2
GRE =

K∑
k=1

N β̂Tk V̂−1
k β̂k − pk

N − pk
(11)

where β̂k is the pk-vector of marginal effects for block k containing pk SNPs. While this estimator does

not provide theoretical guarantees of unbiasedness, it remains statistically consistent (i.e. ĥ2
GRE → h2

g as
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N →∞).

Extension for rank-deficient LD

It is often the case that two SNPs are perfectly correlated in a genotype block Xk, or that N < pk for

a block k. In this case, V̂k is rank-deficient (i.e. its rank is less than pk) and V̂−1
k does not exist. We

therefore compute V†k, the pseudoinverse (Moore-Penrose inverse) of V̂k, which approximates V̂−1
k using

its truncated eigendecomposition. Let qk = rank(V̂k) and let V̂k = UkΛkU
T
k be the eigendecomposition

of V̂k, where Λk = diag(λ1, . . . , λqk , 0, . . . , 0). The pseudoinverse of V̂k is V̂†k = UkΛ
†
kU

T
k , where Λ†k =

diag(λ−1
1 , . . . , λ−1

qk
, 0, . . . , 0).

Substituting V̂†kβ̂k ≈ βk and V̂k ≈ Vk, we obtain the following estimator for h2
k: ĥ2

k = βTk Vkβk ≈
(V̂†kβ̂k)T V̂k(V̂†kβ̂k) = β̂Tk V̂†kβ̂k. Let Iqk be a pk × pk diagonal matrix in which the first qk diagonal entries

are 1 and the rest are 0. The expectation of our estimator given β and X is

E[β̂Tk V̂†kβ̂k|β,X] = E[tr(V̂†kβ̂kβ̂
T
k )|β,X]

= tr(V̂†kE[β̂kβ̂
T
k |β,X])

= tr(V̂†kCov[β̂k|β,X]) + tr(V̂†kE[β̂k|β,X]E[β̂k|β,X]T )

= tr((σ2
e/N)V̂†kV̂k) + tr(V̂†k(V̂kβk)(V̂kβk)T )

= tr((σ2
e/N)Iqk) + tr(UkΛ

†
kU

T
kUkΛkU

T
k βkβ

T
k UkΛkU

T
k )

=
qk
N
σ2
e + tr(UkΛ

†
kΛkU

T
k βkβ

T
k UkΛkU

T
k )

=
qk
N
σ2
e + tr(IqkU

T
k βkβ

T
k UkΛk)

=
qk
N
σ2
e + tr(βTk UkΛkIqkU

T
k βk)

=
qk
N
σ2
e + βTk UkΛkIqkU

T
k βk

=
qk
N
σ2
e + βTk UkΛkU

T
k βk

=
qk
N
σ2
e + βTk V̂kβk (12)

We wish to find an estimator that satisfies E[ĥ2
GRE|β,X] = βT V̂β =

∑K
k=1 β

T
k V̂kβk. Substituting into the

above equation, we obtain

ĥ2
GRE =

K∑
k=1

N β̂Tk V̂†kβ̂k − qk
N − qk

(13)

Analytical variance of ĥ2
GRE

Following quadratic form theory [28,39], the variance of ĥ2
GRE in the single-block case is given by

Var
[
ĥ2
GRE

]
=

(
N

N − q

)2(
2q

(
1− h2

g

N

)
+ 4h2

g

)(
1− h2

g

N

)
(14)
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When using the K-block approximation, which assumes that the blocks are independent, we approximate

Equation 14 as the sum of the variances of the local SNP-heritabilities:

Var
[
ĥ2
GRE

]
=

K∑
k=1

(
N

N − qk

)2(
2qk

(
1− h2

k

N

)
+ 4h2

k

)(
1− h2

k

N

)
(15)

Because h2
g and h2

k for all k are unknown, Equation 14 is estimated by plugging in ĥ2
GRE and Equation 15 is

estimated by plugging in (ĥ2
1, . . . , ĥ

2
K), the estimates of the regional SNP-heritabilities.

Simulation Framework

To assess the performance of ĥ2
GRE and other methods, we simulated continuous phenotypes from genotype

array data in the UK Biobank [10] under a range of genetic architectures. We obtained a set of N = 337205

unrelated British individuals to use in simulations by extracting individuals that are > 3rd degree relatives

and excluding individuals with putative sex chromosome aneuploidy. In all simulations, we standardize the

genotype matrix before drawing phenotypes such that each column (SNP) of the genotype matrix has mean

0 and variance 1. In other words, we standardize the genotype at SNP i for individual n by computing

xni = (gni − 2fi)/
√

2fi(1− fi), where gni ∈ {0, 1, 2} is the number of minor alleles at SNP i for individual

n and fi is the minor allele frequency (MAF) of SNP i among the N individuals.

Given standardized genotypes for N individuals at M SNPs and a fixed value of h2
g, phenotypes are

simulated under different genetic architectures according to the following model. The proportion of causal

variants, pcausal, is set to either 1 (i.e. an infinitesmal model in which all variants have nonzero effects), 0.01,

or 0.001. Let ci ∈ {0, 1} be an indicator variable for the causal status of SNP i. If pcausal = 1, ci = 1 for

i = 1, . . . ,M . Otherwise, if 0 ≤ pcausal < 1, we draw pcausal ×M SNPs from the set of SNPs with minor

allele frequencies in one of three ranges: (0, 0.5], (0.01, 0.05], or (0.05, 0.5]. We use the abbreviation “CV

MAF” to refer to the MAF range from which causal variants are drawn. The standardized SNP effect sizes

and phenotypes are then drawn according to the following model:

σ2
i ∝ ci · w

γ
i [fi(1− fi)]1+α (16)

(β1, . . . , βM )T ∼ N(0, diag(σ2
1 , . . . , σ

2
M )) (17)

(y1, . . . , yN )T |β ∼ N(Xβ, (1− h2
g)IN ) (18)

where α is a parameter that controls the coupling of MAF and effect size, wi is a SNP-specific LD weight, and

γ ∈ {0, 1} is a global parameter specifying whether the effect size of a SNP is coupled with its LD score. We

simulate two types of LD-dependent architectures by defining the SNP-specific LD weights w1, . . . , wM to be

either (1) the default “LDAK weights” computed by the LDAK software [6], or (2) the inverse unpartitioned

“LD score” of each SNP computed within a 2-Mb window using the LDSC software (i.e. w−1
i =

∑
j r

2
ij

where j indexes the set of SNPs within a 2-Mb window centered on SNP i) [11]. When γ = 1, both the

LDAK weights and inverse LD score weights cause SNPs in regions of higher LD to have smaller effects

than do SNPs in regions of lower LD. We set α to one of two values: α = −1, which indicates a relatively

strong inverse relationship between MAF and effect size, or α = −0.25, which indicates a weaker inverse

relationship between MAF and effect size. Each per-SNP variance is multiplied by a constant scaling factor
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to ensure that
∑M
i=1 σ

2
i = h2

g. Note that σ2
i > 0 if ci = 1 and σ2

i = 0 if ci = 0.

Finally, given simulated phenotypes y = (y1, . . . , yN )T and genotypes X = (xT1 , . . . ,x
T
N )T , we compute

marginal association statistics through ordinary least squares (OLS) as β̂ = (1/N)XTy.

Comparison of methods in simulations

Unless otherwise specified, in all genome-wide simulations, we use real genotypes of N = 337205 unrelated

British individuals measured at M = 593300 array SNPs to draw causal effects for all M SNPs and phe-

notypes for all N individuals. OLS summary statistics are computed for all M SNPs using the simulated

phenotypes and real genotypes for all N individuals. We implement our estimator (Equation 4) by comput-

ing chromosome-wide in-sample LD for each chromosome k as V̂k = (1/N)XT
kXk and we compare to three

computationally efficient methods that operate on summary statistics: LD score regression (LDSC) [11],

stratified LD score regression (S-LDSC) [12,13], and SumHer [14].

To run LDSC with no annotations, we use the LDSC software (see URLs) to compute the LD score of

each SNP as a function of its LD to all other SNPs in a 2-Mb window centered on the SNP. The LD scores

are computed from a random sample of 40K individuals to reduce the amount of memory required by the

LDSC software. We run the regression with an unconstrained intercept, using all M SNPs as observations

in the response variable, where each SNP in the regression is weighted to account for heteroscedasticity and

correlations between association statistics at SNPs in LD [11]. h2
g is estimated as a function of all M SNP-

specific variances by running LDSC with the flags --not-M-5-50 and --chisq-max 99999 (the latter option

prevents the LDSC software from dropping high-effect SNPs).

We run S-LDSC in two ways to account for MAF- and LD-dependent architectures. S-LDSC (MAF)

refers to S-LDSC with 10 binary MAF bin annotations defined such that each bin contains exactly 10%

of the typed SNPs; this is intended to mirror the 10 MAF bin annotations in the S-LDSC “baseline-LD

model” [13] (see Supplementary Table S8 for precise MAF bin ranges for the UK Biobank Axiom Array).

S-LDSC (MAF+LLD) refers to S-LDSC with the same 10 MAF bins and an additional continuous “level

of LD” (LLD) annotation computed by quantile-normalizing the unpartitioned LD scores within each MAF

bin to a standard normal distribution [13]. While our definition of LLD is intended to mirror the LLD

annotation in the baseline-LD model, we do not set the LLD of variants with MAF < 0.05 to 0 because

our estimand of interest is the SNP-heritability attributable to all M SNPs (not just SNPs with MAF >

0.05 [13]). For each annotation, LD scores are computed within 2-Mb windows from a random sample of

40K individuals. We run the regression with all M SNPs, an unconstrained intercept, and the recommended

regression weights [12, 13]. Once again, we use the flags --not-M-5-50 and --chisq-max 99999 to estimate h2
g

as a function of all M SNP-specific variances and to prevent the LDSC software from dropping high-effect

SNPs.

To run SumHer, we first use the LDAK software (see URLs) to compute the default “LDAK weights”

using in-sample LD [6, 9, 14]. Second, we compute “LD tagging” (i.e. LD scores) using 1-Mb windows

centered on each SNP and setting α = −0.25 as recommended [14]. The LDAK software is memory-efficient,

allowing us to use in-sample LD computed from all N = 337K individuals to obtain LDAK weights and

LD tagging. Finally, we run SumHer to estimate h2
g as a function of all M SNP-specific variances. Unless

otherwise specified, all default parameter settings are used to run SumHer in simulations.

Similarly, in all small-scale simulations, we use real genotypes of N = 8430 unrelated individuals at
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M = 14821 array SNPs to draw phenotypes for all N individuals. These individuals and SNPs are a subset

of the full UK Biobank data that were used in the genome-wide simulations, and were chosen by selecting

approximately 2.5% of individuals and the first 2.5% of SNPs from the beginning of each chromosome in

order to preserve a realistic LD structure among the SNPs. OLS summary statistics are computed from

the simulated phenotypes and genotypes for all N individuals and M SNPs, and ĥ2
GRE is computed using

in-sample chromosome-wide LD. We run the implementation of single-component GREML [3] provided by

the GCTA software [40] and single-component BOLT-REML [8] provided by the BOLT-LMM software (see

URLs), both with default parameters. We run the implementation of GREML-LDMS-I [18] provided by the

GCTA software using 8 GRMs created from 2 MAF bins (MAF ≤ 0.05 and MAF > 0.05) and 4 LD score

quartiles; LD scores were computed using the GCTA software with the default window size of 200-kb. We

run LDAK using the default LDAK weights, setting α = −0.25 as recommended [6, 9].

For a given genetic architecture, we generate 100 simulation replicates and obtain 100 estimates of h2
g from

each method. We estimate the bias of an estimator ĥ2
g under a given architecture by computing the difference

between the average of the 100 estimates and the simulated h2
g (i.e. bias[ĥ2

g] = E[ĥ2
g]−h2

g ≈ 1/100
∑100
i=1 ĥ

2
g(i)−

h2
g where ĥ2

g(i) is the estimate from the i-th simulation). To test whether the bias is statistically significant

(i.e. significantly different from 0), we assess the z-score of the bias (zbias = bias[ĥ2
g]/SEM[ĥ2

g], where SEM[ĥ2
g]

is the standard error of the mean of the 100 estimates) which follows a N(0, 1) distribution under the null

hypothesis. To enable a comparison of estimators across different values of h2
g, we assess the relative bias of

an estimator under a single architecture (bias[ĥ2
g]/h

2
g) as a percentage of h2

g. In Figure 1c, we compute the

error of a single estimate from the i-th simulation as (ĥ2
g(i)−h2

g)/h
2
g; errors are also reported as percentages

of h2
g.

Analysis of UK Biobank phenotypes

We estimate SNP-heritability for 22 real complex traits (6 quantitative, 16 binary) in the UK Biobank [10].

We use PLINK [41] to exclude SNPs with MAF < 0.01 and genotype missingness > 0.01 as well as SNPs

that fail the Hardy-Weinberg test at significance threshold 10−7. We keep only the individuals with self-

reported British white ancestry and no kinship (i.e. > 3rd degree relatives). After removing individuals

who are outliers for genotype heterozygosity and/or missingness, we obtain a set of N = 290, 641 unrelated

British individuals to use in the real data analyses. For all traits, marginal association statistics are computed

through OLS in PLINK, using age, sex, and the top 20 genetic principal components (PCs) as covariates in the

regression; these 20 PCs were precomputed by UK Biobank from a superset of 488,295 individuals. Additional

covariates were used for waist-to-hip ratio (adjusted for BMI) and diastolic/systolic blood pressure (adjusted

for cholesterol-lowering medication, blood pressure medication, insulin, hormone replacement therapy, and

oral contraceptives). We compute ĥ2
GRE for each trait using chromosome-wide in-sample LD estimated from

all N individuals.

When using LDSC, S-LDSC, or SumHer to estimate SNP-heritability, it is necessary to define and

distinguish between the following sets of SNPs: the set of SNPs containing all possible causal SNPs of

interest (used to compute LD scores and LDAK weights), the set of SNPs used as observations in the

regression, and the set of SNPs that defines the SNP-heritability estimand of interest. We run two versions

of LDSC [11], S-LDSC (controlling for the most recent baseline-LD model) [12, 13, 29], and SumHer [14].

First, to enable a more direct comparison between ĥ2
GRE and the estimands of LDSC, S-LDSC, and SumHer,
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we run an “in-sample LD” version of each method where the M typed SNPs (MAF > 0.01) are used to

compute LD scores and LDAK weights, perform the regression, and estimate SNP-heritability (i.e. we define

the SNP-heritability estimand to be the sum of the per-SNP variances across the M typed SNPs). We refer

to the in-sample LD versions of these methods as LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and

SumHer (in-sample). To run LDSC (in-sample) and S-LDSC (baseline-LD/in-sample), we use the LDSC

software (URLs) to compute LD scores and regression weights within 2-Mb windows centered on each SNP,

using a random sample of 40K individuals to reduce the memory requirement. To run SumHer (in-sample),

we use the LDAK software (URLs) to compute LD tagging from the genotypes of all N individuals, using

1-Mb windows centered on each SNP and setting α = −0.25 as recommended [9, 14]. Unless otherwise

specified, all other parameters were set to the default settings of each software.

To enable comparisons between ĥ2
GRE and estimates from LDSC, S-LDSC, and SumHer reported in

the literature, we also run each method with its recommended parameter settings and LD estimated from

reference panel sequencing data. We refer to these methods as LDSC (1KG), S-LDSC (baseline-LD/1KG),

and SumHer (1KG) to indicate that LD is estimated from 489 Europeans 1000 Genomes Phase 3 reference

panel [30]. We run LDSC (1KG) and S-LDSC (baseline-LD/1KG) with LD scores and regression weights

computed within 1-cM windows from 9,997,231 SNPs with minor allele count greater than 5 in the reference

panel genotypes (URLs), and we define the SNP-heritability estimand to be a function of the array SNPs

with MAF > 0.05 [11, 12]. We run SumHer (1KG) using the 8,569,062 SNPs with MAF > 0.01 in the

reference panel to compute LDAK weights and LD tagging (1-cM windows) and to define the SNP-heritability

estimand; we control for a multiplicative inflation of test statistics as recommended [14]. See refs. [11,12,14,19]

for details about the definitions and interpretations of the estimands of LDSC, S-LDSC, and SumHer.
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Model Assumptions on βi Description

Generalized
random effects

E[βi] = 0, Var[βi] = σ2
i , σ2

i ≥ 0 Each SNP i has a nonnegative SNP-specific variance σ2
i .

Total SNP-heritability is h2
g ≡

∑M
i=1 σ

2
i .

GREML-SC
[3,8, 16]

βi ∼ N(0, h2
g/M) Each SNP explains an equal portion of h2

g. In other words,
σ2
i = h2

g/M for all i = 1, . . . ,M .

GREML-MC
[7,8, 18,42,43]

βi ∼ N(0,
∑
c∈C[SNPi ∈ c]h2

c/mc) h2
g is partitioned by a set of disjoint SNP partitions C that

span all M SNPs. Partition c ∈ C contains mc SNPs that
have per-SNP variances h2

c/mc. Total SNP-heritability is
h2
g =

∑
c∈C h

2
c .

LDAK
[6,9]

βi ∼ N(0, σ2
i ), σ2

i ∝ wi[fi(1−fi)]1+α Each SNP-specific variance is proportional to a function of
fi (the MAF of SNP i) and to wi (a SNP-specific weight
that is a function of the inverse of the LD score of SNP i).
α controls the relationship between σ2

i and fi. The most
recent recommendation by ref. [9] is to assume α = −0.25.

LDSC [11] E[βi] = 0, Var[βi] = h2
g/M Each SNP explains an equal portion of h2

g (similar to
GREML-SC when h2

g is defined with respect to the same
set of M SNPs).

S-LDSC
[12,13,29]

E[βi] = 0, Var[βi] =
∑
a∈A τaa(i) Each SNP-specific variance is a linear function of a set of

annotations A where each a ∈ A represents a binary or
continuous-valued annotation. a(i) is the value of annota-
tion a at SNP i. τa is the expected contribution of a one-
unit increase in annotation a to each SNP-specific variance.

SumHer [14] E[βi] = 0, Var[βi] ∝ wi[fi(1−fi)]1+α An extension of the LDAK model to operate on summary-
level data; can also efficiently partition h2

g by multiple an-
notations. The most recent recommendations by ref. [9,14]
is to set α = −0.25.

Table 1: Existing methods to estimate SNP-heritability impose additional assumptions on top of the gener-
alized random effects (GRE) model. Under the GRE model, the causal effects at any two SNPs are assumed
to be independent (E[βiβj ] = 0 for all i 6= j) and genome-wide SNP-heritability is defined as h2

g ≡
∑M
i=1 σ

2
i ,

where each σ2
i can be an arbitrary nonnegative real number as long as 0 ≤ h2

g ≤ 1 (Methods). All existing
methods make assumptions on the distribution of βi and/or the form of σ2

i that can be subsumed under
the GRE model. To simplify notation, we assume for each model that phenotypes are standardized in the
population (i.e. Var[yn] = 1 for every individual n).
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Figure 1: Simulations under 64 distinct MAF- and LD-dependent architectures (N = 337205 unrelated
British individuals, UK Biobank). For each value of h2

g, phenotypes were drawn according to one of 16
genetic architectures defined by the polygenicity (pcausal), the MAF range of causal variants (CV MAF),
the coupling of MAF with effect size (α), and the effect of local LD on effect size (γ = 0 indicates no LD

weights and γ = 1 indicates LDAK weights; see Methods). (a) Distribution of ĥ2
GRE in simulations on

chromosome 22 (M = 9654 typed SNPs) where ĥ2
GRE was computed with 1 chromosome-wide LD block.

(b) Distribution of ĥ2
GRE in genome-wide simulations (M = 593300 typed SNPs) where ĥ2

GRE was computed
with 22 chromosome-wide LD blocks. In (a) and (b), each boxplot shows the distribution of estimates from
100 simulations. Boxplot whiskers extend to the minimum and maximum estimates located within 1.5×
IQR from the first and third quartiles, respectively. Black points and error bars in (a) represent the mean
of the distribution and ± 2 standard errors of the mean (s.e.m.), which were used to test whether the bias

under a single architecture is significant (Methods). (c) Distribution of errors ĥ2
GRE(i)− h2

g, where ĥ2
GRE(i)

is the estimate from the i-th simulation under a given genetic architecture, as a percentage of h2
g. Each

violin plot represents the errors of 6400 estimates (64 genetic architectures × 100 simulation replicates). (d)
Distribution of relative bias (as a percentage of h2

g) as a function of sample size (N=100K, 200K, or 337K)

in genome-wide simulations. Each violin plot represents the distribution of the relative bias of ĥ2
GRE across

of 64 genetic architectures. In (c) and (d), the white diamonds mark the mean of each distribution.
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Figure 2: Comparison of ĥ2
GRE with LDSC, S-LDSC (MAF), and SumHer in genome-wide simulations

(N = 337205 unrelated individuals, M = 593300 array SNPs, h2
g = 0.25). Left: Phenotypes were drawn

under one of 16 MAF- and/or LDAK-LD-dependent architectures by varying pcausal, α, γ, and CV MAF
(see Methods). Each boxplot contains estimates of h2

g from 100 simulations. Boxplot whiskers extend to the
minimum and maximum estimates located within 1.5× IQR from the first and third quartiles, respectively.
Right: Relative bias of each method (as a percentage of the true h2

g) across 112 distinct MAF- and LDAK-
LD-dependent architectures (see Methods). Each boxplot contains 112 points; each point represents the
average estimated h2

g from 100 simulations under a single genetic architecture. The white diamonds mark
the average of each distribution.
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Figure 3: Comparison of ĥ2
GRE with GREML, BOLT-REML, GREML-LDMS-I, and LDAK in small-scale

simulations (N = 8430 unrelated individuals, M = 14821 array SNPs). Left: Phenotypes were drawn
under one of 16 MAF- and/or LDAK-LD-dependent architectures by varying pcausal, α, γ, and CV MAF
(see Methods). Each boxplot contains estimates of h2

g from 100 simulations. Boxplot whiskers extend to the
minimum and maximum estimates located within 1.5× IQR from the first and third quartiles, respectively.
Right: Relative bias of each method (as a percentage of the true h2

g) across 112 distinct MAF- and LDAK-
LD-dependent architectures (see Methods). Each box plot represents the distribution of 112 points; each
point is the average estimated h2

g from 100 simulations under a single genetic architecture. The white
diamonds mark the average of each distribution.
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Figure 4: Percent difference of h2
g estimates from LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and

SumHer (in-sample) with respect to ĥ2
GRE for 18 complex traits and diseases in the UK Biobank for which

ĥ2
GRE > 0.05 (N = 290K unrelated British individuals, M = 460K typed SNPs; see Methods). Each bar

represents the difference between the estimated h2
g from one of the methods (LDSC, S-LDSC, or SumHer)

and ĥ2
GRE as a percentage of ĥ2

GRE. Black bars mark ±2 standard errors.
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Trait GRE S.E. LDSC S.E. S-LDSC S.E. SumHer S.E.

Smoking Status 0.122 3.9× 10−3 0.178 7.7× 10−3 0.110 8.5× 10−3 0.132 4.3× 10−3

Height 0.602 4.7× 10−3 0.730 2.7× 10−2 0.555 3.1× 10−2 0.634 2.7× 10−2

BMI 0.285 4.2× 10−3 0.436 1.2× 10−2 0.289 1.7× 10−2 0.315 9.0× 10−3

WHR 0.173 4.0× 10−3 0.256 1.2× 10−2 0.184 1.6× 10−2 0.198 9.4× 10−3

Systolic Blood Pressure 0.159 4.2× 10−3 0.243 9.0× 10−3 0.134 9.7× 10−3 0.177 5.7× 10−3

Diastolic Blood Pressure 0.154 4.2× 10−3 0.233 8.6× 10−3 0.130 9.7× 10−3 0.170 6.4× 10−3

Eczema 0.116 4.2× 10−3 0.165 1.1× 10−2 0.107 1.2× 10−2 0.130 8.8× 10−3

Asthma 0.116 4.9× 10−3 0.163 1.2× 10−2 0.116 1.7× 10−2 0.131 1.2× 10−2

Hypertension 0.162 4.0× 10−3 0.244 9.4× 10−3 0.142 1.1× 10−2 0.180 6.1× 10−3

High Cholesterol 0.082 5.1× 10−3 0.127 1.3× 10−2 0.138 5.8× 10−2 0.088 8.3× 10−3

Diabetes (Any) 0.070 3.7× 10−3 0.093 5.9× 10−3 0.062 8.7× 10−3 0.074 5.0× 10−3

Type 2 Diabetes 0.071 3.8× 10−3 0.090 6.1× 10−3 0.057 8.8× 10−3 0.071 4.0× 10−3

Hypothyroidism 0.088 5.2× 10−3 0.142 1.3× 10−2 0.078 1.2× 10−2 0.110 1.7× 10−2

Thyroid Disorders 0.084 5.2× 10−3 0.141 1.3× 10−2 0.080 1.2× 10−2 0.110 2.0× 10−2

Endocrinopathies 0.069 5.1× 10−3 0.084 7.0× 10−3 0.058 9.9× 10−3 0.068 5.0× 10−3

Cardiovascular Diseases 0.143 5.3× 10−3 0.228 1.1× 10−2 0.140 1.4× 10−2 0.164 6.0× 10−3

Respiratory and ENT Diseases 0.086 5.2× 10−3 0.120 1.2× 10−2 0.079 1.4× 10−2 0.090 9.5× 10−3

Psoriasis 0.019 5.0× 10−3 0.071 3.1× 10−2 0.035 1.2× 10−2 0.059 4.2× 10−2

Dermatologic Disorders 0.023 5.0× 10−3 0.049 1.4× 10−2 0.034 9.9× 10−3 0.031 1.1× 10−2

Rheumatoid Arthritis 0.008 5.0× 10−3 0.041 2.1× 10−2 0.010 7.9× 10−3 0.021 1.2× 10−2

Autoimmune Disorders (Broad) 0.063 5.1× 10−3 0.105 1.2× 10−2 0.050 9.5× 10−3 0.079 1.7× 10−2

Autoimmune Disorders (Certain) 0.015 5.0× 10−3 0.052 2.6× 10−2 0.005 7.6× 10−3 0.047 3.4× 10−2

Table 2: Estimates of h2
g from the GRE approach, LDSC (in-sample), S-LDSC (baseline-LD/in-sample), and

SumHer (in-sample) for 22 complex traits and diseases in the UK Biobank (N = 290K unrelated British
individuals, M = 460K typed SNPs).
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