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Core Ideas 

• Prediction performance for winter wheat grain yield and end-use quality traits. 
• Prediction accuracy evaluated by cross validations significantly overestimated.  
• Non-parametric algorithms outperform, when considering cross-year predictions. 
• Strategically designing training population improves response to selection. 
• Response to selection varied across growing seasons/environments. 

 

Abbreviations: 

BL, Bayesian LASSO; CV, cross validation; DH, double haploid; DTP, designed training 
population; GBS, genotyping-by-sequencing; GEBV, genomic estimated breeding value; G x E, 
genotype-by-environment interaction; GS, genomic selection; GS_ATP, genomic selection by all 
training population; GS_DTP_Ptails, genomic selection by designed training population with 
phenotypic tails;  GS_DTP_Gtails, genomic selection by designed training population with 
genomic tails; GS_DTP_Ptails, genomic selection by designed training population with hybrid 
tails; HRW, hard red winter; LD, linkage disequilibrium; kNN, k-nearest neighbor; MAF, minor 
allele frequency; MAS, marker assisted selection; MSE, mean squared error; NGS, next-
generation sequencing; OAES, Oklahoma Agriculture Experiment Station; PCOR, Pearson’s 
correlation coefficient; PS, phenotypic selection; QTL, quantitative trait locus; RF, random 
forest; RKHS, reproducing kernel Hilbert space; RR, ridge regression; RRBLUP, ridge 
regression best linear unbiased prediction; SD, standard deviation; SNP, single-nucleotide 
polymorphism; TP, training population; VDP, variety development program; VP, validation 
population.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537167doi: bioRxiv preprint 

https://doi.org/10.1101/537167


	

	

 

Abstract 

 

The genomic revolution opened up the possibility for predicting un-tested phenotypes in schemes 

commonly referred as genomic selection (GS).  Considering the practicality of applying GS in 

the line development stage of a hard red winter (HRW) wheat variety development program 

(VDP), effectiveness of GS was evaluated by prediction accuracy, as well as by the response to 

selection across field seasons that demonstrated challenges for crop improvement under 

significant climate variability. Important breeding targets for HRW wheat improvement in the 

southern Great Plains of USA, including Grain Yield, Kernel Weight, Wheat Protein content, 

and Sodium Dodecyl Sulfate (SDS) Sedimentation Volume as a rapid test for predicting bread-

making quality, were used to estimate GS's effectiveness across harvest years from 2014 

(drought) to 2016 (normal). In general, nonparametric algorithms RKHS and RF produced higher 

accuracies in both same-year/environment cross validations and cross-year/environment 

predictions, for the purpose of line selection in this bi-parental doubled haploid (DH) population. 

Further, the stability of GS performance was greatest for SDS Sedimentation Volume but least 

for Wheat Protein content. To ensure long-term genetic gain, our study on selection response 

suggested that across this sample of environmental variability, and though there are cases where 

phenotypic selection (PS) might be still preferential, training conducted under drought stress or 

in suboptimal conditions could still provide an encouraging prediction outcome, when selection 

decisions were made in normal conditions. However, it is not advisable to use training 

information collected from a normal field season to predict trait performance under drought 

conditions. Further, the superiority of response to selection was most evident if the training 

population can be optimized.  
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Introduction 1	

Wheat breeding has progressed dramatically in the last century due to the combination of various 2	

technologies (Poland et al., 2012); taken together these advancements have driven the yearly 3	

genetic gain through selective breeding to nearly a linear increase of 1% in the potential grain 4	

yield (Bassi et al., 2016). Faced against human population growth and uncertain climates, global 5	

wheat production, however, still falls short (Curtis and Halford, 2014), as the global demand for 6	

wheat is projected to increase 60% when the population reaches 9.8 billion by 2050 7	

(Alexandratos and Bruinsma, 2012). The emphasis now is increasingly on not only meeting the 8	

food and nutrition demand, but also on how to maximize the opportunity to achieve long-term 9	

geo-environmental sustainability responding to local climate challenges. 10	

 Genetic improvement has been a major contributor to productivity gains in wheat and 11	

other cereal crops (Kharabian-Masouleh et al., 2011). The continued advancement of high-12	

throughput genotyping technologies has stimulated interest in genomic estimated breeding value 13	

(GEBV) through genomic selection (GS) (Meuwissen et al., 2001). The use of GEBV for un-14	

typed individuals allows selection to be made solely based on genotypic information; 15	

consequently, genetic gain can be largely improved owing to the reduced time and the 16	

institutional investment required to complete breeding cycles (Heffiner et al., 2010; Hickey et al., 17	

2014). A large number of GS studies have been conducted, mostly on evaluating the 18	

performance of GS algorithms (Desta and Ortiz, 2014; Crossa, et al., 2017), while relatively few 19	

considered the schemes of the designated breeding programs (Schulz-Streeck et al., 2012; Zhao, 20	

et al., 2012; Gaynor et al., 2017). Summarized from the current knowledge, benefits of adopting 21	

GS are determined mainly by the accuracy of estimated GEBV of the validation population (VP) 22	

(Hickey et al., 2014; Michel et al., 2017a); when accurate GEBV become available, immediate 23	

impact on selecting elites solely by GEBVcould provide a marked decrease in breeding cycle 24	

time (Heffner et al., 2009), given that other key breeding targets unamenable to GS are not the 25	

limiting factor. However, shortening breeding cycles would lead to a rapid change of genetic 26	

diversity in the breeding populations and would affect GEBV accuracy for the long run. Also as 27	

pointed out in Bassi et al. (2016) and Crossa, et al. (2017), accurate GS applied in early 28	

generations and the opportunities to re-training in later generations determine the long-term, 29	

cost-effectiveness of GS outcomes.  30	
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 The basic form for breeders to predict changes in breeding outcomes is captured in the 31	

breeder’s equation (Lush 1937), which describes the evolutionary change in a phenotypic trait by 32	

a simple interplay of selection intensity and multi-locus inheritance (narrow sense heritability, 33	

h2) (Kelly 2011). This univariate breeder's equation also states that this expected genetic gain, 34	

expressed as the response to selection, is a function of selection intensity, selection accuracy and 35	

the standard deviation of breeding values (Falconer and Mackay, 1996). Accuracy of GS has 36	

been intensely investigated; however, while low GEBV accuracy might be concerning, response 37	

to selection at low GS accuracy is still less variable than response at high accuracy (Hill, 1974; 38	

Heffner et al., 2010). The significance of adopting GS can thus be more evident when response 39	

to selection per generation is calculated (Resende et al., 2017). 40	

 Considering the practicality of GS for wheat improvement programs, emphasis may shift 41	

to selecting the elite lines whose superiority in trait performance can be realized in the target 42	

environment. At this advanced stage, breeding targets would not be only focus on grain yield and 43	

disease resistance, but also include numerous end-use quality traits that are normally laborious 44	

and expensive to phenotype (Guzmán et al., 2016; He et al., 2016 and Michel et al., 2017a). 45	

Amid sporadic global shortages of high-protein wheat, or more importantly an industry 46	

perception of domestic shortages of bread wheat with acceptable dough strength, intensified 47	

demand in commercial markets has driven breeding objectives from yield production to end-use 48	

quality traits. Hard red winter (HRW) wheat, grown throughout the Great Plains and parts of the 49	

U.S. Pacific Northwest and milled into flour for bread, is the biggest U.S. wheat class, typically 50	

representing about 40 percent of total U.S. wheat production. Further, human-induced climate 51	

change is causing rapid variations of global temperatures and extreme fluctuations in 52	

precipitation (Fitzpatrick and Edelsparre, 2018). These changes impose greater pressure for both 53	

the crops and breeders, forcing organisms to adapt and breeders to deviate from the established 54	

optimal. As a result of the worsening drought in the region, in June 2018, USDA estimated the 55	

HRW wheat harvest at 650 million bushels, the second lowest production since 1964. In order to 56	

stay competitive in this new wheat market, this study is aimed to examine the effectiveness of 57	

GS for both grain yield and protein content phenotypes, using a HRW doubled-haploid (DH) 58	

population developed for the southern Great Plains. Factors discussed for GS performance 59	

include predictive algorithms and composition of the training population (TP), encouraged by the 60	

success in improved predictability when TP is optimized (Rincent et al., 2012; Akdemir et al., 61	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 31, 2019. ; https://doi.org/10.1101/537167doi: bioRxiv preprint 

https://doi.org/10.1101/537167


	

	

2015; Isidro et al., 2015; Michel et al., 2017a; Neyhart et al., 2017). We evaluated the 62	

effectiveness of GS as the response to selection for a more breeder-intelligible assessment of GS 63	

performance. Finally, to derive realistic estimates, the response to selection and GS accuracy 64	

were assessed with respect to annual precipitation during the growing season that reflects the 65	

environmental difference between training and validation populations.  66	

 67	

Materials and Methods 68	

Duster x Billings Doubled Haploid Population, Field Information and Phenotypes 69	

Developed cooperatively by the Oklahoma Agriculture Experiment Station (OAES) and the 70	

USDA-ARS, Duster and Billings are two leading winter wheat cultivars that were released in the 71	

Southern Great Plains (Edwards, et al., 2012; Hunger, et al., 2012). A DH population of 282 72	

lines was developed by intercrossing Duster and Billings; agronomic trait performance was 73	

assessed in Stillwater, OK, USA (36.12N, 97.09W). The soil type in Stillwater location was 74	

Kirkland silt loam or Norge loam (for details, please see  75	

http://oaes.okstate.edu/frsu/agronomy-research-station/Stillwater_soilmap.pdf).  76	

 The 2014 trial was planted on 11th of November 2013 and harvested on 20th of June 2014. 77	

The 2015 trial was planted on 14th of November 2014 and harvested on 14th of June 2015. As for 78	

2016 trial, the planting date was 13th of November 2015 and harvested on 9th of June 2016. The 79	

total rainfall between 1st of November and 31st of May was 19.8 cm for the growing season year 80	

2014, 41.3 cm for year 2015, and 45.2 cm for year 2016. In this study, field performance in 2014 81	

trial was referred as drought condition, and 2015 and 2016 as normal. No trials received 82	

supplemental irrigation. 83	

 In this study, three commonly used phenotypes in the wheat industry, in addition to grain 84	

yield (Grain Yield) in kilograms per hectare (kg/ha), were considered; sodium dodecyl sulfate 85	

(SDS) Sedimentation Volume (Lorenzo and Kronstad, 1987) adjusted for flour protein (as is) 86	

content (SDS Sedimentation Volume), kernel weight measured by the single kernel 87	

characterization system (Perten Instruments, Segeltorp, Sweden) (Kernel Weight), and wheat 88	

protein on a 12% moisture basis (Wheat Protein). After filtering out missing phenotypic data, 89	

239 DH lines remained for all three years and all four traits; also, only the averaged values from 90	

two field replicates of each DH line per year were used in the GS analysis.  91	
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Genotyping-by-sequencing and Genotypic Data Analysis 92	

Three 96-plex libraries were generated from a single-plant sample of each DH line, with three 93	

replicates of each parents. A library consisting of DNA fragments with a forward adapter and a 94	

reverse adapter on opposite ends of every fragment was produced based on the protocols of 95	

Poland et al. (2012a) using the combination of PstI (CTGCAG) and MspI (CCGG) restriction 96	

enzymes to perform genome complexity reduction. The fall list of barcoded adapters and the 97	

corresponding DH samples can be found in Li et al. (2015). Detailed procedures of library 98	

construction were described in Poland et al. (2012a).  99	

 In brief, PCR products were amplified using short extension time (< 30 seconds) to 100	

enrich shorter fragments suitable for bridge-amplication on the Illumina flowcell on Illumina 101	

HiSeq2000. The raw reads were assigned to individual samples based on an exact match to the 102	

DNA barcode followed by the PstI restriction site, and trimmed to 64 base-pairs. The tag 103	

sequences were aligned allowing a one or two base-pair mismatch for SNP determination. When 104	

a SNP call showed a difference between two alleles, a genotyping-by-sequencing (GBS) SNP 105	

was considered. Due to the nature of DH lines, when the SNP call was identified as 106	

heterozygous, information about the locus was retained but the genotypic data was set to 107	

missing. In total, 14,028 SNPs were generated from this SNP determination procedure.  108	

 GBS is a genotyping technology with high density but with potentially low genome 109	

coverage as well. On average, the mean missing ratio is 42% per SNP locus per individual, with 110	

the maximum missing ratio as high as 78%. To obtain quality genetic markers for prediction, 111	

SNP markers were filtered based on: 1) less than 50% missing ratio, and 2) at least 5% minor 112	

allele frequency (MAF), totaling 7,426 SNPs for further analysis. Rutkoski et al. (2013) showed 113	

that relative reliable performance on wheat genotypes using the map-independent imputation 114	

method, like k-nearest neighbor (kNN) and random forest (RF). Following SNP determination, 115	

kNN was used to impute missing SNP data in this study owing to its computational efficiency; 116	

the kNN imputation used in this study was implemented in R package scrime (Schwender 2013).  117	

Genomic Selection Algorithms 118	

Genomic selection exploits a statistical model which partitions phenotypic variation into genetic 119	

and non-genetic components. In the model, the phenotypic value of an individual is assumed to 120	
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follow a Gaussian distribution with the center at the linear function of its genotypic values. The 121	

statistical model is shown in equation (1). 122	

                 ,                           (1) 123	

where  is the standardized phenotypic value of the ith individual so that the intercept term is 124	

omitted for all traits;  encodes the genotype of the  ith individual at marker locus . 125	

In , the allelic states of individuals are coded as 0 and 2 for diploid genotypic values of AA 126	

and aa, respectively;  is the marker’s effect at the jth locus; and the error term ~  . 127	

The genomic estimated breeding value of an individual, GEBV, is thus defined as the predicted 128	

phenotypic value based on this linear model. With high-density marker data like GBS, the 129	

number of markers (p) is larger than the number of individuals or records (n). Owing to this 130	

“small n, large p” conundrum, statistical methods that apply penalty or regularization through 131	

constraints in the objective function by variable selection, or by introducing prior distributions 132	

for unknown parameters in a Bayesian framework, are broadly adopted in GS algorithms for 133	

estimating marker effects. In this study, GS algorithms of choice were Bayesian LASSO (BL) 134	

(Park and Casella, 2008), Random Forest (RF) (Breiman 2001), Reproducing Kernel Hilbert 135	

Space (RKHS) (Gianola et al., 2006), and Ridge Regression Best Linear Unbiased Prediction 136	

(RRBLUP) (Hoerl and Kennard, 1970). 137	

BL (Bayesian LASSO) 138	

BL utilizes a conditional mixture of Gaussian distributions that describes the prior distribution of 139	

the marker effect. Consequently, the assumption of equal variance across all markers is relaxed. 140	

The marker-specific priors are modeled by the following hierarchical distributions. 141	

																 	 								 																									(2)	142	

 In (2), a large  value will lead to a sharp prior distribution for centered at 0 through 143	

a reduced variance, therefore, more shrinkage towards zero. The effect due to the choice of  in 144	
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the BL has been addressed in de los Campos et al. (2009a) and Lehermeier et al. (2013). These 145	

authors studied the influence of the choice of hyperparameters in the Gamma distribution for  146	

and concluded that, even the influence of  is unknown, the model goodness-of-fit and the 147	

estimates of genetic values were quite robust with respect to the choice of . R package BGLR 148	

(de los Campos and Pérez, 2013) was used for BL model fitting with 100,000 iterations in total, 149	

30,000 iterations for burn-in, and 50 for thinning. The convergence of the Markov chains was 150	

confirmed by visualizing the sampling paths.  151	

RF (Random Forest) 152	

An RF predictor is an ensemble of individual classification or regression tree predictions 153	

(Breiman 2001). Each individual tree was grown on bootstrap samples of observations using a 154	

random subset of predictors to define the best split at each node. The RF prediction for an 155	

observation is computed by averaging the predictions over trees for which the given observation 156	

was not used to build the tree (Heslot et al., 2012). This algorithm was implemented in R 157	

package “RandomForest” (Liaw and Wiener, 2002).  158	

RKHS (Reproducing Kernel Hilbert Space) 159	

RKHS uses a kernel function to convert SNP marker data into a set of genetic distances between 160	

pairs of observations, resulting in a square matrix that can be used in a linear model. An 161	

advantage of RKHS is that no linearity is assumed; therefore, in theory, non-additive effects can 162	

be better captured. The Bayesian RKHS regression regards genetic values as random variables 163	

coming from a Gaussian process centered at zero and with a covariance structure that is 164	

proportional to a kernel matrix  (de los Campos et al., 2010); that is, , 165	

where are the sum of genetic values for the ith and jth individuals, respectively; are 166	

vectors of marker genotypes for the ith and jth individuals, respectively,  and 167	

; is a positive definite function evaluated in marker genotypes.	The kernel 168	

function used in this study was adopted from de los Campos et al. (2010),  169	

                                                (3) 170	
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where  is a bandwidth parameter that controls the rate of decay of the correlation between 171	

genotypes; is a marker-based squared Euclidean distance between two individuals 172	

i and j; and . The optimal value of h that produces the maximum prediction 173	

accuracy was selected by grid search over 5-fold cross-validation (CV). This algorithm was 174	

implemented in R package BGLR (de los Campos and Pérez, 2013). In this study, the 175	

predictability of Bayesian RKHS was tested using 12,000 iterations, and 2,000 for burn-in. The 176	

convergence of the Markov chains was confirmed by visualizing the sampling paths.  177	

RRBLUP (Ridge Regression Best Linear Unbiased Prediction) 178	

In penalized regression algorithms, a penalty function is used to constraint the size of the 179	

estimated regression coefficients in the objective function. The estimated marker effects can be 180	

obtained as 																																																		181	

                
						

																						(4) 182	

The penalty function of RR is defined by norm of the regression coefficients, 183	

where  is the penalty parameter. So the estimated marker effects can be 184	

obtained as  185	

                                                          (5) 186	

where is  design matrix of SNP marker data. 187	

 This assures a unique inverse and stabilizes the solution when is ill-conditioned due 188	

to multi-collinearity (Hoerl and Kennard, 1970). The bias of the estimated regression coefficients 189	

increases but the variance decreases monotonically with , and mean squared error (MSE) can 190	

be improved compared to the least squares estimation (Hoerl and Kennard, 1970). RRBLUP 191	

performs no variable selection and thus retains all markers in the model. The choice of 192	

appropriate penalty parameter  affects the performance of penalized regression methods. The 193	

optimal value of  that minimizes MSE was selected by 5-fold CV using the training samples. 194	

This algorithm was implemented in R package glmnet (Friedman et al., 2009). 195	
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Genomic Selection Algorithm Evaluation 196	

The prediction performance of GS algorithms was evaluated by using 5-fold CV. Each 197	

phenotypic dataset was randomly divided into 5 equal parts. Then the GEBVs for each fold were 198	

predicted by training the model on the four remaining folds. The entire procedure was repeated 5 199	

times, such that GEBVs of all individuals can be obtained. Pearson’s correlation coefficient 200	

(PCOR) and MSE between observed phenotypic value and GEBV were used to assess the 201	

performance of prediction algorithms.  202	

Response to Selection 203	

In the line-testing stage of HRW wheat variety development program (VDP), no new genetic 204	

diversity is introduced and selection pressure shifts from populations to experimental lines. The 205	

focus of such programs will be on a stable selection of superior lines over years. For that reason, 206	

we introduced a procedure that evaluates line selection by relative superiority of selection, as a 207	

measurement of response to selection (Michel et al., 2018). Suppose  top performers (  208	

lines with desirable values, high or low) to be selected, the relative superiority of selection, ,	 209	

is defined as below (Michel et al. (2018)):  210	

                                                                                       (6) 211	

where is the average phenotypes of the entire population; is the estimated average 212	

phenotypes of the selected population. And by Michel et al. (2018),  213	

                                                                                  (7) 214	

where is the heritability of the trait; is the average phenotypes of the selected population. 215	

The heritability was set to 1 when evaluating GS; the estimated heritability from a linear 216	

mixed model (detailed below) was used when phenotypic selection (PS) was considered. As a 217	

result, the performance of selected lines can then be evaluated by changes in 	over growing 218	

seasons in the line testing stage of winter wheat breeding programs. Responses to selection due 219	

to selection intensity were explored by selecting three different proportions of top performers 220	

from the entire DH population, denoted by ( =10%, 30%, and 50%). 221	
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 The heritability of each phenotypic trait was estimated from the following linear mixed 222	

model. 223	

                                                                                         (8)                224	

where is a  vector of  years’ phenotypes; is a  design matrix of the fixed year 225	

effect, is a vector of the fixed year effect; is a  design matrix of random genetic 226	

effects, a vector of random genetic effect , the genomic relationship matrix is 227	

calculated by a linear kernel matrix  where  is an  design matrix of SNP marker 228	

data; the error term . Then the narrow-sense heritability  was estimated as 229	

. The estimation was implemented in R package sommer (Covarrubias-Pazaran 230	

2016).        231	

Design of Training Populations 232	

To further understand the effectiveness of GS in the line testing stage, the capacity for 233	

customizing the training information was examined. The principle applied in this research 234	

objective was to maximize the likelihood of capturing the underlying QTLs (quantitative trait 235	

loci). To do so, we refer to this as design of training population (DTP), a procedure to capture as 236	

much phenotypic variance as possible. Suppose one wishes to compose a DTP with only  lines 237	

from the entire population such that a smaller DTP can be constructed in order to accommodate 238	

more field sites; the selection of DTP is then made of  lines with the highest values, and 239	

another half with the lowest values.  240	

 For the trait of interest, three phenotypes per DH line could be used to construct the DTP: 241	

observed phenotype, GEBV, and a hybrid method of using both phenotypes and GEBVs; these 242	

were termed “DTP_Ptails”, “DTP_Gtails” and “DTP_Htails”, respectively. “DTP_Ptails” selects 243	

 lines with the highest and lowest values respectively based on the observed phenotypes 244	

to form DTP; “DTP_Gtails” uses GEBVs, instead of observed phenotypes; and, “DTP_Htails” 245	

uses the majority votes from the “DTP_Ptails” and “DTP_Gtails”. In this study, four different 246	

scenarios of  ( 20%, 40%, 60%, and 80% of the entire population) were explored for 247	

the training population (TP) size. For proof of concept, only the results from the best GS 248	
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algorithm were used to obtain average GEBVs for each trait. Finally, the DTP were used to train 249	

the model for updated GEBVs, and then these updated GEBVs were used for selection. The 250	

performance of DTP was evaluated by the relative superiority of selection 	over growing 251	

seasons. Finally, to show the effect of reduced TP on response to selection, we also compared the 252	

performance of GS by DTP versus GS by all training population (GS_ATP). 253	

 254	

Results 255	

Summary of Phenotypic Data and Heritability 256	

The empirical correlation of phenotypes between years of all traits can be found in Table 1. 257	

Overall, SDS Sedimentation Volume had the highest empirical correlation between years 258	

averaged across pairs of years, 0.58 (0.52 – 0.70), while Wheat Protein owned the lowest (0.17-259	

0.36, average of 0.26). Additionally, the phenotype average and standard deviation (SD) across 260	

years are presented in Table 2 for all traits. Grain Yield showed the largest variation among 261	

years, while SDS Sedimentation Volume was relatively stable over years.  262	

 Table 2 shows the estimated trait heritability obtained from the linear mixed model with 263	

three years’ phenotype information. SDS Sedimentation Volume was highly heritable (0.74), 264	

while Grain Yield and Wheat Protein were moderately heritable (0.52 and 0.54, respectively). 265	

Performance Assessment of GS Algorithms  266	

To validate GS prediction the average PCOR and MSE, as well as their SD, were generated from 267	

100 replications of 5-fold CV. Results of prediction accuracy are shown in Figure 1 and Figure 2 268	

(for PCOR); the variability of these results are included in the Supplementary Fig. S5 S6 (for 269	

MSE). Overall, the GS algorithm with the highest PCOR correlation tended to show the lowest 270	

MSE. Our BL and Bayesian RKHS results all reached convergence of Markov chains 271	

(Supplementary Fig. S1 S4).  272	

Same-year Cross-validations  273	

 For Grain Yield, the average PCOR (MSE) of three years was 0.54 (0.7), 0.56 (0.7), 0.47 274	

(0.76), and 0.49 (0.75) from BL, RF, RKHS, and RRBLUP, respectively. BL and RF performed 275	

similarly and resulted in 9% higher predictability than RKHS and RRBLUP. It is however worth 276	

noting that the significantly lower prediction accuracies of RKHS and RRBLUP were caused by 277	
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year 2016. The four algorithms performed similarly in year 2014, whereas in all comparisons RF 278	

produced slightly higher accuracies in year 2015. 279	

For SDS Sedimentation Volume, the average PCOR and MSE of three years were similar 280	

among four algorithms, with the exception of the significantly lower GS accuracy for RF in year 281	

2014. Overall, the average same-year PCOR was highest in year 2016.  282	

 The average PCOR (MSE) of three years were 0.52 (0.73), 0.49 (0.75), 0.49 (0.75), and 283	

0.49 (0.76) from BL, RF, RKHS, and RRBLUP, respectively for Kernel Weight. BL 284	

outperformed slightly, when average PCOR was used for comparison. Although the average 285	

performances of RF, RKHS, and RRBLUP were found similar, RF results varied significantly 286	

among growing seasons; among all GS algorithms, RF arrived to the lowest single year GS 287	

accuracy for Kernel Weight at PCOR=0.36 in 2014 but highest PCOR at 0.59 in 2016. 288	

On average, Wheat Protein GS prediction was at 0.47, with the lowest GS found in 2016 289	

using RKHS (PCOR=0.39). GS algorithm performance was consistent between MSE and PCOR, 290	

whereas BL and RRBLUP showed slightly lower average MSE at 0.77, and it was slightly higher 291	

for RF and RKHS (MSE=0.79, Fig. S5). 292	

 In summary, average prediction accuracies across four GS algorithms and three years was 293	

highest for SDS Sedimentation Volume (0.54) and lowest for Kernel Weight (0.47).  294	

Cross-year Predictions  295	

To examine applicability of GS in a more realistic setting, GS performance was trained in one 296	

growing season, and then examined in another season; this can also be interpreted as GS 297	

predictability across environments. Also, rainfall is an unpredictable weather factor in arid areas 298	

like the southern Great Plains of the US. Since field management of the research station site 299	

remained consistent among years, and there was no new genetic diversity introduced, the main 300	

driving factor for the line performance, we reckoned, was variability in total precipitation among 301	

growing seasons.  302	

 For clarification, we split the results into two groups, forward prediction and backward 303	

prediction. Forward prediction was used to describe the scenarios where the previous year was 304	

used as training populations (TP) to predict future years. For example, the prediction of year 305	

2015 field evaluation, GS was applied using 2014 as training; this scenario was denoted as “2014306	
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2015” in Figure 2. Backward prediction is reverse. Although forward predictions are consistent 307	

with practical application, backward predictions were examined to consider GS applicability of 308	

cross-environmental variability. Figure 2 and Supplementary Fig. S6 showed PCOR and MSE, 309	

respectively, for cross-year predictions. 310	

 In forward predictions ( 2014 2015, 2015 2016, 2014 2016), the average PCORs 311	

for grain yield over these comparisons were 0.24, 0.30, 0.23, and 0.23 from BL, RF, RKHS, and 312	

RRBLUP, respectively (Figure 2); the corresponding average MSEs were 1.07, 0.99, 1.03, and 313	

1.05 (Fig. S6). Similar results of average PCORs and corresponding MSEs were observed in 314	

backward predictions ( 2016 2015, 2015 2014, 2016 2014). Overall, RF performed 315	

significantly better among the GS algorithms tested, regardless of prediction scenario. 316	

In all cross-year predictions, SDS Sedimentation Volume generated the most consistent 317	

GS results across growing seasons and across GS algorithms. Performance evaluations with 318	

average PCOR and MSE were similar for all algorithms, except for RF (Figure 2). However, GS 319	

performance for RF was only significantly lower in 2014 2015 and 2016 2014 (~ 0.36, 320	

whereas others averaged 0.45). RF also exhibited the highest MSE, though not significant.  321	

Similar to SDS Sedimentation Volume,	 there was no observable performance difference 322	

in GS algorithms for Kernel Weight; the average PCOR for Kernel Weight were comparable 323	

across prediction scenarios (Figure 2). However, GS prediction accuracy of 2016 2015 was 324	

significantly greater than other comparisons (~0.45); and, the 2015 2014 backward prediction 325	

produced a low accuracy 0.16.  326	

For Wheat Protein, all GS algorithms performed closely in average accuracy for both 327	

forward and backward predictions, except that RF showed a slight disadvantage in 2016 2014. 328	

The best GS algorithm for Wheat Protein is either BL or RKHS; however, RKHS showed a 329	

minor advantage in MSE (Fig. S6). Similar with Grain Yield, backward prediction accuracies 330	

were greater than forward predictions for Wheat Protein. With the best predictable scenario, the 331	

average PCOR for Wheat Protein was at 0.37 for 2016 2014.  332	

Computational Efficiency 333	

The differences in computing time among these four GS algorithms in our study were 334	

considerable. For example, to finish both same-year and cross-year GS predictions over 100 335	
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replications of 5-fold CV, 1.4 hours were required for RRBLUP, 1.81 hours for RKHS, 3.19 336	

hours for RF; BL was the most computationally intense, requiring 270 hours for completion. 337	

Relative Superiority of Selection 338	

Based on our evaluation in same-year and cross-year GS performances, RF was used to study 339	

changes in response to selection over the growing seasons for Grain Yield and Kernel Weight; 340	

RKHS was selected for SDS Sedimentation Volume and Wheat Protein. For each trait, changes 341	

on relative superiority of selection ( ), with respect to size of the training population 342	

constructed from the GEBVs of DTP (GS_DTP_Gtails; purple lines in the Figure 3 6) and the 343	

majority votes using both of the GEBVs and observed phenotypes (GS_DTP_ Htails; green lines 344	

in the Figure 3 6), were evaluated relative to the use of the entire training population (GS_ATP; 345	

blue lines in the Figure 3 6). Since there is no optimization or reduction of training for 346	

GS_ATP and PS (red lines in the Figure 3 6), relative superiority of selection from these two 347	

selection methods remained unchanged across m values (Figure 3 6).  348	

 To investigate effects of environmental variability to the response of selection for GS, 349	

changes in 	over growing seasons were evaluated in two scenarios, the superior line was 350	

selected initially in a drier condition/year ( year 2014) and then evaluated in a well-irrigated 351	

growing condition/year ( year 2016) (Drought year ! Normal year in the Figure 3 6); and 352	

the reverse order (Normal year ! Drought year in the Figure 3 6). Overall, a gradual reduction 353	

in response to selection was observed in all scenarios, as response to selection was greatest at the 354	

initial selection year (or growing environment) and completely diminished in some cases at the 355	

final testing year. Also, note that the red lines in the Figure 3 6 denote the response to selection 356	

done only with phenotypic information, a scenario replicating current conventional breeding 357	

practice. Effectiveness of adopting GS was therefore examined by comparing changes in the 358	

response to selection ( ) to the scenarios represented by the corresponding red lines. A 359	

number of scenarios where GS might not be desirable was also documented ( GS_ATP in 360	

Figure 3A). Additionally, no noticeable difference was detected between GS and PS in some 361	

scenarios ( Figure 6).  362	

Grain Yield  363	
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As expected, the greatest GS performance relative to selection response was found at the initial 364	

selection, when selection was conducted non-drought growing conditions and when a large 365	

training population is available ( 80%, Normal ! Drought Year, Figure 3B, 3D, and 3F); 366	

and as the target growing condition for validation population began to deviate from that of the 367	

training population, relative response to selection was reduced; this is common for all selection 368	

scenarios for Grain Yield (Figure 3). Under the same scenario (Normal ! Drought Year), the 369	

benefit of adopting GS can also be seen in cases where greater selection intensity was applied 370	

(Figure 3B); a 47% and 46% relative superiority of response to selection resulted when applying 371	

GS directly (GS_DTP_Gtails) and in combination with phenotypic selection (GS_DTP_Htails), 372	

respectively, compared to the 20% response to selection of 50% (Figure 3F). 373	

 Considering the growing condition used for training for GS, reduced performance of GS 374	

was observed for predicting Grain Yield with information trained in the drought-stressed 375	

environment (Drought ! Normal Year, Figure 3A, 3C, and 3E). Using models trained under this 376	

condition, GS performance in terms of selection response was hampered; only 25% of  377	

could be obtained as the best scenario with a greater selection intensity ( 10%) and a large 378	

training population ( 80%), as exhibited in Figure 3A.  When selection intensity was 379	

lessened ( 30%), a larger training population was required to obtain 13 16% of relative 380	

superiority of selection response with only GS data used (GS_DTP_Gtails in Figure 3C); further 381	

lessening the selection intensity would further diminish the advantage for using GS, and 382	

difference in the selection response between phenotypic selection and GS was reduced to as little 383	

as 1 3% (Figure 3E). Amongst all scenarios in Drought ! Normal Year, it is worth noting that, 384	

when selection intensity was high ( 10%), the benefit of using GS was not suggested in the 385	

case of GS_ATP, the use of the entire training population without optimizing the genetic 386	

architecture underlying for the variation of Grain Yield.  387	

SDS Sedimentation Volume  388	

Unlike Grain Yield, the change of 	over growing seasons for SDS Sedimentation Volume 389	

was relatively stable in comparison; when selection was done in a normal growing season, the 390	

average response to selection across growing seasons that experienced drought was 10%, 5%, 391	

and 2% respectively for , 30%, and 50% (Normal ! Drought year, Figure 4B, 4D, and 392	

4F). When selection intensity was high ( 10%), a sizable superiority can also be observed in 393	
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the overall differences in between GS and PS, demonstrating an average of  for 394	

the final testing year using GS compared to PS alone (Figure 4B). Also, predicting with a larger 395	

training population showed a benefit for GS (  = 8 16% at the initial selection year from 396	

80%, Figure 4B, 4D, and 4F). When selection was performed in a drought-stressed 397	

environment (Drought ! Normal year, Figure 4A, 4C, and 4E), overall response to selection 398	

was insignificant in the cases of low selection intensities ( 30% and 50%, Figure 4C and 4E). 399	

Also, under the same Drought ! Normal year scenario, sizeable training information was 400	

required for GS to be effective for higher selection intensity ( 10%, Figure 4A).  401	

Kernel Weight  402	

Shown in Figure 5, evaluation of GS scenarios on Kernel Weight was similar to SDS 403	

Sedimentation Volume, with lower selection intensities of 30% and 50%, changes in 404	

 were insignificant for Drought ! Normal Year (Figure 5C and 5E). Applying a greater 405	

selection intensity ( 10%), the change in over growing seasons for GS became more 406	

evident, when selection was done in normal conditions (Normal ! Drought Year, Figure 5B). 407	

Overall, the relative responses to selection averaged 7%, 5%, and 4% for , 30%, and 408	

50%, respectively for Normal ! Drought Year scenarios (Figure 5B, 5D, and 5F). Also, our 409	

results showed that an average  could be expected from GS for Kernel Weight, when a 410	

large training population is available ( 80%, Figure 5). 411	

Wheat Protein 412	

Results of relative superiority of selection for Wheat Protein were showed in Figure 6. Overall, 413	

GS performance as response to selection for Wheat Protein was insignificant; no marked 414	

difference was observed between two selection scenarios and among three selection intensities. 415	

Averaged at 2% overall, response to selection was the lowest amongst the four traits examined. 416	

Even at the initial selection year, the resulting response to selection was as little as 4% with the 417	

greatest selection intensity (Figure 6A and 6B).    418	

 419	

Discussion 420	
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Provided with unprecedented genotyping capacity, the emergence of GS has overcome some 421	

shortcomings of marker assisted selection (MAS) (Howard et al., 2014), shifting the paradigm of 422	

how breeding decisions are made (Meuwissen et al., 2001). Supported by numerous studies (e.g. 423	

Desta et al., 2014; Beyene et al., 2015; Rutkoski et al., 2015; Battenfield et al., 2016; He et al., 424	

2016; Song et al., 2017; Michel et al., 2018), GS has a promising future in plant breeding (Jonas 425	

and de Koning, 2013).  426	

A number of interrelated factors affect GS prediction performance. These include the size 427	

of the training population (Rincent et al., 2012; Akdemir et al., 2015), relatedness between 428	

training and validation populations (Rincent et al., 2012; Akdemir et al., 2015; Isidro et al., 2015; 429	

Michel et al., 2017a; Neyhart et al., 2017), marker density (Daetwyler et al., 2010), heritability 430	

(Heffner et al., 2009), genetic architecture of the target trait and the distribution of linkage 431	

disequilibrium (LD) between genetic markers and the underlying quantitative trait loci (QTL) 432	

(Desta and Ortiz, 2014). In the original paper of GS, Meuwissen et al. (2001) studied numbers of 433	

QTLs and relative magnitude of genetic effects and suggested that, without interaction terms, 434	

improved accuracy can be achieved if distribution of genetic effects was known. Similarly, 435	

including the effect of major genes showed advantages for GS performance in a simulation 436	

study; the advantage of GS however begins to diminish when the number of QTLs is greater than 437	

10 (Bernardo 2013). In cases where full-sib families are used, performance of GS algorithm 438	

evaluated by cross-validations within the population would be determined by the presence of 439	

major genes, or whether or not marker density is enough to capture the LD with QTLs (Howard 440	

et al., 2014).  441	

 Considering GS accuracy estimated by same-year cross-validations, performance of 442	

Grain Yield, a classic polygenic trait, showed a high degree of variability among GS algorithms 443	

used. BL and RF demonstrated stable predictability in all same-year cross-validations for Grain 444	

Yield (Figure 1), whereas RRBLUP and RKHS showed much greater variation of prediction 445	

performance among three years. BL and RRBLUP are both linear models that assume the 446	

linearity of marker effects. The difference between these two lies primarily in the shrinkage of 447	

marker effects, where RRBLUP assumes equal variance and shrinks all the marker effects to the 448	

same level and BL can actually shrink some coefficients exactly to zero, performing as a variable 449	

selection method. With a relatively smaller sample size in our study, we suspect that the superior 450	

performance of BL and RF was due to their ability to capture the non-uniform distribution of 451	
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marker effect across the genome (Daetwyler et al., 2010), while avoiding overfitting. This 452	

advantage was also evident in cross-year predictions (Figure 2). Using a large European winter 453	

wheat population of 2,325 commercial lines in He et al. (2016), the polygenic nature of Grain 454	

Yield is more likely to be captured by the sample size; as a result, these associated issues of 455	

RRBLUP appeared to be alleviated in He et al. (2016).  456	

 As for end-use quality traits like milling and baking quality, indirect phenotyping on 457	

correlated traits like protein content has been used as selection criterion (Michel et al., 2018). 458	

Most of these traits are considered to be governed by a mixture of major genetic loci and many 459	

other small-effect loci (Giroux and Morris, 1998; Olmos et al., 2003; Lillemo et al., 2006; 460	

Heffner et al., 2011; El-Feki et al., 2013; Battenfield et al., 2016; Würschum et al., 2016; Michel 461	

et al., 2017b). For example, pre-selection of the known Glu-1 and Glu-3 glutenin loci in early 462	

generations as a marker-assisted approach has shown some merit (Kuchel et al., 2007; 463	

Krystkowiak et al., 2016), but the number of successful cases is few (Michel et al., 2018), mainly 464	

due to the incapacity to include the genetic variance contributed by a large number of small-465	

effect loci (Reif et al., 2011; Tsilo et al., 2011, 2013; Cabrera et al., 2015), as well as to the 466	

complex interaction of allelic effects on dough rheology and bread-making properties (Langner 467	

et al. 2017). In such cases, prediction performance based on variable selection methods like BL 468	

was preferred (Perez et al., 2012; Thavamanikumar, Dolferus and Thumma, 2015). As shown for 469	

Kernel Weight and Wheat Protein, in both same-year cross validations and cross-year predictions 470	

(Figure 1 and Figure 2) the advantage of BL for end-use quality traits was generally 471	

acknowledged. However, BL is much more computationally intensive than its more efficient 472	

competitors RF and RKHS that showed similar performance in this study.  473	

 Thanks to the advancement of genotyping capacity, evidence of biometric epistasis is 474	

growing (Costa et al., 2004; Mao et al., 2011; Hu et al., 2011; Muñoz et al., 2014); the role of 475	

physiological epistasis also is increasingly important (Boyle, Li and Pritchard, 2017). As in GS, 476	

the capacity to model the non-linear effects of all predictors would be beneficial (Howard et al., 477	

2014; Gamal El-Dien et al., 2016). Also emphasized in Gianola et al. (2006), nonparametric 478	

algorithms like RKHS are advantageous when epistatic genetic architecture contributes 479	

significantly to phenotypic variation; similar results were supported by Battenfield et al. (2016), 480	

in traits like grain protein, grain hardiness and flour sedimentation phenotypes. On the contrary, 481	

except for the slight advantage in the cross-year prediction for Grain Yield (Figure 2), our results 482	
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did not support the use of non-parametric methods like RKHS; even in cases of cross-validations 483	

where environmental variation is assumed to be constant, RKHS predictability was significantly 484	

outcompeted for the Grain Yield trait in 2016 (Figure 1). Abiotic stress, such as recurrent 485	

droughts in the southern Great Plains of the US, is a strong selective force. Given the 486	

inconsistent and insufficient rainfall patterns, selection for drought tolerance and avoidance 487	

would require strong directional selection to elevate allele frequency of stress tolerance genes 488	

(Böndel et al., 2018). However, breeding for individuals with drought tolerance might have 489	

depleted overall genetic diversity in regional breeding programs, and disrupted the genotype-490	

phenotype (G-P) association for polygenic variation as a consequence (Assis et al., 2016; Jones 491	

et al., 2014; Pavlicev et al., 2010). Further, under directional selection, epigenetic gene action 492	

would be translated primarily into additive genetic variance of a small number of large fitness 493	

related QTLs (Crow 2010; Monnahan and Kelly, 2015), making RKHS a less preferential choice 494	

for GS for Grain Yield in a rapidly changing environment.  495	

Application of GS in Variety Development Program 496	

Using a HRW wheat VDP as an example, breeding programs start out from the first generation 497	

of hybridization, and progenies then advance through three stages of inbreeding and population 498	

development, line development, and line testing, in which the genetic diversity within a VDP 499	

goes from highly heterogeneous, heterozygous populations in early generations to highly 500	

homozygous, homogeneous lines. Techniques like double haploid (DH) has been considered for 501	

rapidly developing inbred lines (Forster et al., 2007). Newly derived inbred lines are usually 502	

evaluated for 3 to 6 growing seasons before final selection to accomplish a specific goal or goals 503	

of the VDP. 504	

 Averaged across all three years of cross validation, GS predictability for Grain Yield was 505	

0.52 (Figure 1); when evaluating GS performance across growing seasons, predictability 506	

decreased to an average of 0.25 (Figure 2). This over-inflated prediction accuracy was most 507	

obvious with Wheat Protein, and least so with SDS Sedimentation Volume (Figure 1 and Figure 508	

2). Using a similar comparison, Battenfield et al. (2016) showed that cross-validation accuracy 509	

was overestimated by as much as 44% (1000-kernel weight) than forward prediction. Unlike 510	

Battenfield et al. (2016) that prediction accuracy was summarized from a number of full-sib 511	
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families, whereas in our bi-parental DH population, the observed over-inflation would be more 512	

likely due to the inability to account for G×E, or genotype-by-environment interaction. 513	

 Accurate and stable selection of superior breeding lines over experimental trials is 514	

obviously important and desirable for VDP, but often difficult to achieve due to the presence of 515	

environmental variability. To ensure long-term response to selection, our results show that there 516	

are, however, cases where PS would be still preferential or cases that retraining with updated 517	

phenotypes should be performed. In principle, the superiority of GS was most notable when the 518	

selection intensity was high, and when large training information was available (Figure 3 5). In 519	

our case study when predicting line performance under sub-optimal conditions ( drought 520	

conditions in this study) by information trained in normal growing conditions, additional 521	

phenotyping under the target, sub-optimal environment would be required to achieve a desirable 522	

selection response; this was most obvious for Grain Yield when selection intensity was high 523	

(Figure 3A). It is interesting to note that, as suggested by our results, training conducted in sub-524	

optimal conditions could still provide GS predictability, while maintaining a desirable response 525	

to selection for both Grain Yield and SDS Sedimentation Volume (Figure 3 4). In another 526	

words, when making selection decisions for trials under unexpected environmental stress, like 527	

the frequent drought in the southern Great Plains of USA, using GS trained in optimal growing 528	

conditions could very likely result in unreliable outcomes. A similar deficiency of GS was also 529	

advised in Michel et al. (2018).  530	

 Further, effectiveness of GS has been examined with respect to the composition of 531	

training information (Rincent et al., 2012; Akdemir et al., 2015; Isidro et al., 2015; Michel et al., 532	

2017a; Neyhart et al., 2017). A straightforward approach to optimize TP for prediction was to 533	

maximize phenotypic variation, as Isidro et al. (2015), Michel et al. (2017a), and Neyhart et al. 534	

(2017) all suggested an upward performance improvement in GS by the TP formed with two-535	

tailed phenotypic data ( highest and lowest phenotypes). In addition to this two-tailed TP 536	

design (GS_DTP_Ptails in Figure 3 6), our study also investigated various approaches of 537	

constructing DTP, such as two-tailed GEBVs (GS_DTP_Gtails in Figure 3 6) and the DTP 538	

formed by the majority votes of both GEBVs and raw phenotypes (GS_DTP_Htails in Figure 3539	

6). Using Grain Yield as an example for polygenic traits, a broadly appropriate guideline is, 540	

when training was obtained from normal growing conditions, straightforward GS approaches 541	
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(GS_DTP_Gtails in Figure 3B) with an intermediate size of training population should be 542	

considered for high selection intensity; and when training was performed in a stressed growing 543	

condition, at a high selection intensity, optimized DTP with the majority votes could result in 544	

long-term advantage (GS_DTP_Htails, 40 and 60% in Figure 3A). The later scenario was as 545	

well beneficial for oligo-genic traits like SDS Sedimentation Volume (Figure 4A) and Kernel 546	

Weight (Figure 5A). Also with a heritability estimate of 0.74 (Table 2) and appreciable 547	

phenotypic correlation coefficients (Table 1), the stability in GS performance and in the response 548	

to selection across environment variability, makes SDS Sedimentation Volume a worthy 549	

candidate for GS in wheat variety development programs.550	
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Supplementary Materials 

Supplementary Figure S1. Trace plots of residual variance from Bayesian Lasso for Grain Yield, 
SDS Sedimentation Volume, Kernel Weight, and Wheat Protein over three years.  
Supplementary Figure S2. Trace plots of regularization parameter from Bayesian Lasso for Grain 
Yield, SDS Sedimentation Volume, Kernel Weight, and Wheat Protein over three years. 
Supplementary Figure S3. Trace plots of residual variance from Bayesian reproducing kernel 
Hilbert space (Bayesian RKHS) for Grain Yield, SDS Sedimentation Volume, Kernel Weight, 
and Wheat Protein over three years.  
Supplementary Figure S4. Trace plots of genetic variance from Bayesian reproducing kernel 
Hilbert space (Bayesian RKHS) for Grain Yield, SDS Sedimentation Volume, Kernel Weight, 
and Wheat Protein over three years.  
Supplementary Figure S5. Average mean squared error of same-year cross validation for Grain 
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Figure Captions 

Figure 1 Average Pearson’s correlation coefficient of same-year cross validation for Grain 
Yield, SDS Sedimentation Volume, Kernel Weight, and Wheat Protein. The error bar stands for 
one standard deviation.   

Figure 2 Average Pearson’s correlation coefficient of cross-year prediction for Grain 
Yield, SDS Sedimentation Volume, Kernel Weight, and Wheat Protein. The error bar stands for 
one standard deviation. The year before and after dash stands for training and validation year 
respectively. 

Figure 3 Relative superiority of selection for trait Grain Yield. PS, phenotypic selection; 
GS_ATP, genomic selection by all training population; GS_DTP_Ptails, genomic selection by 
designed training population with phenotypic tails; GS_DTP_Gtails, genomic selection by 
designed training population with genomic tails; GS_DTP_Ptails, genomic selection by designed 
training population with hybrid tails. 

Figure 4 Relative superiority of selection for trait SDS Sedimentation Volume. PS, 
phenotypic selection; GS_ATP, genomic selection by all training population; GS_DTP_Ptails, 
genomic selection by designed training population with phenotypic tails; GS_DTP_Gtails, 
genomic selection by designed training population with genomic tails; GS_DTP_Ptails, genomic 
selection by designed training population with hybrid tails. 

Figure 5 Relative superiority of selection for trait Kernel Weight. PS, phenotypic selection; 
GS_ATP, genomic selection by all training population; GS_DTP_Ptails, genomic selection by 
designed training population with phenotypic tails; GS_DTP_Gtails, genomic selection by 
designed training population with genomic tails; GS_DTP_Ptails, genomic selection by designed 
training population with hybrid tails. 

Figure 6 Relative superiority of selection for trait Wheat Protein. PS, phenotypic selection; 
GS_ATP, genomic selection by all training population; GS_DTP_Ptails, genomic selection by 
designed training population with phenotypic tails; GS_DTP_Gtails, genomic selection by 
designed training population with genomic tails; GS_DTP_Ptails, genomic selection by designed 
training population with hybrid tails. 
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Table 1.  Raw phenotypic correlation between years for four traits 
        

 
Trial Year 

Grain Yield SDS Sedimentation Volume 
2014 2015 2016 2014 2015 2016 

2014 1 0.42 0.24 1 0.53 0.52 
2015       1 0.43       1  0.7 
2016        1       1 

  
Kernel Weight 

 
Wheat Protein 

2014 1 0.26 0.4 1 0.17 0.36 
2015       1 0.44       1 0.25 
2016       1        1 
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Table 2.  Descriptive summary and estimated heritability of four phenotypic traits tested 
        
Trial 
Year 

Mean (SD) Three-year 
 

Mean (SD) Three-year 
 

    Grain Yield SDS Sedimentation Volume 
2014 1,577.50 (270.17)  

0.52 
7.18 (0.55)  

0.70 
 

2015 2,209.44 (441.28) 7.73 (0.73) 
2016 2,471.35 (720.55) 7.41 (0.74) 

  

     
Kernel Weight 

 

 
Wheat Protein 

2014 25.48 (1.58)  
0.67 

13.48 (0.71)  
0.54 2015 24.36 (2.16) 12.32 (0.51) 

2016 31.80 (2.63) 12.08 (0.58) 
 

2ĥ 2ĥ
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