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ABSTRACT2

The aboveground plant efficiency has improved significantly in recent years, and the3
improvement has led to a steady increase in global food production. The improvement of4
belowground plant efficiency has the potential to further increase food production. However,5
the belowground plant roots are harder to study, due to inherent challenges presented by6
root phenotyping. Several tools for identifying root anatomical features in root cross-section7
images have been proposed. However, the existing tools are not fully automated and require8
significant human effort to produce accurate results. To address this limitation, we propose a fully9
automated approach, called Deep Learning for Root Anatomy (DL-RootAnatomy), for identifying10
anatomical traits in root cross-section images. Using the Faster Region-based Convolutional11
Neural Network (Faster R-CNN), the DL-RootAnatomy models detect objects such as root, stele12
and late metaxylem, and predict rectangular bounding boxes around such objects. Subsequently,13
the bounding boxes are used to estimate the root diameter, stele diameter, and late metaxylem14
number and average diameter. Experimental evaluation using standard object detection metrics,15
such as intersection-over-union and mean average precision, has shown that our models can16
accurately detect the root, stele and late metaxylem objects. Furthermore, the results have shown17
that the measurements estimated based on predicted bounding boxes have very small root18
mean square error when compared with the corresponding ground truth values, suggesting that19
DL-RootAnatomy can be used to accurately detect anatomical features. Finally, a comparison20
with existing approaches, which involve some degree of human interaction, has shown that21
the proposed approach is more accurate than existing approaches on a subset of our data. A22
webserver for performing root anatomy using our deep learning pre-trained models is available at23
https://rootanatomy.org, together with a link to a GitHub repository that contains code that can24
be used to re-train or fine-tune our network with other types of root-cross section images. The25
labeled images used for training and evaluating our models are also available from the GitHub26
repository.27
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1 INTRODUCTION

The crop scientific community has made significant strides in increasing global food production through29
advances in genetics and management, with majority of the progress achieved by improving aboveground30
plant efficiency (Araus et al., 2008; Khush, 2013; Bishopp and Lynch, 2015). The belowground plant roots,31
which provide water and nutrients for plant growth, are relatively less investigated. This is primarily because32
of the difficulty in accessing the roots, and the complexity of phenotyping root biology and function (Jung33
and Mccouch, 2013; E. Schmidt and C.M. Gaudin, 2017). Hence, root potential has largely been untapped34
in crop improvement programs (Jung and Mccouch, 2013; E. Schmidt and C.M. Gaudin, 2017). Over the35
past decade, different root phenotyping approaches have been developed for studying root architecture, e.g.,36
basket method for root angle (Uga et al., 2013), rhizotron method for tracking root branching, architecture37
and growth dynamics (Bucksch et al., 2014), shovelomics, a.k.a., root crown phenotyping (Colombi et al.,38
2015), among others. Recent advances in magnetic resonance imaging and X-ray computed tomography39
detection systems have provided the opportunity to investigate root growth dynamics in intact plants at40
high temporal frequency (Mooney et al., 2012; Schulz et al., 2013; Topp et al., 2013; van Dusschoten et al.,41
2016; Pfeifer et al., 2015). However, each of these techniques comes with a range of inherent biases or42
limitations (such as artificial plant growth conditions), with none of the techniques currently available43
clearly standing out as a promising approach that could become a blanket fit (Durham Brooks et al., 2010;44
Clark et al., 2011; Sozzani et al., 2014). The recent non-destructive technologies, such as X-ray computed45
tomography, are extremely expensive, and thus beyond the reach of common crop improvement programs,46
in addition to not having the bandwidth to capture large genetic diversity.47

Machine learning approaches have been used successfully to address a wide variety of biological problems,48
including problems relevant to crop sciences, such as genome annotation (Yip et al., 2013), predicting49
gene functions (Rhee and Mutwil, 2014), discovery of genetic variation and genotyping (DePristo et al.,50
2011), identification of genomic regions of interest (Topp et al., 2013; Heslot et al., 2012), high throughput51
phenotyping based on aerial image analysis (Khan et al., 2018). Furthermore, applications of advanced deep52
learning and image analysis techniques to challenging problems in crop analysis have led to state-of-the-art53
results that outperform the results of traditional machine learning and image analysis techniques (Kamilaris54
and Prenafeta-Boldú, 2018; Jones et al., 2017).55

Most relevant to this work, machine learning, and more specifically, deep learning, are expanding the56
ability to accurately predict a plant phenotype (Tardieu et al., 2017; Singh et al., 2016; Pound et al.,57
2017a; Namin et al., 2017; Aich and Stavness, 2017; Dobrescu et al., 2017; Ubbens and Stavness, 2017;58
Namin et al., 2017), enabling the researchers to capture a wide range of genetic diversity, a task which has59
been hardly possible in the past, given the amount of time and effort involved in manual analysis (Singh60
et al., 2016). Several recent studies have used use deep learning regression approaches for identifying61
and quantifying aboveground plant traits such as the number of leaves in rosette plants based on high-62
resolution RBF images (Aich and Stavness, 2017; Dobrescu et al., 2017; Ubbens and Stavness, 2017). Other63
investigations have focused on identifying diseases (Mohanty et al., 2016) or phenotyping for stress/nutrient64
deficiencies (Singh et al., 2016).65

Furthermore, several prior studies have focused on data-driven approaches and tools for belowground66
plant phenotyping, including identifying and quantifying root morphological parameters, such as changes67
in root architecture, or branching and growth (Kuijken et al., 2015; Jiangsan et al., 2017; Delory et al.,68
2018; Pound et al., 2017b; Betegón-Putze et al., 2018; Reeb et al., 2018). Such approaches generally rely69
on standard image analysis techniques as opposed to state-of-the-art machine learning approaches.70
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While the study of root morphological parameters is important in relation to the health and productivity71
of crops, the study of root anatomical parameters, such as stele and the xylem vessels, is equally important.72
Root anatomical parameters represent the conduits for transport of water and nutrients to the plant’s73
aboveground parts. Hence, they are significantly affected by different rhizosphere conditions, and in turn,74
affect crop productivity (E. Schmidt and C.M. Gaudin, 2017).75

Innovations in image acquisition technologies have made it possible to gather relatively large sets of root76
cross-section images, enabling studies on root anatomy. Several approaches and tools for quantifying root77
anatomical variation based on cross-section images have been proposed in recent years (Burton et al., 2012;78
Chopin et al., 2015; Lartaud et al., 2015). However, the existing tools are only partially automated, as they79
require user input and fine-tuning of the parameters for each specific image or for a batch of images. Fully80
automated tools exist for the analysis of hypocotyl cross-sections (i.e., the region in between seed leafs and81
roots) in the context of secondary growth (Hall et al., 2016; Sankar et al., 2014), but they are not directly82
applicable to the analysis of root cross-section images. Thus, there is a pressing need for automated root83
cross-section image analysis tools that can use to perform root anatomy at a low cost.84

To address this limitation, we have taken advantage of recent advances in deep learning and image analysis,85
and developed a state-of-the-art, fully-automated deep learning approach for identifying and quantifying86
root anatomical parameters, indicative of the physiological and genetic responses of root anatomical87
plasticity in field crops. Specifically, we have considered the following parameters: root diameter (RD),88
stele diameter (SD), late metaxylem diameter (LMXD) and late metaxylem number (LMXN), which were89
studied and found important in relation to water-deficit stress in our prior work (Kadam et al., 2015, 2017).90
A graphical illustration of these parameters is shown in Figure 1.91

Our proposed approach is based on the Faster R-CNN network (Ren et al., 2015), and can be used to92
produce models that can detect objects of interest in a root cross-section image (i.e., root, stele and late93
metaxylem), together with their corresponding bounding boxes. Subsequently, the bounding boxes can94
be used to estimate anatomical parameters such as RD, SD, LMXD, LMXN. Once trained, our models95
generalize well to unseen images, thus eliminating the need for the end-user to hand-draw a stele border or96
manually choose the metaxylem cells, tasks that are time-consuming, and also prone to noise and errors.97

To summarize, our contributions are as follows:98

• We have proposed an approach based on Faster R-CNN to detect root, stele and late metaxylem objects,99
and their corresponding bounding boxes, in root cross-section images.100

• We have investigated the Faster R-CNN models with respect to the number of instances needed to101
accurately detect the objects of interest, and their corresponding bounding boxes.102

• We have evaluated the ability of the predicted bounding boxes to produce accurate estimates for103
anatomical properties, and performed error analysis to identify sources of errors.104

• We have compared the results of the proposed fully-automated DL-RootAnatomy approach with the105
results obtained from existing approaches in terms of accuracy.106

2 MATERIALS AND METHODS

While there are many anatomical traits that can be identified, and measured or counted (e.g., RootScan107
outputs more than 20 anatomical parameters), as a proof-of-concept, we have focused on measuring the108
root diameter (RD), stele diameter (SD), and late metaxylem diameter (LMXD), and counting the number109
of late metaxylem inside the stele (LMXN), as motivated by Kadam et al. (2015; 2017), who showed the110
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importance of these traits in relation to water-deficit stress. The tasks that we target can be achieved with111
modern object detection techniques, as described below.112

2.1 Proposed Approach113

We have used Faster R-CNN (Ren et al., 2015), a state-of-the-art network for object detection, to detect114
objects of interest (i.e., root, stele, late metaxylem), and subsequently mark each object with a bounding115
box. More precisely, we have trained a Faster R-CNN model to identify the root and stele within a116
cross-section image, and another similar model to identify the late metaxylem within the stele region of117
a cross-section. Given the bounding box of an object, identified by the Faster R-CNN model, we have118
calculated its diameter by averaging the width and height of the bounding box. The count of late metaxylem119
was obtained by counting the number of late metaxylem objects detected by the Faster R-CNN network.120

The proposed Faster R-CNN model architecture used to detect the root and stele in a root cross-section121
image is shown in Figure 2. Faster R-CNN has two main components. The first component consists of a122
Region Proposal Network (RPN), which identifies Regions of Interest (which potentially contain objects of123
interest), and also their location. The second component consists of a Fast R-CNN (Girshick, 2015), which124
classifies the proposed regions (i.e., objects) into different classes (e.g. root and stele), and also refines the125
location parameters to generate an accurate bounding box for each detected object. The two components126
share the convolutional layers of VGG-16 (Simonyan and Zisserman, 2014), which is used as the backbone127
of the Faster R-CNN model. More details on convolutional neural networks, VGG-16 and Faster R-CNN128
approach used to detect objects and generate bounding boxes are provided below.129

2.1.1 Convolutional Neural Networks and VGG-16130

Convolutional Neural Networks (CNNs) (LeCun et al., 1989) are widely used in image analysis. While131
originally designed for image classification, the features extracted by CNNs are informative for other image132
analysis tasks, including object detection. A CNN consists of convolutional layers followed by non-linear133
activations, pooling layers and fully connected layers, as seen in the example in Figure 3 (which shows134
a specific CNN architecture called VGG-16 (Simonyan and Zisserman, 2014)). A convolutional layer135
uses a sliding window approach to apply a set of filters (low-dimensional tensors) to the input image. The136
convolution operation captures local dependencies in the original image, and it produces a feature map.137
Different filters produce different feature maps, consisting of different features of the original image (e.g.,138
edges, corners, etc.). A convolution layer is generally followed by a non-linear activation function, such139
as the Rectified Linear Unit (i.e., ReLU), applied element-wise to generate a rectified feature map. The140
ReLU activation replaces all the negative pixels in a feature map with zero values. A pooling layer is used141
to reduce the dimensionality of the rectified feature map. Intuitively, the pooling operation retains the142
most important information in a feature map by taking the maximum or the average pixel in each local143
neighborhood of the feature map. As a consequence, the feature map becomes equivariant to scale and144
translation (LeCun et al., 2015).145

After a sequence of convolutional layers (together with non-linear activations) and pooling layers, a146
CNN has one or more fully connected layers. In fully connected layers all neurons in the current layer147
are connected to all neurons in the next layer. The first fully connected layer is connected to the last148
downsized feature map. The fully connected layers are used to further reduce the dimensionality and to149
capture non-linear dependencies between features (LeCun et al., 2015). The last fully connected layer uses150
a softmax activation function, and has as many output neurons as the number of targeted classes.151
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There are several pre-trained CNN architectures available, including VGG-16 (Simonyan and Zisserman,152
2014), shown in Figure 3. VGG-16 has been shown to give very good performance in the ImageNet153
competition, where the network was trained on millions on images with 1000 categories (Simonyan and154
Zisserman, 2014). Furthermore, VGG-19 was used with good results in the original Faster R-CNN study155
(Ren et al., 2015), which motivated us to use it also in our model. As can be seen in Figure 3, VGG-156
16 has 13 convolutional+ReLU layers, 5 pooling layers, and 3 fully connected layers. The dimensions157
corresponding to each layer are also shown in Figure 3.158

2.1.2 Region Proposal Network (RPN)159

As mentioned above, the region proposal network identifies regions that could potentially contain objects160
of interest, based on the last feature map of the pre-trained convolutional neural network that is part of the161
model, in our case VGG-16 (Simonyan and Zisserman, 2014). More specifically, using a sliding window162
approach, k regions are generated for each location in the feature map. These regions, are represented as163
boxes called anchors. The anchors are all centered in the middle of their corresponding sliding window,164
and differ in terms of scale and aspect ratio (Ren et al., 2015), to cover a wide variety of objects. The165
region proposal network is trained to classify an anchor (represented as a lower-dimensional vector) as166
containing an object of interest or not (i.e., it outputs an “objectness” score), and also to approximate167
the four coordinates of the object (a.k.a., location parameters). The ground truth used to train the model168
consists of bounding boxes provided by human annotators. If an anchor has high overlap with a ground169
truth bounding box, then it is likely that the anchor box includes an object of interest, and it is labeled as170
positive with respect to the object versus no object classification task. Similarly, if an anchor has small171
overlap with a ground truth bounding box, it is labeled as negative. Anchors that don’t have high or small172
overlap with a ground truth bounding box are not used to train the model. During training, the positive and173
negative anchors are passed as input to two fully connected layers corresponding to the classification of174
anchors as containing object or no object, and to the regression of location parameters (i.e., four bounding175
box coordinates), respectively. Corresponding to the k anchors from a location, the RPN network outputs176
2k scores and 4k coordinates.177

2.1.3 Fast R-CNN178

Anchors for which the RPN network predicts high “objectness” scores are passed to the last two layers179
(corresponding to object classification and location parameter refinement, respectively) of a network that180
resembles the original Fast R-CNN network (Girshick, 2015), except for how the proposed regions are181
generated. Specifically, in the original Fast R-CNN, the regions were generated from the original image182
using an external region proposal method (e.g., selective search).183

As opposed to the original Fast R-CNN (Girshick, 2015), in the Fast R-CNN component of the Faster R-184
CNN model, the external region proposal method is replaced by an internal RPN, described in the previous185
subsection, which is trained to identify regions of interest (Ren et al., 2015). Highly overlapping regions,186
potentially corresponding to the same object, can be filtered using a non-maximum suppression (NMS)187
threshold. A pooling layer is used to extract feature vectors of fixed length for the regions of the interest188
proposed by RPN. Subsequently, the feature vectors are provided as input to two fully connected layers,189
corresponding to the classification of the object detected and the regression of its location, respectively.190

The object classification layer in Fast R-CNN uses the softmax activation, while the location regression191
layer uses linear regression over the coordinates defining the location as a bounding box. All parameters of192
the network are trained together using a multi-task loss (Girshick, 2015).193
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2.1.4 Faster R-CNN Training194

The Fast R-CNN network and the region proposal network share several convolutional layers, specifically195
the 13 convolutional layers of VGG-16. We have initialized the parameters of the 13 convolutional layers196
using the VGG-16 network pre-trained on the ImageNet dataset. As many image features are highly197
transferable between different datasets, this initialization based on VGG-16 allowed us to learn accurate198
models from a relatively small number of root cross-section labeled images.199

Given that the region proposal network and the Fast R-CNN network share 13 convolutional layers, they200
are co-trained using an iterative process that alternates between fine-tuning the RPN and fine-tuning the201
Fast R-CNN network (with fixed proposed regions produced by RPN) (Ren et al., 2015). All the model202
parameters are updated using stochastic gradient descent (SGD).203

In our preliminary experimentation, we found that it is difficult to accurately detect the late metaxylem at204
the same time with the root and stele. Thus, we have trained a Faster R-CNN model to detect root and stele,205
and another Faster R-CNN model to detect late metaxylem.206

2.2 Existing Approaches207

There are several approaches and tools for quantifying root anatomical variation based on cross-section208
images (Burton et al., 2012; Chopin et al., 2015; Lartaud et al., 2015). Approaches in this category can209
be roughly categorized as manual, semi-automated, and automated approaches. Manual analysis of root210
images relies heavily on subjective assessments, and is suitable only for low throughput analysis. ImageJ211
(Schneider et al., 2012) is an image analysis tool that has been extensively used to manually identify and212
quantify root anatomical traits (Kadam et al., 2015; Yamauchi et al., 2013; Kadam et al., 2017), given that213
it enables researchers to mark objects of interest and obtain their measurements. In particular, the ImageJ214
software was used to acquire the original ground truth annotations for the images used in this study.215

Semi-automated tools require user feedback to tune parameters for individual images in order to get216
accurate results. RootScan (Burton et al., 2012) and PHIV-RootCell (Lartaud et al., 2015) are semi-217
automated tools that identify and quantify anatomical root traits. RootScan was originally designed for218
analyzing maize root cross-section images. The analysis of each image involves several steps. RootScan219
starts by isolating the cross-section from the background using a global thresholding technique (Otsu,220
1979). Subsequently, the stele is segmented based on the contrast between pixel intensities within and221
outside the stele. Different cells within the stele (e.g., late metaxylem) are classified based on their area222
according to background knowledge on root anatomy for a particular species. After each step, the user has223
to “approve” the classification performed automatically or alternatively correct it, before moving to the224
next step. The tool can be run on a set of images in batch mode, but the user still needs to provide input for225
each step of the analysis for each image, as explained above. The output of RootScan consists of a table226
with area measurements and counts of different anatomical traits.227

The PHIV-RootCell tool for root anatomy is built using the ImageJ software (Schneider et al., 2012),228
and provides options for selecting regions of interest (ROI) such as root, stele, xylem, and for measuring229
properties of these regions. It was designed for analyzing rice root cross-section images. Similar to230
RootScan, domain knowledge is used to identify ROIs. The PHIV-RootCell tool uploads and analyzes one231
image at a time, and does not have an option for batch uploading or processing. Furthermore, it requires232
user’s supervision at each segmentation and classification step (Lartaud et al., 2015). For example, it233
requires the user to validate the root selection, stele selection, central metaxylem selection, among others.234
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As opposed to semi-automated tools that require user feedback, a fully automated approach should235
involve “a single click” and should produce accurate results without any human intervention during the236
testing and evaluation phases. However, human input and supervision in the form of background knowledge237
or labeled training examples may be provided during the training phase. In this sense, RootAnalyzer238
(Chopin et al., 2015) is an automated tool, which incorporates background knowledge about root anatomy.239
The first step in RootAnalyzer is aimed at performing image segmentation to distinguish between root240
pixels (corresponding to boundaries of individual root cells) and background pixels. To achieve this,241
RootAnalyzer utilizes a local thresholding technique to analyze each pixel’s intensity by comparing it with242
the mean pixel intensity in a small square neighborhood around that pixel (defined by a width parameter,243
W ). Subsequently, RootAnalyzer constructs a difference image, and classifies pixels as root or background244
pixels based on a threshold, T , used on the difference image. The next step is focused on detecting root245
cells and closing small leaks in cell boundaries, using an interpolation approach. Finally, cells are classified246
in different categories, such as stele cells, cortex cells, epidermal cells, etc. based on size, shape, and247
position. Two thresholds are used to classify cells as small or large: a threshold, As, for small cells, and a248
threshold, Al, for large cells. Furthermore, stele cells are classified based on an additional threshold, N ,249
on the maximum distance from a cell to any of its nearest neighbor cells. The RootAnalyzer tool allows250
for both single image processing and batch processing. Single image processing allows the user to adjust251
and tune parameters, and also to interact with the tool at each stage of the segmentation and classification.252
Batch processing requires the user to provide the parameters to be used with a specific batch of plant253
images. Similar to RootScan, RootAnalyzer outputs a table of area measurements and counts for regions of254
interest. This tool was designed for wheat and also tested on maize (Chopin et al., 2015).255

2.3 Dataset256

Twenty-five accessions of Oryza species were grown in plastic pots (25 cm in height; 26 and 20 cm257
diameter at the top and bottom, respectively), filled with 6 kg of clay loam soil. Three replications per each258
accession were maintained under well-watered conditions and roots were sampled 60 days after sowing,259
to obtain fully mature roots. The roots were harvested and washed thoroughly and stored in 40% alcohol.260
To obtain the cross-section images used in this study, root samples stored in 40% alcohol were hand261
sectioned with a razor blade using a dissection microscope. Images of root sections were acquired with the262
Axioplan 2 compound microscope (Zeiss, Germany) at 50x and 100x magnification. For each of the 25 rice263
accessions included in the study, three biological replicate root samples from root-shoot junction and 6 cm264
from the root tip were obtained. From each replicate, 2-3 images were taken at root-shoot junction, and 2-3265
images at 6 cm from the tip of the root. Images may have two versions: a 50× magnification version, which266
captures the whole root diameter (top image in Fig. 1), and a 100× magnification version, which captures267
only the stele diameter (bottom image in Fig. 1). However, not all 50× images have a 100× correspondent.268
Specifically, there are 388 images at 50× magnification, and 339 images at 100× magnification.269

For each root image, we manually measured root anatomical parameters, such as root cross-section270
diameter, stele diameter, late metaxylem average diameter and late metaxylem number, using the ImageJ271
software (Schneider et al., 2012). The manual measurements and counts constitute our ground truth to272
which we compared the measurements produced by our models. Statistics about the dataset, including the273
minimum, maximum, average and standard deviation for root diameter, stele diameter, late metaxylem274
average diameter and late metaxylem number, respectively, are presented in Table 1.275

In addition to measuring root anatomical parameters, each 50× magnification image was also manually276
labeled by independent annotators with bounding boxes that represent root, stele, and late metaxylem,277
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Table 1. Ground Truth Statistics: minimum (Min), maximum (Max), and average together with standard
deviation (Avg ± std) are shown for the ground truth measurements (RD, SD, LMXD and LMXN).

Statistics RD SD LMXD LMXN
Min 354 115 15 1
Max 1352 419 65 12
Avg ± std 869± 194 216 ± 55 36 ± 8 5.4 ± 1.8

respectively, and each 100× magnification image was labeled with boxes that represent the late metaxylem.278
We used the LabelImg tool (Tzutalin, 2015) to perform the bounding box labeling. This tool produces279
annotations in the Pascal Visual Object Classes (VOC) XML format (Everingham et al., 2015), a standard280
format used for annotating images with rectangular bounding boxes corresponding to objects. The bounding281
boxes in the 50× and 100× magnification images constitute the ground truth to which we compared the282
bounding boxes of the objects detected by our models.283

We should note that the 50× magnification images contain all the anatomical features that we target284
in this study, and are sufficient for training the proposed deep learning models. However, we also train285
models from the 100× magnification images, independently, to understand how much the identification of286
the LMX objects and their measurements may be improved by using images with a higher resolution. In287
general, any resolution can be used for training, as as long as all the features that need to be identified are288
contained in the image.289

2.4 Experimental Setup290

2.4.1 Training, Development and Test Datasets291

We performed a set of experiments using 5-fold cross-validation. Specifically, we split the set of 50×292
magnification images into five folds, based on accessions, such that each fold contained 5 accessions out293
of the 25 accessions available. The exact number of 50× magnification images (instances) in each fold294
is shown in Table 2. For each fold, Table 2 also shows the number of corresponding 100× magnification295
images (instances) available (note that not every 50× magnification image has a corresponding 100×296
magnification image). In each 5-fold cross-validation experiment, four folds were used for training, and the297
fifth fold was used for test. To tune hyper-parameters, we used one of the training folds as the development298
dataset. The results reported were averaged over the 5 folds. The reason for splitting the set of images based299
on accessions was to avoid using images from the same plant or the same replicate both in the training and300
test datasets.301

Table 2. Number of instances in each of the 5 folds used to perform cross-validation for the 50× and
100× magnification images, respectively. The total number of instances in the dataset is also shown.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total
Instances (50×) 71 79 86 77 75 388
Instances (100×) 62 60 80 69 68 339

2.4.2 Evaluation Metrics302

We used three standard metrics in our evaluation, driven by preliminary observations. First, given that303
there exist exactly one root and one stele in an image, we observed that these objects are always detected in304
the 50× magnification images. We used the Intersection-over-Union (IoU) metric to measure how well the305
predicted bounding boxes overlap with the ground truth bounding boxes. Second, given that the number306
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of LMX objects varies between 1 and 12, and these objects are relatively small, the corresponding object307
detection models are prone to both false positive and false negative mistakes. Thus, we used mean average308
precision (mAP), a standard metric in object detection, to evaluate the ability of our models to accurately309
identify the LMX objects. Both IoU and mAP metrics range between 0 and 1, and higher values are better.310
Finally, we used the root mean square error (RMSE) metric to measure the ability of the proposed approach311
to detect objects and corresponding bounding boxes that lead to root/stele/LMX diameter measurements312
and LMX counts close to those available as ground truth. For RMSE, smaller values are better.313

2.4.3 Hyper-parameter Tuning314

Deep learning models, in general, and the Faster R-CNN models, in particular, have many tunable hyper-315
parameters. We tuned several hyper-parameters shown by Zhang et al. (2016) to affect the performance316
of the Faster R-CNN models, and used the values suggested by Ren et al. (2015) for the other hyper-317
parameters. More specifically, we tuned the IoU threshold used in the RPN network to identify anchors318
that could potentially include an object of interest (i.e., positive instances/anchors). Furthermore, we319
tuned the non-maximum suppression (NMS) threshold which is used to filter region proposals produced320
by the trained RPN network (specifically, if two proposals have IoU larger than the NMS threshold, the321
two proposals will be considered to represent the same object). At last, we tuned the fraction of positive322
instances in a mini-batch.323

The specific values that we used to tune the IoU threshold were 0.4, 0.5 and 0.6, the valued used to tune324
the NMS threshold were 0.6, 0.7 and 0.8, and the values used to tune the fraction of positive instances in325
a mini-batch were 1:5 and 1:4. To observe the variation of performance with the tuned parameters, and326
select the values that gave best performance, we trained a model corresponding to a particular combination327
of parameters on three training folds, and evaluated the performance of the model on the development328
fold. The performance of the models for root and stele detection was measured using the IoU metric (by329
comparing the predicted bounded boxes with the ground truth bounded boxes), while the performance330
of the models for LMX detection was measured using the mAP metric (by comparing the detected LMX331
objects with the ground truth LMX objects) to ensure that the Faster R-CNN models can accurately detect332
all the LMX objects.333

Our tuning process revealed that the performance did not vary significantly with the parameters for our334
object detection problem. However, the best combination of parameters for the root/stele models consisted335
of the following values: 0.4 for the IoU threshold, 0.8 for the NMS threshold and 1:4 for the fraction of336
positive anchors in a mini-batch. The best combination of parameters for the LMX models consisted of337
the following values: 0.5 for the IoU threshold, 0.8 for the NMS threshold, and 1:4 for the fraction of338
positive anchors in a mini-batch. We used these combinations of values for the root/stele and LMX models,339
respectively, in the our experiments described in the next section.340

3 RESULTS AND DISCUSSION

In this section, we present and discuss the results of our proposed approach, DL-RootAnatomy, and341
also the results of a comparison between our approach and two related approaches, RootAnalyzer and342
RootScan. Furthermore, we outline time requirements for DL-RootAnatomy and discuss the availability of343
our approach as a tool.344
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3.1 Variation of Performance with the Number of Training Instances345

As opposed to the existing tools for identifying anatomical parameters in root cross-section images, which346
incorporate background knowledge about the root anatomy of a particular species and the types of images347
used, our proposed deep learning approach is easily generalizable to various species and types of images,348
given that a representative set of annotated images is provided as training data. Under the assumption that349
data annotation is expensive and laborious, we aim to understand how many images are necessary for350
good performance on roots from a particular species. Intuitively, the number of required images should be351
relatively small, given that our model relies on a VGG-16 network pre-trained to detect a large number of352
objects that are generally more complex than root, stele and late metaxylem.353

To validate our intuition, we have performed an experiment where we varied the number of images used354
for training, while keeping the number of test images fixed. Specifically, we used 5, 10, 25, 50, 75, 100,355
150, 200, 250, and all available training images in that split, respectively, to train models for detecting the356
root, stele and late metaxylem in an images. The 50× magnification images were used to train the models357
for root/stele/LMX, while and 100× magnification images were used to train models for LMX. The trained358
50× models were used to detect the root, stele, and LMX objects in the test images. Similarly, the trained359
100× models were used to detect LMX objects in test images, with the goal of understanding the benefits360
provided by higher resolution images.361

The performance of the models was measured by comparing the predicted objects with the ground truth362
objects. We used the IoU metric to evaluate the predicted bounded boxes for root/stele by comparison363
with the corresponding ground truth bounding boxes. We used the mAP metric to measure the ability of364
the models to accurately detect LMX objects. The variation of performance with the number of training365
images is shown in Figure 4 for root/stele (Left plot) and LMX (Right plot). As can be seen, in the case366
of the 50× models, the performance increases with the number of training images, but tends to stabilize367
generally around 250 images. This confirms our intuition that only a small number of labeled images is368
needed to learn accurate models for the problem at hand. Furthermore, the left plot in the figure shows369
that the IoU values for both root and stele objects are around 0.95, when all the training images are used,370
although the root bounding boxes are slightly better than the stele bounding boxes. Similarly, the LMX371
objects are detected with high accuracy, as shown on the right plot of Figure 4, where the mAP values are372
close to 0.9 consistently for models trained with smaller or larger number of 100× magnification images.373
Similar performance is obtained with the models trained from all 50× magnification images. The plots for374
both root/stele and LMX also show that generally the variance decreases with the size of the data. The slow375
decrease in performance that is observed sometimes between two training set sizes can be explained by the376
addition of some inconsistently labeled images present in the original dataset, as shown in Figure 5.377

3.2 Performance Evaluation Using RMSE378

The trained root/stele and LMX detection models were used to detect root/stele/LMX objects in the test379
data. Subsequently, the detected objects were further used to calculate RD, SD, LMXD and LMXN. To380
evaluate the models in terms of their ability to produce the right root/stele/LMX diameter and LMX number,381
we have used the RMSE error computed by comparing the measurement/count estimates obtained from the382
predicted bounded boxes with the ground truth measurements/counts. The RD and SD measurements were383
evaluated based on models trained/tested with the 50× magnification images, while LMXD and LMXN384
were evaluated based on models trained/tested with 50× and 100× magnification images, respectively.385
Intuitively, the LMXD/LMXN results obtained with the models trained on the 100× magnification386
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Table 3. RMSE Results. The RMSE results for root diameter (RD), stele diameter (SD), late metaxylem
diameter (LMXD) and late metaxylem number (LMXN) for 5 splits, together with the average and standard
deviation over the 5 splits. The number of 50× magnification images used in these experiments is 388,
while the number of 100× magnification images is 339. For each measurement, the magnification of the
images that were used to train the model that produced that measurement (i.e., 50× or 100×) is also shown.
Furthermore, for each split, the test fold corresponding to that split is shown.

Split (Test Fold) RD SD LMXD LMXD LMXN LMXN
(50×) (50×) (50×) (100×) (50×) (100×)

Split 1 (Fold 5) 62.77 21.93 3.67 2.45 0.81 1.37
Split 2 (Fold 4) 32.18 17.54 3.77 3.13 0.71 0.45
Split 3 (Fold 3) 61.19 21.96 3.53 3.22 0.91 0.83
Split 4 (Fold 2) 33.12 20.01 3.58 3.56 1.90 0.63
Split 5 (Fold 1) 43.67 20.94 2.43 1.61 0.74 0.25
Average 46.59 20.39 3.40 2.79 1.02 0.71
Standard deviation 14.77 1.81 0.55 0.77 0.50 0.43

images should be more accurate, as those images have higher resolution. The results of the experiments387
corresponding to the five splits, together with their average and standard deviation, are shown in Table 3.388

As can be seen from Table 3, the average RMSE error for RD over the 5 splits is 46.59 µm. Given that389
root diameter for the images in our dataset varies between 354 µm and 1352 µm (see Table 1), this result390
is very encouraging. Similarly, the average RMSE error for SD over the five splits is 20.39 µm, which is391
low, given that the stele diameter varies between 115 µm and 419 µm. As opposed to root and stele, the392
LMXD is significantly smaller, varying between 15 µm and 65 µm. However, the average RMSE error393
is 3.40 µm for the model trained using the 50× magnification images, and decreases by almost 1 µm for394
the model trained with the 100× magnification images (the exact value is 2.79 µm). In terms of LMXN,395
the ground truth numbers vary between 1 and 12, with an average of 5.4 LMX objects per image. The396
average RMSE error for LMXN is 1.02 for the models trained on the 50× magnification images, and down397
to 0.71 for the models trained on the 100× magnification images. Thus, we can say that our models miss398
roughly one LMX per image, when trained with the 50× magnification images, and less than that, when399
trained with the 100× magnification images. We performed error analysis to understand if these results400
might be useful in practice. Specifically, we analyzed images where our models made mistakes in terms401
of LMXN, and observed that some of those images were annotated in an inconsistent way by the human402
annotators, as can be seen in Figure 5. This observation is not surprising, as human annotators are prone403
to mistakes and inconsistencies. As opposed to that, the automated models produced by our proposed404
approach produce more consistent results, once they are well trained. At last, Table 3 shows that the RMSE405
results obtained do not vary significantly with the split, as shown by the relatively small standard deviation.406
Together, these results suggest that the proposed approach has the potential to replace the labor-intensive407
manual annotations of root cross-section images.408

3.3 Comparison with RootAnalyzer and RootScan409

We aimed to compare DL-RootAnatomy with RootAnalyzer and RootScan tools on all 388 50×410
magnification images in our dataset.411

Given the batch processing capability of RootAnalyzer by comparison with the amount of user effort412
involved by the RootScan, we started our comparative analysis with RootAnalyzer. As described in Section413
2.2, RootAnalyzer has five parameters that need to be tuned: W , T , Al, As and N . To understand the range414
of parameters that our images require for good performance, we experimented with a variety of images415
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Table 4. Number of instances that could be analyzed with RootAnalyzer in each of the 5 folds, out of the
total number of instances in each fold. These images were used in the comparison between our approach
and existing tools. The total number of instances used in the comparison is also shown in the last column.

Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Total
Instances 57 70 73 58 65 323
Total-fold 71 79 86 77 75 388

Table 5. Comparison between the RMSE results of our proposed approach (called DL-RootAnatomy),
and the RMSE results of RootAnalyzer, RootScan (automated) and RootScan (adjusted). The number of
images used in these experiments is 323. RootScan (adjusted) is seen as an estimate of the human error.
DL-RootAnatomy was run on both 50× and 100× magnification images to detect LMX objects. The other
tools were used with the 50× magnification images (as they do not work properly with 50× magnification
images). The RMSE is calculated for: RD, SD, LMXD, and LMXN. The results are averaged over five
splits. Corresponding to each average, standard deviation is also show.

Method RD SD LMXD LMXN
RootAnalyzer 208.44 ± 22.40 172.21 ± 20.65 32.89 ± 10.62 4.01 ± 0.54
RootScan (automated) 132.33 ± 40.08 428.89 ± 13.29 45.20 ± 2.88 19.58 ± 1.66
DL-RootAnatomy (50×) 43.67 ± 16.80 20.51 ± 1.84 3.58 ± 0.57 1.13 ± 0.43
DL-RootAnatomy (100×) N/A N/A 2.79 ± 0.93 0.64 ± 0.31
RootScan (adjusted) 66.82 ± 20.86 42.27 ± 25.54 6.26 ± 2.39 0.72 ± 0.23
≈ Human Error

and parameters, and observed that RootAnalyzer freezes for some images, regardless of the parameters416
used. Specifically, it freezes or produces degenerate results on images for which the root has a dark, solid417
boundary, and the epidermal cells are not clearly identifiable, while it works as expected on images for418
which the root has identifiable epidermal cells. Examples of images that can or cannot be analyzed by419
RootAnalyzer are shown in Figure 6 (a) and (b), respectively. Out of the 388 images, we identified 323420
with clear epidermal cells and used those in the comparison between our tool and other related tools. The421
distribution of the 323 images analyzed with RootAnalyzer over the 5 folds is shown in Table 4.422

As mentioned before, RootScan is a semi-automated tool, which requires human interaction/approval423
at each stage. For example, after automatically detecting the root border (and similarly the stele border424
and late metaxylem border), the tool presents the user with the opportunity to manually redraw or adjust425
the border, if the automatically detected border does not look as expected. We ran RootScan with human426
interaction to estimate the human error/bias in our dataset, under the assumption that without human427
error, the adjusted borders should lead to minimal differences between the original ground truth manual428
measurements and the RootScan measurements. We refer to this experiment as RootScan (adjusted) in429
what follows. We also run RootScan in an automated fashion, where we approved the borders identified by430
the tool, without any further adjustment. We refer to this experiment as RootScan (automated).431

First, we ran RootAnalyzer on the 323 images in batch mode, with a set of overall good parameters432
manually identified in our preliminary examination of these images. With just one click, all the images were433
processed and the results were output in a csv file. We then fed the 323 images into the semi-automated434
tool, RootScan, and performed experiments in either the automated or adjusted modes. We used the435
measurements produced by each tool to calculate the RMSE error for each fold and averaged the error436
over the 5 folds. Finally, we tested our DL-RootAnatomy approach on the 323 images using the 5-fold437
cross-validation setup. For LMXD and LMXN, we used both models trained on the 50× magnification438
images and models trained on the 100× magnification images. The results of the experiments described439
are shown in Table 5.440
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As can be seen from Table 5, our proposed approach, DL-RootAnatomy, is the most accurate when441
compared to the existing tools, specifically RootAnalyzer and RootScan. First, the DL-RootAnatomy442
models have an average RMSE error of 43.67 µm for RD (slightly different from the error reported in443
Table 3, as a smaller number of images were used in this experiment, as described above). The RootScan444
(adjusted) average RMSE, which is assumed to approximate the human error in the ground truth, is 66.82445
µm, slightly higher than the error obtained by the DL-RootAnatomy. Second, our approach gives the446
smallest error also for SD, specifically, 20.51 µm, followed again by RootScan (adjusted) with an error of447
42.27. Third, our approach has the smallest error for LMXD (3.58 µm for the 50×, and 2.79 µm for the448
100× images), with the RootScan (adjusted) as the second winner (with RMSE 6.26 µm). Finally, in terms449
of LMXN, our models trained with 50× images are slightly worse than RootScan (adjusted) (1.13 versus450
0.72), while the models trained with 100× images are slightly better than RootScan (adjusted) (0.64 versus451
0.72). The other two automated tools, RootAnalyzer and RootScan (automated), give significantly higher452
errors overall, with RootAnalyzer being better between the two, but not good enough to be used for the453
automated analysis of rice images.454

Thus, based on this comparison, we claim that the existing tools do not generalize well on the rice root455
images studied in this article. We identified several possible reasons:456

(1) For a given tool, it is hard to find parameters that are universally good for all images in our dataset.457
For example, for a given set of parameters, the segmentation result from the RootAnalyzer in Figure458
7 shows that the parameters are appropriate for the left image (a) where the LMX are reasobably459
well identified, but not appropriate for the right image (b) where no LMX are identified. As opposed460
to that, our experiments have shown that the performance of our models does not vary much with461
hyper-parameters. Once a model is properly trained, it performs accurately on a big variety of images.462

(2) Plant samples for imaging are grown in different conditions, for example in hydroponic (water based463
nutrient supply) or in soil, and root cross-section images are collected using different techniques464
(e.g., hand sectioning or sectioning using tools like vibratomes). Plant growing or image acquisition465
differences lead to differences in image’s color, contrast and brightness. Figure 8 shows input images466
for RootAnalyzer, RootScan, PHIV-RootCell, and DL-RootAnatomy, respectively. As opposed to467
other tools, our approach is not very sensitive to the light conditions or to the structure of the468
root cross-section images (including the epidermis thickness, epidermis transparency, and distorted469
cross-sections), assuming the models are trained with a variety of root cross-section images.470

(3) Each tool is designed with certain image characteristics in mind, and may not work on images that do471
not exhibit those characteristics. As described above, RootAnalyzer assumes a clear cell boundary and472
does not work for images that contain a solid boundary where the cells are not clearly identifiable. Our473
models simply reflect the broad characteristics of the images that they are trained on, instead of being474
built with some characteristics in mind. No specific background knowledge is provided, except for475
what is inferred automatically from training images.476

(4) Each tool is designed for a particular species, and incorporates background knowledge for that particular477
species. As different species may have different root anatomy, a tool designed for a species may not478
work for other species. For example, RootAnalyzer is designed to automatically analyze maize and479
wheat root cross-section images, and “may work” for other species (Chopin et al., 2015). However,480
our models can be easily adapted to other species, assuming some annotated training images from481
those species are provided. No other background knowledge is required. Along the same lines, our482
models can be easily adapted to images with a different resolutions, assuming those images include483
the features of interest.484
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3.4 Tool Availability and Time Requirements485

DL-RootAnatomy can be run from a terminal or as a web-based application, which is also mobile friendly.486
The web-based application is available at https://rootanatomy.org, and links to a GitHub repository that487
contains the source code and our pre-trained models and the ground truth data. The web-based application488
is user-friendly and does not require any programming skills. It can be run with one of our sample images489
displayed on the site, or with an image uploaded by the user.490

In terms of time/image requirements, our experiments have shown that accurate models can be trained491
from scratch with 150 to 250 images. The average time for labeling an image with LabelImg is492
approximately 2 minutes. The average time for training a model on an EC2 p2-xlarge instance available493
from Amazon Web Services (AWS) is approximately 10 hours, and does not require any human intervention494
during that time. Once the model is trained, the average time to annotate a new image is less than one495
second (using an EC2 p2-xlarge instance). If using our webserver (hosted on a local machine), the running496
time for a annotating a new image is approximately 9 seconds, as this includes the time to setup the virtual497
environment, the time to retrieve the input image from the server, the time to perform the annotation, and498
the time to download the image to the user’s browser. Given these time requirements, assuming that a499
relatively large number of images need to be annotated for a biological study (on the order of thousands),500
the human time can be potentially reduced from days or weeks (the time would take to manually annotate501
all images) to hours (the time may take to manually label images for training) or minutes (the time for502
automatically annotating images with our tool).503

To gain insights into the time to “adapt” our models to other types of root cross-section images, we504
identified 14 images that have been used to demonstrate RootAnalyzer and 10 images that have been505
used to demonstrate PHIV-RootCell. Out-of-the-box, our trained models were not very accurate on these506
images. However, we fine-tuned our models using 10 images from RootAnalyzers and 6 images from507
PHIV-RootCell, and tested the new models on the remaining 4 images from RootAnalyzer and 4 images508
from PHIV-RootCell. The results were impressive, showing that the models fine-tuned with such a small509
number of images from RootAnalyzer and PHIV-RootCell learn to predict those types of images accurately,510
in addition to our images, as can be seen at https://rootanatomy.org. Thus, the human time for labeling511
images for training can be dramatically reduced to less than an hour, if one is fine-tuning our models as512
opposed to training a model from scratch.513

4 CONCLUSIONS

In this paper, we presented a fully automated approach for processing root cross-section images to extract514
anatomical root features. The approach is based on Faster R-CNN networks, which were used to detect515
root, stele and LMX objects, and to predict bounding boxes for each detected object. Subsequently, the516
bounding boxes were used to obtain anatomical properties, specifically, root diameter, stele diameter, LMX517
diameter and LMX number. Our Faster R-CNN models had VGG-16 as a backbone, to take advantage of518
the extensive training of the VGG-16 network, and were fine-tuned on root cross-section images.519

We evaluated the models in terms of their ability to detect the objects of interest, and also in terms of their520
ability to lead to accurate measurements for RD, SD, LMXD and LMXN. The results of the evaluation521
showed that our models produced accurate and consistent annotations, when trained on a relatively small522
number of training images. For LMXD and LMXN, we trained models from both 50× magnification523
images and 100× magnification images. Our results showed that the performance is slightly better for524
the 100× magnification images, although this magnification is not a requirement for good performance.525
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Furthermore, a comparison with existing tools for analyzing root cross-section images showed that our526
automated tool identifies anatomical features more accurately than those obtained with tools that require527
manual adjustment. Overall, these results suggest that our tool, DL-RootAnatomy, can potentially be used528
in practice to accelerate the speed at which root cross-section images are analyzed, and save significant529
human efforts and costs.530

The evaluation in this paper was done on rice images. However, an important observation was that our tool531
can be easily adapted to other types of root cross-section images and also to other species, by fine-tuning532
our existing models with a small number of labeled images from the species of interest. Similarly, additional533
anatomical features can be extracted by fine-tuning our existing models with images labeled according534
to the traits that are targeted. As part of future work, we plan to thoroughly study domain adaptation535
approaches that allow the transfer of knowledge from our existing rice models to models for other plant536
species (or for other traits), without labeling a large number of images from the other species of interest.537
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Colombi, T., Kirchgessner, N., Le Marié, C. A., York, L. M., Lynch, J. P., and Hund, A. (2015). Next570
generation shovelomics: set up a tent and rest. Plant and Soil 388, 1–20571

Delory, B. M., Li, M., Topp, C. N., and Lobet, G. (2018). archidart v3. 0: A new data analysis pipeline572
allowing the topological analysis of plant root systems. F1000Research 7573

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., et al. (2011). A574
framework for variation discovery and genotyping using next-generation dna sequencing data. Nature575
genetics 43, 491576

Dobrescu, A., Giuffrida, M. V., and Tsaftaris, S. A. (2017). Leveraging multiple datasets for deep leaf577
counting. In ICCV Workshops 2017. 2072–2079578

Durham Brooks, T. L., Miller, N. D., and Spalding, E. P. (2010). Plasticity of arabidopsis root gravitropism579
throughout a multidimensional condition space quantified by automated image analysis. Plant Physiology580
152, 206–216. doi:10.1104/pp.109.145292581

E. Schmidt, J. and C.M. Gaudin, A. (2017). Toward an integrated root ideotype for irrigated systems 22582

Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2015).583
The pascal visual object classes challenge: A retrospective. International Journal of Computer Vision584
111, 98–136585

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision.586
1440–1448587

Hall, H. C., Fakhrzadeh, A., Luengo Hendriks, C. L., and Fischer, U. (2016). Precision automation of588
cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images.589
Frontiers in plant science 7, 119590

Heslot, N., Yang, H.-P., Sorrells, M. E., and Jannink, J.-L. (2012). Genomic selection in plant breeding: a591
comparison of models. Crop Science 52, 146–160592

Jiangsan, Z., Peter, S., Gernot, B., and Boris, R. (2017). Root traits of european vicia faba cultivars-using593
machine learning to explore adaptations to agroclimatic conditions. Plant, Cell & Environment 0.594
doi:10.1111/pce.13062595

Jones, W., Alasoo, K., Fishman, D., and Parts, L. (2017). Computational biology: deep learning. Emerging596
Topics in Life Sciences 1, 257–274597

Jung, J. and Mccouch, S. (2013). Getting to the roots of it: Genetic and hormonal control of root architecture598
4, 186599

This is a provisional file, not the final typeset article 16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 6, 2019. ; https://doi.org/10.1101/442244doi: bioRxiv preprint 

https://doi.org/10.1101/442244


Wang et al. Root Anatomy with Deep Learning

Kadam, N., Tamilselvan, A., Lawas, L. M. F., Quinones, C., Bahuguna, R., Thomson, M. J., et al. (2017).600
Genetic control of plasticity in root morphology and anatomy of rice in response to water-deficit. Plant601
physiology , pp–00500602

Kadam, N., Yin, X., Bindraban, P., Struik, P., and Jagadish, K. (2015). Does morphological and anatomical603
plasticity during the vegetative stage make wheat more tolerant of water-deficit stress than rice? Plant604
physiology , pp–114605
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Figure 1. Root anatomical traits. (Top) Root cross-section with highlighted root diameter and stele. Image
taken at 50x magnification. (Bottom) Enlarged stele with highlighted stele diameter, and late metaxylem
diameter. The late metaxylem number is also a trait of interest. Image taken at 100x magnification.

Figure 2. Proposed Faster R-CNN model architecture, which has two main components: 1) a region
proposal network (RPN), which identifies regions that may contain objects of interest and their approximate
location; and 2) a Fast R-CNN network, which classifies objects as root or stele, and refines their location,
defined using bounding boxes. The two components share the convolutional layers of the pre-trained
VGG-16 Simonyan and Zisserman (2014).
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Figure 3. VGG-16. The original VGG-16 architecture consists of 13 convolution+ReLU layers, five
pooling layers, and three fully connected layers. A convolution+ReLU layer produces a feature map, while
a pooling layer reduces the dimensionality of the feature map. The last fully connected layer uses a softmax
activation function to predict one of the 1000 categories. The dimensions corresponding to each layer are
also shown.
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Figure 4. Variation of performance with the number of training images for root/stele detection model
(Left plot), and for the LMX detection model (Right plot), respectively. We used 50× magnification
images to detect root and stele objects, and both 50× and 100× magnification images to detect LMX.
The performance of the root/stele detection model was measured using the IoU metric (which shows how
accurately the predicted bounding boxes match the ground truth), while the performance of the LMX
detection model was measured using the mAP metric (which shows how accurately LMX objects were
detected). The plots show average values over 5 splits together with standard deviation.

This is a provisional file, not the final typeset article 20

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted February 6, 2019. ; https://doi.org/10.1101/442244doi: bioRxiv preprint 

https://doi.org/10.1101/442244


Wang et al. Root Anatomy with Deep Learning

(a) LMXN=4 (b) LMXN=3

(c) LMXN=4 (d) LMXN=3

(e) LMXN=12 (f) LMXN=11

Figure 5. Examples of inconsistent annotations in our dataset. Specifically, image (a) was labeled as
having LMXN=4 (the smaller LMX was included in the count), while image (b) was labeled as having
LMXN=3 (the smaller LMX was not included in the count although it has size comparable with the smaller
LMX counted in (a)). Our approach consitently identified 4 LMX objects in both (a) and (b) images.
Similarly, image (c) was incorrectly labeled as having LMXN=4, while the similar image in (d) was
properly labeled as having LMNX=3. Our approach correctly identified 3 LMX objects in both (c) and (d)
images. Finally, images (e) and (f) show a larger number of LMX which have variable size, but it is not
very clear which LMX were counted and which were not counted to get the 12 and 11 counts, respectively.
Our approach identified 7 LMX objects in image (e) and 10 LMX objects in image (f).
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(a) (b)

Figure 6. Examples of root boundaries: (a) boundary with clear and identifiable epidermal cell; (b) dark
solid boundary with unclear or unidentifiable epidermal cell.

Figure 7. RootAnalyzer Annotations: With the same set of parameters, in the left image the root border
(red), stele border (yellow), endodermis (green) and late-metaxylem (purple) are detected reasonably well,
while in the right image, only half of the stele border is detected. Given that the tool fails to properly detect
the stele border, it also fails to detect the late metaxylem.
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(a) (b) (c) (d)

Figure 8. Sample input images used by different tools. (a) Sample input image for RootAnalyzer, which
shows a clear difference between background pixels and cell border pixels. (b) Sample input image for
RootScan. (c) Sample input image for PHIV-RootCell, which works with root cross-section images that
contain a central metaxylem (marked with a white rectangle). (d) Sample root cross-section image from the
dataset used in this study.
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