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ABSTRACT  

Recent technology has made it possible to measure DNA methylation profiles in a cost-effective and 

comprehensive genome-wide manner using array-based technology for epigenome-wide association 

studies. However, identifying differentially methylated regions (DMRs) remains a challenging task 

because of the complexities in DNA methylation data. Supervised methods typically focus on the 

regions that contain consecutive highly significantly differentially methylated CpGs in the genome, but 

may lack power for detecting small but consistent changes when few CpGs pass stringent significance 

threshold after multiple comparison. Unsupervised methods group CpGs based on genomic 

annotations first and then test them against phenotype, but may lack specificity because the regional 

boundaries of methylation are often not well defined. We present coMethDMR, a flexible, powerful, and 

accurate tool for identifying DMRs. Instead of testing all CpGs within a genomic region, coMethDMR 

carries out an additional step that selects co-methylated sub-regions first. Next, coMethDMR tests 

association between methylation levels within the sub-region and phenotype via a random coefficient 

mixed effects model that models both variations between CpG sites within the region and differential 

methylation simultaneously. coMethDMR offers well-controlled Type I error rate, improved specificity, 

focused testing of targeted genomic regions, and is available as an open-source R package. 

INTRODUCTION 

Many diseases are caused by a complex interplay of genes and environment factors, such as smoking, 

poor diet, and lack of exercise. Epigenetic studies investigate the mechanisms that modify the 

expression levels of selected genes without changes to the underlying DNA sequence. The study of 

these epigenetic patterns hold excellent promise for detecting new regulatory mechanisms that may be 

susceptible to modification by environmental factors, which in turn increase the risk of disease. Among 

epigenetic modifications, DNA methylation is the most widely studied. The addition or removal of a 

methyl group at the 5th position of a cytosine is the key feature of DNA methylation. Alterations of DNA 
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methylation levels have been shown to be involved in many diseases (1), such as cancers (2-4) and 

neurodegenerative diseases (5-7). 

While whole-genome bisulfite sequencing is still too costly for large epidemiologic studies, recent 

technology has made it possible to measure DNA methylation profiles in a cost-effective and 

comprehensive genome-wide manner using array-based technology such as the Infinium 

MethylationEPIC BeadChip Kit (8), which allows researchers to interrogate more than 850,000 

methylation sites per sample at single-nucleotide resolution. The first wave of epigenome analysis tools 

have focused on comprehensive DNA methylation analysis of single base sites, that is, identifying 

differentially methylated CpG sites, while more recent effort have shifted to analyzing differentially 

methylated regions (DMRs) (9-11).  

The shift to DMR analyses are driven by both biological and statistical reasons. Biologically, it has 

been observed that methylation levels are strongly correlated across the genome and methylation often 

occurs as a regional phenomenon (12).  In the study of complex diseases, various studies have reported 

functionally-relevant genomic regions, such as CpG islands (13) or CpG island shores (14), are 

associated with diseases. While changes at single sites should not be overlooked, DMRs have 

increasingly been deemed the hallmarks of differential methylation and replication of DMRs are often 

more successful compared with changes at single sites (15,16). Statistically, because of the large 

number of CpG sites interrogated by methylation arrays, testing regions rather than individual CpGs 

can help improve power by reducing the number of tests conducted. In addition, while effect size in a 

single CpG might be small, by borrowing information from all the CpGs within a region, statistical test 

for regions can more effectively leverage information within the region to increase sensitivity and 

specificity.  

A number of statistical methods for identifying DMRs have been proposed (10,11,17-20), reviewed 

(21,22), and compared (23-25). Methods for DMR identification can be classified into supervised and 

unsupervised methods. Supervised methods (e.g. bumphunter (17), DMRcate (10), and probeLasso 

(11)) typically start with computing p-values for differential methylation at individual CpG sites, and then 

scan the genome to identify regions with adjacent low p-values. The statistical significance of these 

regions is then computed by combining individual CpG p-values in the region using methods such as 

Stouffer’s Z (10). However, a challenge with supervised methods is that they may lack power for 

detecting small but consistent changes when few CpGs pass stringent significance threshold after 

multiple comparison (25). 

An alternative strategy is to use an unsupervised approach, which defines relevant regions across 

the genome first, independently of any phenotype information, and then tests methylation levels in these 

predefined regions against a phenotype (19,20,26). In this study, we propose a new unsupervised 

approach for testing differential methylation in regions against continuous phenotype such as age.  

Table 1 lists several previously proposed unsupervised methods. A challenge with unsupervised 

approaches is their lack of specificity. Unlike gene expression data, the regional boundary of DNA 

methylation is often not well defined. Therefore, currently available approaches that summarize 

methylation levels in a region using mean or median methylation levels of the CpGs within the region 

may have results that vary depending on the boundaries of the region. In addition, when testing 
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associations between phenotype and the summarized methylation levels in a genomic region, the 

spatial correlations between CpG sites within the region is ignored.  

Here we present coMethDMR, a new unsupervised approach that optimally leverages covariations 

among CpGs within genomic regions to identify genomic regions associated with continuous 

phenotypes. Instead of testing all CpGs within a genomic region, coMethDMR carries out an additional 

step that clusters co-methylated sub-regions without using any outcome information. Next, coMethDMR 

tests association between methylation within the sub-region and continuous phenotype using a random 

coefficient mixed effects model (27), which models both variations between CpG sites within the region 

and differential methylation simultaneously.  

In the following sections, we provide methodological details of the coMethDMR analysis pipeline and 

compare this new method with several existing tools. The advantages of coMethDMR is demonstrated 

using both simulated and real methylation datasets. We show that the additional CpG selection step 

(subregion identification) improves power substantially while preserving Type I error rate. In addition, 

the new random coefficient model improves specificity and is robust against association signals from 

outlier CpGs when detecting changes in differential methylation in the regions.  

MATERIAL AND METHODS 

The coMethDMR analysis pipeline  

Figure 1 shows the workflow of the coMethDMR analysis pipeline. There are two major steps in the 

coMethDMR pipeline: (1) within a genomic region, identify the sub-region with contiguous and co-

methylated CpGs, and (2) test association of CpG methylation in the sub-region with phenotype, while 

modelling for variabilities among the CpGs simultaneously. 

In the first step, the genome will be divided into regions by taking advantage of methylation array 

annotations. Because the Illumina chips target methylation sites primarily at genic regions and CpG 

islands (CGIs, regions in the genome where there are more CG dinucleotides found than expected by 

chance), the regions can be defined based on their relations to genes or CGIs. Figure 2A shows 

correlation between methylation levels among CpGs in an example of a genomic region corresponding 

to the CGI located at chr10:100028236-100028499. This region includes 7 CpG probes ordered by 

their locations on the chromosome. Note that in spite of belonging to the same CGI, only the last 4 

probes constitute the co-methylated region. To select the co-methylated region, we use the rdrop 

statistic, which is the correlation between each CpG with the sum of methylation levels in all other CpGs 

(Fig 2B). Note that in this example, the co-methylated region consists of all the contiguous CpGs with 

rdrop statistics greater than 0.5. We evaluated the sensitivity and specificity of the rdrop statistic at 

identifying co-methylated CpGs in the subsection “Optimal parameter for in coMethDMR pipeline” below.  

In the second step, to simultaneously model variations among the co-methylated CpGs as well as 

association with phenotype, we propose a random coefficient mixed model for testing groups of CpGs 

against phenotype. Figure 3 provides a hypothetical example fit of the mixed model for testing two CpGs 

against disease stage (treated as a linear variable). This model includes (1) normalized methylation 

values as the outcome variable, (2) a systematic component that models the mean for each group of 
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CpGs (the fixed effects intercept ߚ଴	and slope ߚଵ	for variable stage), and (3) a random component (the 

random coefficients) that model how each CpG’s slope for stage varies about the group mean (the 

random effects ܾ଴௝ and ܾଵ௝, ݆ ൌ 1,2	). Because both fixed and random effects are included in this model, 

this model is a mixed effects model. Additional details of the random coefficient model are described in 

Supplementary Text.  

We are interested in testing the null hypothesis that there is no association between phenotype 

(disease stage) and methylation values. This can be accomplished by testing the fixed effect for 

slope	ܪ଴: ଵߚ ൌ 0. In the sections below, we compare the statistical properties (i.e. power and Type I 

error rate) of this new random coefficient model with several currently available statistical models shown 

in Table 1.  

RESULTS 

Optimal parameter for in coMethDMR pipeline 

The only parameter in the entire coMethDMR pipeline is the rdrop threshold in the identification of co-

methylated sub-regions within a genomic region (Figure 2B). These rdrop statistics are the leave-one-

out correlations between each CpG with the sum of methylation levels in all other CpGs. The co-

methylated regions can be identified by ordering the CpGs by location, and selecting contiguous CpGs 

with leave-one-out correlations greater than a pre-specified threshold (rdrop), such as 0.5. 

Simulation study 1: We conducted an analysis to assess the sensitivity and specificity of different 

rDrop values at identifying co-methylated CpGs. For each of the 19977 CGI regions with at least 3 

CpGs, we computed pairwise correlations of the CpGs within each CGI region. Next, we selected 

regions with 3, 5, or 8 CpGs (parameter ncpgs) that have average pairwise correlations between 0.5-

0.8 or 0.8 to 1 (parameter minCorr) for this simulation study. For each genomic region, we added 

additional irrelevant CpGs by sampling CpGs randomly from the genome. The number of random CpGs 

added were either the same as ncpgs (parameter fold = 1), or two times of ncpgs (parameter fold 

= 2). Therefore, by design of the experiment, the status of each CpG, i.e. whether they belong to a co-

methylated cluster or not, is known.  

These parameter values yielded 12 simulation scenarios: ncpgs (3, 5, or 8) x minCorr (0.5-0.8 or 

0.8-1) x fold (1 or 2). For each scenario, this process was repeated 10 times to generate a total of 120 

simulation datasets. Step 1 in the coMethDMR pipeline was used to identify co-methylated regions for 

each simulated genomic region. Supplementary Table 1 and Figures 4-5 show average sensitivity, 

specificity, and area under the ROC curve (AUC) for each value of the rDrop parameter. Optimal AUC 

occurred at or near rDrop = 0.4 for most of the simulation scenarios (Supplementary Table 1). Figure 

4 and 5 also showed that at rDrop = 0.4, both sensitivity and specificity were over 0.9 for all but one 

simulation scenario. Therefore, we set rDrop at 0.4 for subsequent analysis.  

coMethDMR controls Type I error when testing association between methylation levels in the 

genomic regions with phenotype. 
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We conducted two simulation studies to assess the Type I error (i.e. false positive rate) of the proposed 

method. In Simulation study 2, we assume the genomic regions are pre-determined and we compared 

results using different statistical models for testing association of methylation levels with randomly 

generated phenotypes. In Simulation study 3, we assume the genomic regions are not pre-determined, 

and we determined Type I error for the entire coMethDMR pipeline. That is, we first identified co-

methylated regions, then tested these selected regions for association with randomly generated 

phenotypes.  

Simulation study 2: We evaluated the Type I error rate of several currently available statistical 

methods, along with the newly-proposed random coefficient mixed model, by generating random 

phenotype data and test their association with genomic regions in a real DNA methylation dataset. More 

specifically, we compared the five statistical models listed in Table 1: (1) a linear model with mean 

methylation M values as summary for a genomic region, (2) a linear model with median M values as 

summary for a genomic region, (3) a GEE model, (4) a simple linear mixed model, and (5) our proposed 

random coefficient linear mixed model.  

To emulate correlation structure between different CpGs in real data, we generated simulation 

datasets using a real methylation dataset (GSE59685) as input. Lunnon et al. (2014) conducted an AD 

study that measured DNA methylation levels in four brain regions postmortem from 122 individuals 

using the Infinium HumanMethylation450K BeadChip platform (7). For this Type I error analysis, we 

used prefrontal cortex methylation data from 27 control subjects. For each simulation dataset, we 

randomly generated an age value for each sample. In the following sections, we use the term pseudo 

age to refer to the computer-simulated age variable.  

First, we select 10 CpG island genomic regions randomly. For each region, we generated pseudo 

age randomly from a Poisson distribution with mean 65, independently of the methylation data. 

Therefore, by design of experiment, these pseudo age values are not associated with any methylation 

regions. This procedure was repeated 1000 times, to generate 10,000 simulation datasets (10 genomic 

regions x 1000 repetitions). Under the null hypothesis of no association between methylation and 

pseudo age, we expected the p-value distributions for a model to follow the uniform distribution, where 

5% of the p-values would be less than 0.05, corresponding to a Type I error rate of 0.05.  

In Figure 6, the estimated Type I error rates were 0.1011 (GEE model), 0.0545 (linear model with 

mean summary), 0.0532 (linear model with median summary), 0.0404 (random coefficient mixed model) 

and 0.0002 (simple linear mixed model). We can see that the GEE model showed inflated false positive 

rate, with highest Type I error at around 0.1 . The inflated type I error rate by GEE model was also 

observed recently in simulation studies conducted by another group (19). On the other hand, the simple 

linear mixed model in (4) was overly conservative, with Type I error around 0.0002. Among the models, 

the proposed random coefficient mixed model in (5) and the linear models with mean or median 

summary had type I error closest to 0.05.  

Simulation study 3: We next determined Type I error rate for coMethDMR when genomic regions are 

not pre-determined. That is, we determined if the coMethDMR pipeline, which includes both identifying 

co-methylated methylation clusters, and testing methylation regions against phenotype using linear 

mixed models, would still have controlled Type I error rates. To this end, we first identified 4444 co-
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methylated genomic regions mapped to CpG islands. Next we selected 10 co-methylated regions 

randomly, and then repeated  Simulation study 2 on these co-methylated regions. That is, for each co-

methylated region, pseudo age values were generated randomly from Poisson distribution with mean 

of 65 for each of the samples. This procedure was repeated 1000 times to generate 10,000 simulation 

datasets (10 co-methylated regions x 1000 repetitions). Suppl. Figure 1 shows that after selecting co-

methylated CpGs, Type I error remained well-controlled for both mixed models. 

coMethDMR improves power substantially compared to fitting mixed model directly to 

methylation data 

Simulation study 4: Because genomic region are typically defined a priori based on annotations, without 

regard to the methylation data sets to be analyzed, we expect only a subset of CpGs in a pre-defined 

genomic region would be associated with the phenotype. We hypothesized that power can be improved 

by selecting consecutive CpGs in the co-methylated region first. To assess the power of the models 

that had controlled Type I error rate (i.e. simple linear mixed model and random coefficient mixed model), 

we performed a simulation study similar to Simulation study 2  described above, except by testing 

methylation levels in the genomic regions against randomly generated pseudo age that are ranked in 

the same order as the mean of methylation values in the co-methylated sub-region. Therefore, by 

design of the experiment, the values of pseudo ages of the samples are associated with co-methylated 

CpGs in each genomic region.  

The results in Figure 7 show that for both mixed models, power improved substantially after selecting 

the co-methylated regions. Without selecting co-methylated CpGs, the random coefficient mixed model 

has more power. After selecting co-methylated CpGs, both models performed similarly, especially when 

the number of co-methylated CpGs was at least moderate (i.e. nCpGs >= 5).  

Random coefficient mixed model improves specificity when identifying differentially methylated 

regions 

As mentioned above, a key challenge in unsupervised approaches for identifying DMRs is their lack of 

specificity. In particular, it is desirable to identify significant genomic regions that include only CpG 

probes significantly associated with the continuous phenotype and exclude those CpGs not related to 

phenotype. To further evaluate the specificity of different statistical models on real methylation data, we 

next applied the five models described above as well as several supervised approaches 

(bumphunter(17), DMRcate(18), Probe Lasso(11), comb-p(10)) to all 110 prefrontal cortex samples 

in the Lunnon et al. dataset (7) mentioned above to identify CGIs associated with Braak scores. Braak 

staging scores are a standardized measure of neurofibrillary tangle burden determined at autopsy (28). 

These scores range from 0 to 6, indicating different pathological severity of the disease. We treat these 

scores as a linear variable, adjusting for covariate effects from age, sex, batch, and estimated 

proportions of neurons.  

Supplementary Figure 2 shows mean trajectories of corrected methylation M values (after adjusting 

for covariate effects) for individual CpGs in top 10 most significant genomic regions, identified by 

IMA_mean (linear model with mean summary implemented in IMA software), IMA_median (linear 
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model with median summary implemented in IMA software), Aclust_GEE (GEE model implemented 

in Aclust software), seqlm  (simple linear mixed model implemented in seqlm software), 

coMethDMR_simple (simple linear mixed model implemented in coMethDMR software), 

coMethDMR_randCoef (random coefficient mixed model implemented in coMethDMR software) and 

comb-p software. Among the supervised methods, only comb-p returned significant regions. In the 

figures, each dot corresponds to an average corrected methylation M value for samples from a particular 

Braak stage. Each line represents linear regression fitted on a particular CpG. Note that within these 

most significant regions, there were large heterogeneities in slopes for individual CpGs for all methods, 

except coMethDMR_randCoef. Figure 8 shows standard deviations of slope estimates for individual 

CpGs within the top 10 regions. Each dot represents standard deviation of individual CpG slope 

estimates within a significant region selected by a particular method. We observed that significant 

regions selected by random coefficient model (coMethDMR_randCoef) showed much less variations 

in individual CpG slopes estimates by applying a linear model to single CpGs (i.e. more homogeneous 

associations between individual CpG methylations and disease stage). 

To understand how the random coefficient mixed model improves specificity, note that this model 

specifically models co-variation of the slopes. In Figure 3 and subsection “Random coefficient mixed 

model”, the CpG specific slopes are modeled by random effects	ܾଵ௝, where we assume	ܾଵ௝~ܰሺ0,  .ଵଶሻߪ

The variations in the CpG specific slopes will be captured by estimated variance component ߪොଵଶ for the 

random effects 	ܾଵ௝ , which contributes to variance of መଵߚ	 , the slope main effect for the continuous 

phenotype (e.g. disease stage). Thus, genomic regions with more consistent differential changes in 

methylation levels among the CpGs will have a lower value for	ߪොଵଶ, corresponding to a lower value for 

variance of	ߚመଵ, and yielding a more significant p-value for the slope main effect. On the other hand, 

regions with outlier CpGs would have large variances for	ߚመଵ, resulting non-significant p-values for the 

slope main effect.  

To further illustrate the effect of modeling heterogeneity in CpG slopes, consider the 5 CpGs located 

within the CGI at chr13:115046754-115048034  (Figure 9). To simplify this example, we tested 

methylation M values in this region against disease stage, without controlling for any covariate variables. 

The results showed that the p-values for this region are 2 . 42 ൈ 10ିହ  (IMA_mean),  0.0154  

(IMA_median), 1. 87 ൈ 10ିସ (GEE in Aclust), and 0.0046 (simple linear mixed model in seqlm and 

coMethDMR_simple). However, note that the significance of this region is driven by only 1 CpG, 

cg12513911 (light blue). On the other hand, the p-value for random coefficient model in 

coMethDMR_randCoef is 0.315, which indicates that the random coefficient mixed model correctly 

classified this CGI as a non-significant region.  

This example shows that without specifically modeling variances in the slopes, the significant regions 

identified might have large heterogeneity in individual CpG slopes. As a result, the region may include 

a substantial number of non-significant CpGs. In particular, region-wise p-values using conventional 

unsupervised methods can be driven by a single outlier CpG that has strong association signal, which 

does not constitute a DMR by definition. In contrast, the proposed random coefficient mixed model 

would prioritize genomic regions where the mean methylation trajectory for multiple CpGs is highly 
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correlated with continuous phenotype, and the heterogeneity in trajectories for individual CpGs within 

the region is low.  

coMethDMR identifies biologically-meaningful DMRs  

To evaluate the biological plausibility of DMRs identified by different methods, we next examined the 

analysis results for testing methylation levels with AD stages in the Lunnon et al. dataset. After adjusting 

for age, sex, batch, and estimated proportions of neurons, coMethDMR_simple and 

coMethDMR_randCoef identified 10 and 4 significant regions at 5% false discovery rate (FDR), 

respectively. We compared these results with significant DMRs identified by other methods, including 

the IMA_mean, IMA_median, Aclust_GEE and seqlm methods. We also tested several supervised 

methods, including DMRcate, bumphunter, probelasso, and comb-p. Figures 10-11 show the 

overlap of significant regions identified by these methods and the coMethDMR_simple and 

coMethDMR_randCoef methods, respectively. The seqlm method (unsupervised) and DMRcate, 

bumphunter, and probeLasso methods (supervised) were excluded from these figures because they 

did not identify any DMRs at 5% FDR.  

The results showed that among all other methods, results from IMA_median had the most overlap 

with both coMethDMR_simple and coMethDMR_randCoef results. In particular, half of the significant 

DMRs identified by coMethDMR_simple (5 out of 11) and coMethDMR_randCoef (2 out of 4) were 

also selected by IMA_median (Figure 10-11) This is most likely due to the fact that IMA_median is 

less affected by trajectories of outlying CpGs within a genomic region than other methods. Results from 

Aclust_GEE also had substantial overlap with coMethDMR results. However, this could be due to the 

fact that Aclust_GEE method identified a large number of DMRs. Given that the Type I error rates for 

Aclust_GEE was inflated (Figure 6), many of the significant DMRs could be false positives. Compared 

to the overlap between comb-p and coMethDMR_randCoef, results from coMethDMR_simple agreed 

more with the supervised method comb-p (Figure 12), probably because neither method accounts for 

heterogeneities in CpG slopes.  

Table 2 shows the significant regions identified by coMethDMR_simple and 

coMethDMR_randCoef. For the DMRs identified by coMethDMR_randCoef, the most significant 

region is in the gene body of SEPT5, a brain-expressed cytoskeletal organizing gene that was nominally 

associated with AD (29) in family-based GWAS studies and has been shown by proteomic analysis to 

have altered levels in brains of AD patients (30). The second region is in KIF1A, a member of the kinesin 

family that transports cargo along axonal microtubules. One of  KIF1A’s major roles is to transport 

BACE1 in neuronal axons (31). The third gene, PCNT, has also been linked to altered methylation in 

AD brains (6). The fourth region is in the 3’ UTR of the HOXA3 gene, which is part of a gene cluster on 

chromosome 7. Recently, aberrant methylation of this region has been shown to be associated with AD 

neuropathology in multiple AD EWAS datasets (32).  

The coMethDMR_simple model identified several more genes that were previously implicated in 

AD etiology. For example, the MBP gene encodes myelin sheath of oligodendrocytes and Schwann 

cells in the nervous system. Brains from patients with AD had significant loss of intact MBP. Myelin 
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disruption is an important feature of Alzheimer’s disease (AD) that contributes to impairment of neuronal 

circuitry and cognition (33,34). The RHBDF2 gene was previously found to be associated with AD 

stages in a different large scale methylation study (6). Another important gene, ATP2A3, encodes one 

of the SERCA Ca(2+)-ATPases, which are involved in maintenance of low intraneural Ca2+ 

concentration. The multifunction of this pump was recently found in brains of AD subjects (35). Finally, 

the HOXB9 and SPN genes appears to be involved in immunological and inflammatory process that 

may relate to AD pathophysiology (36). Taken together, these results suggest that use of coMethDMR 

can identify disease-relevant genes and replicate previous single-site and regional methylation 

analyses (in the case of the PCNT, RHBDF2 and HOXA3 genes). 

DISCUSSION 

Although a number of methods have been proposed, identifying differentially methylated regions 

remains a challenging task because of the complexities in DNA methylation data. One such challenge 

with supervised DMR-identification methods is their lack of power when the difference in beta values 

between two groups was small but consistent (i.e. difference in mean beta values is less than 0.05) 

(25). This is likely because supervised methods scan the genome to identify regions with adjacent low 

p-values, so a number of positions that pass a multiple-comparison-corrected significance threshold 

are required. On the other hand, unsupervised methods, which define genomic regions first and then 

test them against phenotype, tend to lack specificity and often prioritize irrelevant genomic regions.  

In this paper, we have presented coMethDMR, an unsupervised method for identifying differentially 

methylated regions for methylation data measured by Illumina arrays. Several additional features of 

coMethDMR make it especially attractive in a practical setting:  

First, coMethDMR improves specificity and prioritizes genomic regions with co-methylated CpGs that 

are consistently associated with a continuous phenotype. In addition to the identification of DMRs, this 

improved accuracy in scoring and ranking genomic regions would also provide more accuracy in 

downstream analysis such as network or pathway analysis, where genes are represented by genomic 

regions mapped to them, as well as integration with other types of -Omics data, such as gene 

expression measured by RNAseq. 

Second, coMethDMR improves power by identifying and testing co-methylated regions in the 

genome, instead of testing all genomic regions in the genome. By limiting analysis to only the most 

relevant regions in the genome, p-values are not diluted by multiple-comparison correction for regions 

that are unlikely to be candidate for DMRs. Note the co-methylated regions are selected without using 

any outcome information, so that Type I error rates for the coMethDMR pipeline are preserved.  

Third, coMethDMR is flexible in the genomic regions one would like to focus on. The input for 

coMethDMR can be one, two or many genomic regions. This flexibility allows focused testing of targeted 

genomic regions, for example, testing significant DMRs from previous studies in a new dataset. By 

testing fewer number of genomic regions, the burden for multiple comparisons can be reduced. In 

addition to annotations provided by Illumina, other definitions of genomic regions can also be used to 

group CpG probes, such as the cell-type specific chromatin state segmentations identified by patterns 

of histone modifications in ENCODE project (39), chromatin accessible regions detected in ATAC-seq 
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data, or transcription factor binding sites detected in ChIP-seq data. This new feature of coMethDMR 

facilitates integration of DNA methylation data with carefully-curated metadata generated by large 

consortia such as ENCODE (37) and Roadmap Epigenomics (38), improving power by focusing on the 

gene-regulatory regions which are most likely to be differentially methylated. 

In summary, coMethDMR offers a flexible, powerful, and accurate solution for DMR analysis of array-

based DNA methylation data. The entire analytical pipeline is implemented as an open-source R 

package, freely available to the research community. We have shown coMethDMR provides well-

controlled false positive rate, as well as improved power over directly testing a genomic region with a 

continuous phenotype. In the analysis of an Alzheimer’s dataset, the agreement between results 

obtained by coMethDMR and previous reports further validates this proposed method. coMethDMR 

empowers epigenetic researchers to discover meaningful biological insights from vast amounts of large 

and complex DNA methylation datasets.  

AVAILABILITY 

The analysis scripts used in this study, along with coMethDMR as an open-source R package, can be 

accessed at github at https://github.com/lissettegomez/coMethDMRPaper and 

https://github.com/lissettegomez/coMethDMR. A user guide for coMethDMR which provides details of 

commands and output is included in Supplementary Text.  
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TABLE AND FIGURES LEGENDS 

 

Table 1. Summary of unsupervised methods 

Table 2. Differentially methylated regions associated with AD stages identified by coMethDMR.  

Supplementary Table 1. Simulation study to identify optimal rdrop parameter in first step of coMethDMR 

pipeline. For each simulation scenario, rdrop parameter with red font corresponds to best performance.  

Figure 1. Workflow of the coMethDMR analysis pipeline.  

Figure 2. An example of a contiguous co-methylated sub-region. (A) This pre-defined region (a CGI) 

included 7 CpG probes ordered by their location. Shown are correlation between methylation levels in 

each pair of CpGs. Note that only the last 4 probes constitute the co-methylated region within this CGI. 

(B) The CpGs in the co-methylated sub-region can be identified using the rdrop statistic, which is the 

correlation between each CpG with the sum of methylation levels in all other CpGs. In this example, all 

the co-methylated CpGs had rdrop statistics greater than 0.5.  

Figure 3. Illustration – proposed random coefficient mixed model for testing methylation levels in a 

hypothetical genomic region with 2 CpGs against disease stage treated as a linear variable.   

Figure 4. Optimal sensitivities and specificities for coMethDMR were achieved when the parameter 

rDrop is close to 0.4.  

Figure 5. Optimal area under ROC curve (AUC) for coMethDMR was also achieved when the parameter 

rDrop is close to 0.4.  

Figure 6. Type I error rates in the absence of differential methylation for different statistical models. 

Shown above the bars are proportions of CpG island genomic regions with p-values less than 0.05, for 

association with randomly generated “age” from Poisson distribution with mean 65, average over 10,000 

simulation datasets. Under the null hypothesis of no association, we expected p-values to follow a 

uniform distribution, so methods that control type I error at nominal level would be close to the red line. 

Figure 7. Power is improved when fitting simple linear mixed model and random coefficient mixed model 

to co-methylated CpGs in genomic regions (coMeth_randCoef, coMeth_simple), compared to fitting 

the models to all CpGs in genomic regions. 

Figure 8. Significant regions selected by random coefficient model showed less variations in individual 

CpG slope estimates  (i.e. more homogeneous associations between individual CpG methylations and 

disease stage). We considered the top 10 most significant regions by each method. Each dot represents 

standard deviation of individual CpG slope estimates within a significant region selected by a particular 

method.  
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Figure 9. Trajectories of five individual CpGs. Each dot indicates the average methylation M value for 

all samples available at a given disease stage. These averages are then median centered to put all 

CpGs on the same graph.  

Figure 10. Comparison of significant regions at 5% False Discovery Rate (FDR) selected by 

coMethDMR_simple with other unsupervised approaches (IMA_median, IMA_mean and 

Aclust_GEE). 

Figure 11. Comparison of significant regions at 5% FDR selected by coMethDMR_randCoef with other 

unsupervised approaches (IMA_median, IMA_mean and Aclust_GEE). 

Figure 12. Comparison of significant regions at 5% FDR (or Sidak p-value) selected by 

coMethDMR_randCoef, coMethDMR_simple, and the supervised approach comb-p.  

Supplementary Figure 1. Type I error rates in the absence of differential methylation for different 

statistical models, for comethylated regions. Shown are proportions of co-methylated regions with p-

values less than 0.05, for association with randomly generated “age” from Poisson distribution with 

mean 65, average over 10,000 simulation datasets.  

Supplementary Figure 2. Mean trajectories of corrected methylation M values (after adjusting for 

covariate effects) for individual CpGs in top 10 most significant genomic region, identified by IMA_mean, 

IMA_median, Aclust_GEE, seqlm, coMethDMR_simple, coMethDMR_randCoef, and comb-p 

methods. 
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Table 1. Summary of unsupervised methods  
 

  Definition  of  Genomic 
Regions 

Test Association Between Methylations  in Genomic 
Regions vs. Continuous Phenotype1 

Refer
ence 

Previously proposed methods    
IMA_mean 
rforge.net/IMA/ 
 

Illumnina  annotation 
(e.g. CGI, TSS200) 
 

linear model:  
തܻ௜ ൌ ଴ߚ ൅ ଵߚ ௜ܺ ൅ ௜ߝ  where  തܻ௜  is mean  of methylation 
levels over all CpGs in the region, for sample ݅ 
 

(26) 

IMA_median 
rforge.net/IMA/ 
 

Illumnina  annotation 
(e.g. CGI, TSS200) 

linear model:  
෨ܻ௜ ൌ ଴ߚ ൅ ଵߚ ௜ܺ ൅ ௜ߝ    where  ෨ܻ௜  is  median  of 
methylation  levels  over  all  CpGs  in  the  region,  for 
sample ݅ 
 

(26) 

Aclust 

github.com/tamartsi
/Aclust/ 
 

Adjacent Site Clustering 
(A‐clustering) algorithm  

Generalized Estimating Equation model:  

௜ܻ௝ ൌ ଴ߚ ൅ ଵߚ ௜ܺ ൅ ௜௝ߝ ,  where  ௜ܻ௝  = methylation  value 

for CpG ݆ in  sample ݅; ܨ~ࢿሺ0, Σሻ for  some mean‐zero 
distribution F with covariance matrix Σ.  
 

(20) 

seqlm 
github.com/raivokol
de/seqlm 
 

Minimum  Description 
Length principle 

simple linear mixed model:  

௜ܻ௝ ൌ ଴ߚ ൅ ଵߚ ௜ܺ ൅ ௜ܷ ൅ ௜௝ߝ ,  where  ௜ܷ  is  the  sample 

random effect 
 

(19) 

       

Proposed in this study       
coMethDMR_simpl
e 
github.com/lissetteg
omez/coMethDMR 
 

CoMethAllRegions 
function  

simple linear mixed model:  

௜ܻ௝ ൌ ଴ߚ ൅ ଵߚ ௜ܺ ൅ ௜ܷ ൅ ௜௝ߝ ,  where  ௜ܷ  is  the  sample 

random effect 
 

 

coMethDMR_randC
oef 
github.com/lissetteg
omez/coMethDMR 
 

CoMethAllRegions 
function  

random coefficient mixed model:  

௜ܻ௝ ൌ ሺߚ଴ ൅ ܾ଴௝ሻ ൅ ሺߚଵ ൅ ܾଵ௝ሻ ൈ ௜ܺ ൅ ௜ܷ ൅ ௜௝ߝ  where 

௜ܷ  is  the  sample  random  effect; ሺܾ଴௝, ܾଵ௝ሻ௧~ܰሺ૙,  ሻࡳ
are random coefficients for intercepts and slopes; ࡳ is 
an unstructured covariance matrix. 

 

1  ௜ܺ ൌ phenotype (e.g. disease stage) for sample	݅;  
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Table 2 Differentially methylated regions associated with AD stages identified by coMethDMR.  
 

Region  Illumina 
Annotation 

GREAT Annotation 
(Distance from TSS) 

Estimate  StdErr  p‐Value  FDR 

method = coMethDMR_randCoef      

chr22:19709548‐19709755 
SEPT5; 
GP1BB 

GP1BB (‐816)  0.050  0.010  1.38E‐05  0.031 

chr2:241721922‐241722113  KIF1A 
KIF1A (37707); 
AQP12A (90756) 

0.031  0.007  1.42E‐05  0.031 

chr21:47855893‐47856020  PCNT 
DIP2A (‐23067); 
PCNT (111921) 

0.058  0.013  3.75E‐05  0.044 

chr7:27146237‐27146445  HOXA3  HOXA2 (0)  0.057  0.013  4.09E‐05  0.044 
        

method = coMethDMR_simple     

chr22:19709548‐19709755 
SEPT5;  
GP1BB 

GP1BB ( ‐816 )  0.050  0.010  3.79E‐06  0.015 

chr7:27153580‐27153636  HOXA3 
HOXA2 ( ‐11178 );  
HOXA3 ( 5606 ) 

0.072  0.015  6.85E‐06  0.015 

chr7:27146237‐27146445  HOXA3  HOXA2 ( ‐3911 )  0.057  0.012  1.28E‐05  0.018 

chr7:27185136‐27185512  HOXA6  HOXA5 ( ‐2037 )  0.033  0.007  1.79E‐05  0.019 

chr21:47855893‐47856020  PCNT 
DIP2A ( ‐23067 );  
PCNT ( 111921 ) 

0.058  0.013  2.52E‐05  0.022 

chr17:46698881‐46699073  HOXB9 
HOXB9 ( 4862 );  
HOXB8 ( ‐6676 ) 

0.042  0.010  4.23E‐05  0.030 

chr18:74799495‐74799572  MBP 
ZNF236 ( 263418 );  
MBP ( 45191 ) 

0.073  0.017  4.99E‐05  0.031 

chr17:74475240‐74475402  RHBDF2 
RHBDF2 ( 22168 );  
AANAT ( 25888 ) 

0.063  0.015  6.27E‐05  0.034 

chr17:3848156‐3848506  ATP2A3 
P2RX1 ( ‐28537 );  
ATP2A3 ( 19254 ) 

0.049  0.012  8.21E‐05  0.038 

chr7:27155002‐27155358  HOXA3 
HOXA2 ( ‐12750 );  
HOXA3 ( 4034 ) 

0.048  0.012  8.85E‐05  0.038 

chr16:29675846‐29676071  SPN 
SPN ( 1379 );  
QPRT ( ‐14399 ) 

‐0.055  0.014  0.000115  0.045 
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Fig 1Workflow of the coMethDMR analysis pipeline. 
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Fig 2 An example of contiguous co‐ methylated sub‐region. (A) This pre‐defined region (a CpG island) included 7 CpG probes 
ordered by their location. Shown are correlation between methylation levels in each pair of CpGs. Note that only the last 4 
probes constitute the co‐methylated region within this CpG island. (B) The CpGs in the co‐methylated sub‐region can be 
identified using the r.drop statistic, which is the correlation between each CpG with the sum of methylation levels in all other 
CpGs. In this example, all the co‐methylated CpGs had r.drop statistics greater than 0.5. 

(A) (B)
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Fig 3 Illustration – proposed random coefficient mixed model for testing methylation levels in a hypothetical genomic region 

with 2 CpGs against disease stage as a linear variable.  
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Figure 4: Optimal sensitivities and specificities for coMethDMR were achieved when the parameter rdrop is close 
to 0.4. 
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Figure 5: Optimal area under ROC curve (AUC) for coMethDMR was also achieved when the parameter rdrop is 
close to 0.4. 
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Fig 6 Type I error rates in the absence of differential methylation for different statistical models. Shown above the bars are 
proportions of CpG island genomic regions with p‐values less than 0.05, for association with randomly generated “age” 
from Poisson distribution with mean 65, average over 10,000 simulation datasets. Under the null hypothesis of no 
association, we expected p‐values to follow a uniform distribution, so methods that control type I error at nominal level 
would be close to the red line. 
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Fig 7 Power is improved when fitting simple linear mixed model and random coefficient mixed model to co‐methylated 
CpGs in genomic regions (coMeth_randCoef, coMeth_simple), compared to fitting the models to all CpGs in genomic 
regions. 
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Fig 8 Significant regions selected by random coefficient model showed less variations in individual CpG slope 
estimates (i.e. more homogeneous associations between individual CpG methylations and disease stage). We 
considered the top 10 most significant regions by each method. Each dot represents standard deviation of 
individual CpG slope estimates within a significant region selected by a particular method. 
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Fig 9 Trajectories of five individual CpGs. Each dot indicates the average methylation M value for all samples

available at a given disease stage. These averages are then median centered, to put all CpGs on the same

graph.
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Fig 10: Comparison of significant regions at 5% FDR selected by coMethDMR_simple with other 
unsupervised approaches (IMA_median, IMA_mean and Aclust_GEE). 
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Fig 11: Comparison of significant regions at 5% FDR selected by coMethDMR_randCoefwith other 
unsupervised approaches (IMA_median, IMA_mean and Aclust_GEE). 
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Fig 12: Comparison of significant regions at 5% FDR (or sidak pvalue) selected by coMethDMR_randCoef, 
coMethDMR_simple, and the supervised approach comb‐p. 
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