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ABSTRACT 

 
Identifying DNA cis-regulatory modules (CRMs) that control the expression 

of specific genes is crucial for deciphering the logic of transcriptional control. 
Natural genetic variation can point to the possible gene regulatory function of 
specific sequences through their allelic associations with gene expression. 
However, comprehensive identification of causal regulatory sequences in brute-
force association testing without incorporating prior knowledge is challenging 
due to limited statistical power and effects of linkage disequilibrium. Sequence 
variants affecting transcription factor (TF) binding at CRMs have a strong potential 
to influence gene regulatory function, which provides a motivation for prioritising 
such variants in association testing. Here, we generate an atlas of CRMs showing 
predicted allelic variation in TF binding affinity in human lymphoblastoid cell lines 
(LCLs) and test their association with the expression of their putative target genes 
inferred from Promoter Capture Hi-C and immediate linear proximity. We reveal 
over 1300 CRM TF-binding variants associated with target gene expression, the 
majority of them undetected with standard association testing. A large proportion 
of CRMs showing associations with the expression of genes they contact in 3D 
localise to the promoter regions of other genes, supporting the notion of 
‘epromoters’: dual-action CRMs with promoter and distal enhancer activity. 
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INTRODUCTION 
 
Identifying DNA cis-regulatory modules (CRMs) that control the expression of 

specific genes is crucial for deciphering the logic of transcriptional control and its 
aberrations. Advances of the last decade have made it possible to predict active CRMs 
based on chromatin features (1, 2) and detect the binding of dozens of TFs to these 
regions (3, 4). However, deletion of known or predicted CRMs often shows no 
observable phenotype, suggesting that some CRMs either lack appreciable gene 
regulatory function or are efficiently buffered by other sequences, at least under normal 
conditions (5–9). In addition, the sequence, chromatin state and genomic location of 
CRMs do not immediately provide information on their target genes (10). Therefore, 
evidence from complementary approaches is required to establish the function of 
specific CRMs in transcriptional control. 

Natural genetic variation can theoretically provide a direct indication of gene 
regulatory function by revealing the allelic associations between specific variants and 
gene expression (11, 12). While expression quantitative trait loci (eQTLs) identified this 
way have provided important insights into gene control and the mechanisms of specific 
diseases (13, 14), a number of challenges hamper comprehensive detection of 
functional sequences in 'brute-force' eQTL testing (15, 16). In particular, the immense 
search space leads to a heavy multiple testing burden resulting in reduced sensitivity. 
This problem is typically mitigated in part by testing for 'cis-eQTLs' separately within a 
limited distance window (~100kb); this distance range is, however, an order of 
magnitude shorter than that of known distal CRM activity (17–19). In addition, 
correlation structure arising from linkage disequilibrium (LD) requires disentangling 
causal from spurious associations, which is particularly challenging in the likely scenario 
when multiple functional variants with modest effects co-exist within the same LD block 
(20). These challenges provide a strong motivation for incorporating prior knowledge 
into association testing for identifying causal regulatory variants.   

The recruitment of transcription factors (TFs) to CRMs plays a key role in their 
regulatory function (21, 22), and mutations leading to perturbed TF binding are known 
to underpin developmental abnormalities and disease susceptibility (18, 23, 24). 
Therefore, sequence variation affecting TF binding affinity at CRMs has a strong 
potential to have causal influence on their regulatory function and can therefore provide 
insights into the logic of gene control. Variation in TF binding across multiple individuals 
has been assessed directly for several TFs (25–30), but high resource requirements of 
these analyses limit the number of TFs and individuals profiled this way. Alternatively, 
the effects of local sequence variation on TF binding can be predicted, at least in part, 
based on prior information regarding the TFs' DNA binding preferences. The 
representation of such preferences in the form of position weight matrices (PWMs) (31) 
has proven particularly useful, as it provides a quantitative measure of how much a 
given sequence substitution is likely to perturb TF binding consensus. Consistent with 
this, we and others have previously shown that the specificity of TF binding preferences 
to a given motif position correlates with the functional constraint of the underlying DNA 
sequences, both within and across species (32–34). Classic PWM-based approaches 
to TF binding prediction focused on identifying short sequences showing a non-random 
fit to the PWM model compared with background (35, 36). More recently, biophysical 
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modelling of TF binding affinity (37, 38) has provided a natural framework to extend 
this analysis by integrating over all PWM match signals within a DNA region (39, 40), 
including those from lower-affinity sites that are a known feature of many functional 
CRMs (41–43).   

Long-range CRMs such as gene enhancers commonly act on their target 
promoters through DNA looping interactions (44, 45). Therefore, information on three-
dimensional chromosomal organisation enables predicting the putative target genes of 
these elements (46, 47) and thus has the potential to significantly improve the functional 
interpretation of regulatory variation. Approaches that couple chromosome 
conformation capture with target sequence enrichment such as Promoter Capture Hi-
C (48–50) are particularly useful in this regard, as they make it possible to detect 
regulatory interactions globally and at high resolution with reasonable amounts of 
sequencing (51–59). 

Here we integrate TF binding profiles in a human lymphoblastoid cell line (LCL) 
(4) with patterns of natural sequence variation (60) to generate an atlas of CRMs 
predicted to show significant TF binding variability across LCLs derived from multiple 
individuals. We delineate the putative target genes of these CRMs from their 
interactions with gene promoters based on Promoter Capture Hi-C and linear proximity 
(49, 61), and test for associations between the CRMs’ TF-binding affinity and target 
gene expression using transcriptomics data for hundreds of LCLs (62). Prioritising 
CRMs that show predicted variation in TF-binding affinity based on a biophysical model 
(39, 40) makes it feasible to perform association analysis in a manner that accounts for 
multiple variants affecting the binding of the same TF, as well as for multiple CRMs 
targeting the same gene. Using this approach, we reveal over 1300 CRM variants 
associated with expression of specific genes, the majority of them undetected with 
conventional eQTL testing at a standard FDR threshold. We find that a large proportion 
of CRMs showing associations with the expression of distal genes localise in the 
immediate vicinity of the TSSs of other genes and connect to their targets via DNA 
looping interactions, suggesting their role as  ‘epromoters’: the recently identified dual-
action regulatory regions with promoter and distal enhancer activity (63–65). 

 
MATERIALS AND METHODS 

 
CRM definition 

ChIP-seq narrow peak files for 52 TFs in GM12878 were downloaded from the 
UCSC ENCODE portal (4). Where multiple datasets were available for the same TF, the 
intersect of the ChIP-seq peaks was taken for all TFs except ERG1, for which we took 
the union of the two datasets available, since one of them had substantially fewer peaks 
than the other. CRMs were defined by taking the union of the peaks for the 52 TFs with 
a minimum overlap of one base pair.  
 
Detection of TF binding affinity variants 

Variant calls for 359 LCLs of European ancestry (CEU, TSI, FIN, GBR, and IBS) 
that overlapped with the CRMs defined as above were downloaded from the 1000 
Genomes Project (release Phase 3; 20130502) (60). Multi-allelic variants and variants 
with a minor allele frequency < 5% were removed. Unique haplotypes (i.e., unique 
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combinations of SNPs/indels) were identified across the 359 LCLs individuals for each 
CRM. The GRCh37 genomic sequence for each CRM (accessed using the 
Bioconductor package BSGenome (https://doi.org/10.18129/B9.bioc.BSgenome) was 
then patched to create the sequence for each unique haplotype. 

For each TF detected as bound at a given CRM in GM12878 (based on ChIP-
seq data), we computed the affinity for each haplotype and each PWM for this TF 
available from ENCODE (66) using the TRAP biophysical model (39), as implemented in 
the R package tRap (https://github.com/matthuska/tRap). Default parameters were 
used, with the exception of setting pseudocount to zero, since we were using frequency 
as opposed to count matrices. We chose TRAP over a motif hit-based approach, as it 
naturally incorporates the effects of multiple low affinity sites and multiple variants per 
CRM.  

CRM binding affinities were normalised using a method proposed by Manke et 
al. (40), such that changes in them could be compared between different PWMs. Briefly, 
CRM affinities are converted to statistical scores (A) representing the probability of 
observing a given or higher affinity for a given TF in the background sequence (note that 
lower values of A therefore reflect higher affinities). Binding affinities are parameterised 
using the extreme value distribution whose parameters are estimated for a range of 
background sequences encompassing the lengths of all CRMs (40, 100, 200, 250, 300, 
400, 500, 800, 1000, 2000, 3000) using the fit.gev function in the the tRap R package. 
CRMs not bound by a given TF are cut/extended to the required length and used as 
background sequences.   

 For all CRM-TF/PWM combinations with A<0.1 in the highest-affinity allele of 
GM12878, we computed the log-fold change in affinity between all observed 
haplotypes and the highest-affinity allele of GM12878 for the given PWM: 
  

logFCA= log10(AALT) – log10(min(AGM12878)), 
 

where min(AGM12878) is the normalised affinity of the highest-affinity allele in GM12878 
cells, and AALT is the normalised affinity of the alternative haplotype. For instances where 
AALT or AGM12878 for a given PWM was zero, the lowest observed non-zero normalised 
affinity for that PWM across all CRMs was used instead. The logFCAs for multiple PWMs 
of the same TF were then combined by taking the median. Overall, this approach 
produced a single logFCA for each TF binding affinity haplotype at each CRM. We shall 
refer to this quantity as the “log-ratio” in the Results section.  
 
DNase I sensitivity QTL (dsQTL) analysis 

The dsQTL dataset from (67) lists significant associations between normalized 
DNase-seq read depth (binned in 100bp non-overlapping windows) and the genotypes 
of SNPs/indels within 1kb of the DHS in 70 Yoruban LCLs. We downloaded this dataset 
from Gene Expression Omnibus (accession number GSE31388), and converted it to 
GRCh37 using liftOver (68). For all CRMs with a predicted logFCA > 0 for at least one 
TF, the individual effect of all SNPs at the CRM on TF affinity was calculated. CRMs 
were then filtered for those, where the SNP causing the largest change in TF affinity 
(“driver SNP”) had a MAF<0.05 in the 70 individuals from (67). We then counted the 
number of overlaps between these CRMs and the 100bp DNase HS windows (minimum 
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overlap 1bp), repeating this for CRMs filtered according to successively larger logFCA 
thresholds. To estimate expected overlap, for each threshold, we randomly sampled a 
control set of CRMs 1000 times, matching the sample size and “driver” SNP allele 
frequency distribution to the test set at a given threshold, and overlapped this set with 
DNase HS windows in the same way as the test set.  

 
Linking of CRMs with target genes 

Promoter Capture Hi-C data for GM12878 were obtained from Mifsud et al. (49). 
Significant interactions were re-called at a HindIII restriction fragment level using the 
CHiCAGO pipeline (61), with a CHiCAGO score cutoff of five (CHiCAGO scores 
correspond to soft-thresholded, –log weighted p-values against the background 
model). Baits were annotated for transcriptional start sites (TSSs) using the bioMart 
package in R (69) based on Ensembl TSS data for GRCh37 reference assembly. Baits 
containing TSSs for more than one gene were excluded (4,178 out of 22,076), leaving 
17,898 baits in the analysis. CRMs were assigned to target promoters by overlapping 
with the promoter-interacting regions (PIRs) of significant interactions (“distal” CRMs). 
Restriction fragments immediately flanking the promoter fragment are excluded from 
Promoter Capture Hi-C analysis, creating a “blind window”. Therefore, we additionally 
called “proximal” CRMs using a window-based approach, assigning all CRMs located 
within within 9kb of the midpoint of the promoter-containing fragment to the respective 
promoter.  

 
Gene expression data processing 

We downloaded PEER-normalised (70) gene-level RPKMs for 359 EUR LCLs 
profiled in the GEUVADIS project (62) from ArrayExpress (71) (accession E-GEUV-3). 
The data were filtered to expressed genes by removing genes with zero read counts in 
>50% of samples. For expression association testing by linear regression, the PEER-
normalised residuals for each gene were further rank-transformed to standard normal 
distribution, using the rntransform function in the R package GenABEL (72). 

  
Association between TF binding affinity variants and gene expression: 
thresholded approach 

In this approach, we classified each predicted TF-binding affinity CRM 
haplotype as either “high” or “low” affinity based on a threshold. In some instances, 
however, using a hard threshold to classify alleles can result in alleles with very similar 
log-fold affinity changes being differentially classified, which can obscure true affinity-
expression associations. To avoid this, we used a dynamic thresholding approach, 
where for each affinity variant we set the threshold logFCA0 to 80% of the value of the 
85th percentile of variants less than or equal to the hard threshold of -0.3. All alleles with 
logFCA <= logFCA0 were taken as low affinity. Alleles with either logFCA > logFCA0/4 
(for  logFCA0/4 > -0.3) or logFCA > -0.3 were taken as high affinity. Note this resulted in 
some alleles classified as neither high nor low affinity. Individuals containing at least 
one unclassified allele for a given TF/CRM were excluded from the testing for the 
respective association (the number of individuals tested for each association is listed in 
Table S1).  
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A regression model was then fitted using TF-binding affinity CRM haplotypes as 
predictors of the expression level of their target genes (presented in terms of normalised 
PEER residuals). Suppose that a gene is targeted by K predicted TF-affinity CRM 
variants, denoted as X = (X1, X2,…, XK,), which are encoded as the number of copies of 
the low affinity allele carried by each individual. The regression model is fitted as follows: 

 
E[Y] = β0 + β1X1 + β2X2 +  ⋯  + βKXK, 

 
where E[Y] is the expected value of the normalised PEER residuals Y. Where multiple 
predicted TF affinity CRM variants targeting a given gene were in perfect correlation 
(|β|>0.99), they were collapsed into a single predictor.  

ANOVA was used to test the overall significance of each regression model, with 
multiple testing correction performed on the gene-level p-values by FDR estimation. For 
genes showing significant associations in models with multiple TF binding affinity 
variants as predictors, t-tests were performed to identify variants with regression 
coefficients significantly different from zero. Variants with unadjusted coefficient-level 
p-values<0.05 were taken to be significantly associated with target gene expression, 
conditional on significant gene-level association at 10% FDR.    

 
Association between TF binding affinity variants and gene expression: threshold-
free approach 

In this approach, we performed multiple regression using PEER expression 
residuals for each gene as the response variable, this time using the sum of logFCA 
across both alleles for each individual for each TF affinity CRM variant as predictors 
instead of thresholded CRM haplotypes. For each gene, all distal and proximal CRMs 
with logFCA > 0 were included. As with the thresholded approach, ANOVA was used 
to test the significance of each gene model, and genes showing associations at 10% 
FDR were considered significant. 

Due to high collinearity among the predicted affinity changes, to identify 
specific CRM variants significantly associated with target gene expression we used 
elastic net regression for each significantly associated gene (λ2=0.5). The significance 
of each predictor as it entered the model was then tested using a method by Lockhart 
et al. (73) and implemented in the covTest R package (https://cran.r-
project.org/src/contrib/Archive/covTest/covTest_1.02.tar.gz). Variants that entered the 
model with p<0.05 and remained in the model were taken as significant. 

 
eQTL fine-mapping 

We fine-mapped eQTL causal variants in the LCL expression data within a 
window of +/-200kb of each CRM using a Bayesian stochastic search method that 
allows for multiple causal variants, GUESSFM (https://github.com/chr1swallace/ 
GUESSFM) (74). This requires a prior on the number of causal variants per region, 
which we set as Bin(n,2/n) where n is the number of variants in the fine mapping 
window. This setting gives a prior expectation of 2 causal variants per region but allows 
all values from 0 to n. We visually checked traces to ensure the MCMC samples had 
converged. Raw GUESSFM data have been uploaded to OSF (https://osf.io/e5vsh/). 
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To estimate the proportion of possibly causal eQTLs identified by GUESSFM 
(marginal posterior probability of inclusion [mppi]>> 0.001) among the TF-binding 
affinity variants showing the strongest eQTL signal per CRM (“test SNPs”), we 
compared it with the same proportion obtained for “random SNPs”. The “random 
SNPs” were sampled from the same +/-200kb windows around CRMs, matching the 
distribution of their minor allele frequencies to that across the “test SNPs”. 

 
Causal variant colocolisation analysis 

An association between an epromoter variant and the expression of both a 
proximal and a distal gene may indicate that this variant is causal for the expression of 
both genes. However, the same association may arise from distinct causal variants for 
each gene that are in LD with each other and are tagged by the same epromoter variant. 
To differentiate between these situations, we used the Bayesian colocalisation technique 
coloc (75). Coloc evaluates the posterior probabilities of five mutually exclusive 
hypotheses: no association of any variant in the region with either trait (H0), association 
with first trait but not the second (H1), association with second trait but not the first (H2), 
two separate causal variants (H3), and, finally, a unique shared causal variant (H4). 
Coloc assumes at most one casual variant per locus. To mitigate this limitation, where 
there was evidence for multiple causal variants, we tested for colocalisation between all 
pairs of signals for each gene, by conditioning out the other signals. Coloc has also been 
originally designed for testing two sets of associations measured on different individuals. 
Therefore, before running it on the data measured in the same individuals (i.e., the 
expression of the proximal and distal gene across the 359 CEU LCLs) we confirmed by 
simulation that for a quantitative trait the results appear robust to correlated errors 
(Figure S1). 

 
RESULTS 

 
An atlas of CRMs with predicted variation in TF binding affinity in LCLs 

We used the ChIP-seq binding profiles of 52 TFs profiled by the ENCODE project 
(4) in GM12878 LCL to define 128,766 CRMs in these cells, merging across overlapping 
ChIP regions for multiple TFs (Figure 1). Just over half (55%) of CRMs defined this way 
were bound by more than a single TF. For 41/52 TFs with known PWMs, we then used 
a biophysical model (39) to estimate their binding affinity to each allele of each CRM in 
GM12878, pooling information across multiple PWMs for the same TF where available 
(see Materials and Methods). To enable the comparison of binding affinities between 
different TFs, we expressed them relative to the respective ‘background’ affinities using 
an approach based on the generalised extreme value distribution (40) (see Materials 
and Methods for details).  

We next asked how natural genetic variation at CRMs affects their TF-binding 
affinity. For this, we took advantage of the genotypes of an additional 358 LCLs also 
derived from European-ancestry individuals that are available from the 1000 Genomes 
project (60). We then calculated a TF affinity log-ratio between each alternative 
haplotype and the highest-affinity haplotype of GM12878 (Figure 1; see Materials and 
Methods). Overall, 38,804 CRMs had one or more alternative haplotypes with predicted 
changes in binding affinity for at least one TFs (affinity log-ratios ranging between -12.9 
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and 13.17). We have made the full atlas of TF-binding CRM variants publicly available 
at https://osf.io/fa4u7. 

 
CRMs showing TF-binding variation are enriched for chromatin accessibility 
variants  

TF binding is known to associate with increased chromatin accessibility. 
Therefore, to validate our predicted changes in TF-binding affinity, we took advantage 
of a published study (67) that profiled chromatin accessibility across 70 LCLs using 
DNase-seq and identified ~9,000 significant associations between DNase-seq signal 
and genotype (“DNase I sensitivity QTLs”, dsQTLs). If our predicted TF affinity variants 
reflected real changes in TF binding affinity, we would expect them to show enrichment 
at regions of differential chromatin accessibility. To verify this, we quantified enrichment 
of differential chromatin accessibility at sets of CRMs showing predicted TF affinity 
variation above successively larger thresholds. As can be seen from Figure 2, CRMs 
with non-zero differences in TF-binding affinity across LCLs showed a significant 
enrichment at differential DNAse I sensitivity regions compared with a matched random 
set of CRMs (permutation test p<0.001, see Materials and Methods for details). 
Moreover, this enrichment increased with the magnitude of the predicted affinity change 
(Figure 2). These results provide direct functional evidence that our approach 
adequately predicts changes in TF binding associated with genetic variation. It should 
be noted that the observed overlap in absolute terms is likely underestimated, due to 
the relatively limited DNase-seq sequencing depth and sample size in the available 
dataset (67).  

 
Variation in TF binding affinity at CRMs associates with target gene expression  

To identify quantitative associations between TF binding variation at CRMs and 
the expression of their target genes, we used genome-wide gene expression data from 
the GEUVADIS project (62) that included 358/359 of the LCLs used in our analysis (with 
the exception of GM12878). In contrast to traditional eQTL testing, here we devised an 
approach that prioritises TF-binding variants and their putative target genes a priori and 
performs testing at the CRM level. In total, we selected 3,285 CRMs with predicted 
variation in the binding for at least one TF (log-ratio > 0.3). We then tested the 
association of each CRM haplotype with the expression levels of their target genes 
defined on the basis of 3D interactions or close spatial proximity (within 9kb; see 
Materials and Methods). As evidence of 3D promoter-CRM interactions, we used high-
resolution Promoter Capture Hi-C (PCHi-C) data in GM12878 cells (49, 61). The highly 
reduced search space has enabled testing for associations at the gene level, with all 
CRMs targeting the same gene and showing TF-binding variation included into the 
regression model (see Materials and Methods). This approach identified 245 “eGenes” 
with significant associations between predicted TF-binding affinity at CRMs and gene 
expression (16% of 1530 genes tested, at 10% FDR; Table S1). In total, 161 “proximal” 
(within 9 kb) and 101 “distal” TF-CRM affinity variants (with contacts detected by PCHi-
C) were found to underlie these associations, corresponding to 26% and 6% of all 
variants tested, respectively (t-test p-value <0.05; Table S1). Figure 3 shows an example 
of the detected association between the expression of KLF6 and variation in the binding 
affinity of BATF transcription factor at a distal CRM that is located 88 kb away from 
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KLF6 promoter and contacts it in 3D according to PCHi-C (gene-level FDR=1.21x10-2, 
BATF variant p-value=5.16x10-4, effect size=0.26). Individuals homozygous for the high-
affinity BATF binding allele showed the lowest levels of KLF6 expression, while those 
homozygous for the low-affinity BATF binding alleles showed the highest levels (Figure 
3). This suggests that BATF acts as a negative regulator of KLF6 expression, consistent 
with its known role as a repressor of AP-1-dependent transcriptional activity (76).  

A total of 420/1530 genes (27%) were linked with multiple predicted TF-binding 
variants (either for different TFs bound at the same CRM or at different CRMs). For 16 
of these genes, we detected significant associations between more than one such 
variant and the expression level. One example is the nuclear receptor gene NR2F6 
whose expression significantly associated with predicted variation in the binding 
affinities of SMC3 and SRF to distal CRMs located, respectively, 41 kb and 19 kb away 
(Figure 4; gene-level FDR = 4.06x10-7, SMC3 effect size=0.26, p-value=3x10-4; SRF 
effect size=0.61, p-value=1.19x10-7).  

Owing to the a priori prioritisation of variants for association testing in our 
approach (i.e., testing only variants predicted to impact TF binding), we carried out far 
fewer association tests than in a standard eQTL analysis, thus reducing the multiple 
testing burden and increasing sensitivity. We therefore asked if we were able to detect 
additional associations compared with those reported for a standard eQTL analysis 
performed by the GEUVADIS project (note that this analysis also used an additional 103 
LCLs not included in our study, which were either of non-European ancestry or not 
genotyped in 1000Genomes). To compare our CRM-based association results to 
GEUVADIS eQTL SNPs, we identified the SNP causing the largest change in affinity for 
the respective TF at each CRM (192 eQTL SNPs in total at 5% FDR to match the FDR 
level used by GEUVADIS). Of these, 78 SNPs (42%) were detected as significant by 
GEUVADIS. Therefore, the remaining 114/192 (58%) eQTL SNPs identified in our 
approach corresponded to not previously reported associations. 

 
Threshold-free testing based on TF-binding affinities reveals further expression 
associations 

The analysis above was performed broadly within the conventional paradigm of 
eQTL testing, whereby expression was compared across three diploid genotypes (two 
homozygous and one heterozygous), except that these genotypes corresponded to 
cases whereby variation was predicted to appreciably disrupt TF binding based on a 
predefined threshold (we shall refer to this approach as “thresholded”). However, since 
TF-binding affinity haplotypes were defined at the CRM level, more than two alleles 
were commonly observed per CRM (in 12-100% cases depending on the TF). In the 
thresholded approach, we pooled multiple alleles into either “high-affinity” or “low-
affinity” haplotypes and disregarded outliers (see Materials and Methods). We 
reasoned, however, that is it also possible to regress gene expression against 
normalised TF-binding affinities directly without thresholding and haplotype pooling, 
leading to increased precision and sensitivity of association testing. As expected, this 
threshold-free approach revealed a considerably larger number of genes significantly 
associated with CRM affinity variants (1033 at 10% FDR compared with 245 detected 
in the “thresholded” approach above).  
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 One challenge arising in the threshold-free approach is that it leads to many 
more binding variants tested for each gene (both within the same CRM and across 
CRMs) that are often in linkage disequilibrium (LD) with each other, leading to 
collinearity in the regression models. Therefore, to detect significant associations at 
CRM level, we performed elastic net regression for each of the 895/1033 identified 
eGenes that were targeted by multiple CRMs with predicted TF binding variants. To 
ascertain the significance of regression coefficients in elastic net regression, we used a 
covariance test for adaptive linear models (73), identifying 1328 significant CRM-gene 
associations for the 895 eGenes tested (Table S2; see Materials and Methods for 
details). One example of a newly identified association is between a nucleotide 
transporter gene SLC29A3 and the binding affinity of SIN3A at a CRM overlapping with 
the TSS of SLC29A3 (gene-level FDR=1.60x10-4). Five alternative SIN3A binding affinity 
haplotypes were observed across the 358 LCLs, with log fold-changes in affinity for 
SIN3A ranging from -0.037 to 0.001 (elastic net effect size=-0.14, p-value ~ 0; Figure 
5A).  
 
TF-binding affinity variants are highly enriched for fine-mapped causal eQTLs 

We asked what proportion of TF-binding variants showing association in our 
analysis could be fine-mapped as causal purely based on the pattern of association 
signals in their vicinity, without a priori prioritisation and pooling of variants per CRM. 
To this end, we supplied genotype information for +/-200 kb windows around the CRMs 
with detected associations and the respective gene expression data to GUESSFM, a 
Bayesian fine-mapping approach that accounts for possible multiple causal variants per 
locus (74). GUESSFM identified at least one causal variant in ~38% of the analysed 
CRMs (1807/4718); associations in the remaining CRMs likely could not be fine-mapped 
due to a lack of statistical power. In ~30% (548/1807) of CRMs with successful fine-
mapping, the TF binding variant showing the strongest association per CRM was 
ranked as possibly causal (marginal posterior probability of inclusion [mppi] >> 0.001), 
and in the majority of such cases (477/548) this variant was also ranked by GUESSFM 
among the top five highest-scoring variants in the window (Table S3 and Fig 5B and C 
for examples). In contrast, just 2.6% (48/1807) random variants within the same 
windows (matched by allele frequency) were detected as potentially causal by 
GUESSFM, corresponding to a very significant enrichment of fine-mapped variants for 
those affecting TF binding (Fisher test p=10-126).  

 
Many CRMs associated with distal gene expression show features of epromoters 

We noted that a large number of distal CRMs showing association between TF 
binding affinity and target gene expression (224 CRMs, 243 TF-CRM variants; Table S4) 
and connecting to the distal gene promoters in 3D based on PCHi-C also mapped in 
close proximity (within 200 bp) of the TSS of either one or more other genes (165 and 
59 CRMs, respectively, and 284 eGenes; note that the number of eGenes is greater 
than that of CRMs due to some CRMs mapping in close proximity of multiple TSSs). 
The absolute majority (87%) of these CRMs localised within chromatin segments with 
the characteristic features of gene promoters (Figure 6A). Taken together, this 
suggested that some promoter regions might act as distal regulatory regions of other 
genes, whose promoters they physically contact. This class of CRMs with dual 
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promoter and activity were independently identified in two recent studies (63, 64). We 
shall follow Dao et al. (63) in referring to these CRMs as ‘epromoters’.  

Most genes located in the immediate vicinity of the identified epromoters were 
appreciably expressed in LCLs (232/284, 82%). However, TF-binding variation at nearly 
two-thirds of epromoters whose proximal gene was expressed (139 variants, 64.7%; 
see Table S2) showed detectable association with a distal gene alone in independent 
tests (assessed with the threshold-free approach). For example, variation in ELF1 
binding affinity at a CRM that shows promoter-associated chromatin marks and 
localises within 200 bp from the TSS of CLOCK gene does not affect CLOCK 
expression. Instead, it associates with expression of SRD5A3 located 198 kb away, 
whose promoter it contacts in 3D as detected by PCHi-C (Figure 6B; SRD5A3: gene-
level FDR = 3.33x10-21, ELF1 elastic net p-value=0, ELF1 elastic net beta = -0.21; 
CLOCK: gene-level FDR = 0.88).  

The remaining 76 TF-epromoter CRM variants showed associations between 
with the expression levels of both distal and proximal genes. To obtain formal evidence 
that these associations were indeed driven by the same variant and not by different 
variants in LD with each other, we used colocalisation analysis (75), while accounting 
for multiple independent associations (see Materials and Methods). We submitted to 
this analysis the most tractable subset of 7 epromoters, for which the association of the 
respective TF-binding variant with distal gene expression was independently confirmed 
by fine-mapping (GUESSFM mppi>0.001). At 6/7 analysed epromoters, we found 
prevailing evidence of shared association signals for both proximal and distal gene 
(pH4>0.66; Table S5). An example of such high-confidence shared signal is variation in 
EGR1 binding affinity in the epromoter of lncRNA RP11-71F7.7 that associates with the 
expression of both RP11-71F7.7 and another gene, IRF2BPL (Fig. 6C). The promoters 
of these two genes, transcribed in a convergent orientation, are approximately 69 kb 
apart and contact each other in 3D as detected by PCHi-C.  

Taken together, our findings confirm long-range transcriptional regulation by 
epromoters and suggest that regulatory variants within these elements may have both 
shared and independent effects on the expression of their proximal and distal target 
genes. 
 
DISCUSSION 
 

In this study we have generated an atlas of CRM variants predicted to affect TF 
binding in LCLs and established their associations with the expression of their target 
genes identified on the basis of 3D chromosomal interactions or immediate spatial 
proximity. Notably, we found that many TF binding variants showing associations with 
distal gene expression localise to the promoters of other genes, providing additional 
support for the recently characterised class of “epromoter” regulatory elements (63, 64). 

We previously reported a collection of TF binding variants for ENCODE-profiled 
TFs based on 1000 Pilot data (179 individuals) (32). The atlas of binding variants 
generated in this study is based on a more than two-fold larger sample of EUR 
individuals from 1000 Genomes release. Importantly, in this study we also used a 
biophysical model (39) that aggregates TF binding affinities across the whole CRM to 
increase sensitivity. This in contrast to our previous work (32) and other published 
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resources such as Haploreg (77) and SNP2TFBS (78) that is based on detecting 
individual PWM motif matches within each region of interest. Our current approach, 
however, still relies on PWMs to estimate affinities at each sequence window. While this 
is a straightforward strategy that produces readily interpretable results, it has several 
limitations. First, conventional PWMs may not adequately describe the binding 
preferences of some TFs, leading to either overfitted or overly degenerate models. For 
such TFs, k-mer-based approaches to modelling sequence consensus (79) or models 
incorporating dependencies between motif positions (80–82) may be more appropriate. 
In addition, it was recently shown that modelling DNA shape may aid binding prediction 
for some TFs with seemingly degenerate sequence preferences (83). Moreover, even 
for TFs whose binding can be modelled by PWMs reasonably well, variants affecting 
their binding in vivo may be based outside of the immediate binding consensus, 
possibly due to cooperative effects (25, 26, 30). At the expense of interpretability, this 
problem can be mitigated by using machine learning models such as DeFine (84) and 
DeepSEA (85), with the latter approach employed in a recent study investigating impact 
of regulatory variants on gene expression (86). Alternatively, effects on TF binding can 
be obtained directly from allele-specific or multi-individual TF binding data (25–28, 30, 
87).  

To identify the putative target genes of remote regulatory variants, we have 
capitalised on Promoter Capture Hi-C (PCHi-C) - a high-resolution technique for global 
chromosomal interaction profiling (48–50). Our approach is based on the classic model 
of long-range transcriptional control that necessitates physical contacts between 
enhancer elements and their target promoters through DNA looping (44, 45), which has 
been validated by a number of approaches, most recently by in vivo imaging (88–90). 
However, recent evidence suggests that at least some regulatory regions may exert 
action on their target promoters without coming into proximity with them (91, 92). 
Alternative methods of assigning the target genes of regulatory regions, such as those 
based on correlated chromatin activity of promoters and enhancers (20, 93–96) may 
account for the effects of these regions. Emerging high-throughput functional screens 
of cis-regulatory activity (8, 9, 64, 97) are proving to be instrumental for direct functional 
validation of enhancer targets identified with either approach.  

In our study, we restricted the analysis to CRMs with predicted variation in TF 
binding and their putative proximal and distal target genes, which has considerably 
reduced multiple testing burden and made it possible to combine the effects of multiple 
polymorphisms within the same CRM based on TF binding models. This analysis 
framework has yielded highly sensitive and interpretable associations for pre-selected 
loci. However, owing to its selective nature, it is by no means a substitute to 
conventional association testing. Theoretically, the effects of nucleotide variants on TF 
binding can also be incorporated as a prior in global association analyses such as fgwas 
(98), and have already been used in eQTL fine-mapping (99). We have previously 
confirmed that promoter-interacting regions are strongly enriched for eQTLs of the 
physically connected distal genes (51). An optimal statistical framework for 
incorporating 3D interaction data into eQTL testing is, however, yet to be established.    

Our finding that polymorphic TFBSs at distal CRMs show gene expression 
associations less frequently compared with proximal regions is consistent with the high 
degree of redundancy of long-range regulatory elements (5–7, 100, 101). Predicting the 
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extent of buffering of regulatory variation for a given CRM with a reasonable precision 
is an important problem that is currently highly challenging due to the sheer number of 
parameters and the relatively small sample sizes of multi-individual expression 
datasets. Profiling gene expression in the emerging much larger genotype panels such 
as UK10K (102) may provide opportunities for addressing this question.  

We observed that a large proportion of CRMs showing associations with the 
expression of physically connected distal genes localised in the promoter regions of 
other genes. This provides additional evidence to the recently characterised class of 
“epromoters”: elements with a dual proximal and distal activity that were discovered on 
the large scale using high-throughput reporter and CRISPR knockout screens (63–65). 
Empirically, chromosomal interactions between epromoter CRMs and their distal 
targets fall into the category of promoter-promoter interactions. Until recently, these 
interactions have been viewed primarily in the context of coordinated gene activation 
or repression (103–105), such as that observed in Hox and histone clusters (103, 106). 
That some promoter-promoter contacts reflect epromoter-distal target gene 
relationships suggests that these contacts may show functionally and possibly even 
structurally distinct properties.  

We show that TF-binding variation at epromoters may or may not co-associate 
with the expression of both proximal and distal genes at the same time. Shared 
association is consistent with the findings from massively parallel reporter assays that 
the same sequences are often involved in mediating both promoter and enhancer 
activity in vitro (107). It is possible that some non-shared effects observed in our study 
in vivo are underpinned by the role of the affected TFs in mediating long-range contacts. 
Additionally, epromoter elements may show different degrees of redundancy with 
respect to the proximal and distal target gene.  

Overall, our analysis demonstrates the potential of model-based prioritisation 
and pooling of variants a priori of testing for increasing the sensitivity of identifying 
individual associations and revealing their shared biological properties.  
 
DATA AVAILABILITY 
 
The list of the detected TF affinity CRM variants, the full data on CRM variant – gene 
expression associations and the raw output of GUESSFM fine-mapping have been 
uploaded to Open Science Framework (https://osf.io/fa4u7/).  
 
SUPPLEMENTARY DATA 
 
Figure S1. Suitability of the association signal colocalisation algorithm for analysing 
pairs of signals within the same dataset.    
 
Table S1. Significant associations between TF-binding affinity CRM variants and 
target gene expression identified with the thresholded approach. 
 
Table S2. Significant associations between TF-binding affinity CRM variants and 
target gene expression identified with the threshold-free approach. 
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Table S3. Posterior probabilities of the prioritised TF-binding affinity eQTLs being 
causal estimated by GUESSFM fine-mapping algorithm. 
 
Table S4. A list of epromoters with detected TF-binding affinity variation. 
 
Table S5. Association signal colocalisation analysis for the proximal and distal target 
genes of selected epromoters.  
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FIGURES AND LEGENDS 
 

 
 
Figure 1. Definition of TF binding affinity variants. (A) TF ChIP-Seq data for 52 TFs profiled 
by the ENCODE project (4) in GM12878 are used to define CRMs, merging across overlapping 
ChIP regions for multiple TFs. Here ChIP seq regions for four TFs are depicted by different 
coloured rectangles. (B) Using variants from the 1000 Genomes Project, unique haplotypes for 
each CRM across the 359 LCLs  are identified, including the haplotype/s of GM12878. (C)  For 
each TF bound at the CRM in GM12878, ENCODE PWMs for the given TF are used to predict 
the normalised binding affinity for each unique haplotype (note that lower affinity values reflect 
higher affinities). The log fold affinity change between the highest affinity haplotype of GM12878 
and each alternative haplotype is computed for each PWM and for each haplotype/TF the 
median log fold affinity change across all PWMs belonging to the given TF is taken (here only 
one PWM per TF is depicted).   
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Figure 2. TF binding affinity variants are enriched at regions showing variation in DNase I 
hypersensitivity. The proportion of CRMs with log fold affinity changes over a range of thresholds 
that overlap with differential DNase I hypersensitivity (HS) sites (identified as dsQTLs in ref. (67)) 
are depicted by red squares. CRMs were filtered to those where the SNP driving the affinity 
change has a MAF > 5% in the 70 YRI individuals. The mean proportion of randomly sampled 
CRMs that overlap with differential DNase I HS sites across 1000 permutations are shown in blue, 
with the grey ribbon showing the range where 90% of the permuted values (number of overlaps) 
lie. For each threshold the control sets of CRMs were matched in sample size and “driving” SNP 
allele frequency distribution to the number and allele frequency distribution respectively of the 
predicted affinity variants over the corresponding threshold.   
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Figure 3. Example of association between a TF-binding affinity CRM variant and gene 
expression. (A) Genome browser representation of the distal interactions (pink arches) of KLF6 
promoter in the LCL GM12878, as detected by Promoter Capture Hi-C (49). Two out of the three 
fragments interacting with KLF6 are shown; the third fragment, which is located 850kb away from 
the KLF6 promoter and contains the gene LINC00705, was omitted due to space constraints. 
Genome segmentation tracks for GM12878 are shown (108). CRMs at the two distally interacting 
fragments and TSS-proximal window are depicted in azure blue. The far-right CRM, which interacts 
with the KLF6 promoter 88kb away, is predicted to impact BATF binding affinity across the 359 
LCLs. (B). Boxplot showing the association in LCLs between mRNA levels (as measured with 
RNA-seq by the GEUVADIS consortium) and predicted BATF affinity CRM haplotype. KLF6 
expression is significantly associated with BATF binding type (gene level FDR adjusted p-
value=1.21x10-2, BATF variant p-value= 5.16x10-4 , effect size=0.26). 
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Figure 4. Example of a multi-variant association between TF binding affinity at CRMs and 
their target gene expression. (A) Genome browser representation of NR2F6 promoter distal 
interactions (represented by pink arches) as detected by promoter capture Hi-C (49) in LCL 
GM12878. The genome segmentation track for GM12878 based on chromHMM (108) is also 
shown. CRMs at the distally interacting fragments (pale blue) and NR2F6 TSS-proximal window 
are depicted in azure blue. The distal fragment downstream of NR2F6 contains two predicted 
affinity variant CRMs: one 44kb away from the NR2F6 promoter and the other 19kb away, 
predicted to impact SMC3 and SRF binding affinity respectively across the 359 LCLs.  
(B) Association between NR2F6 mRNA levels and predicted SMC3 and SRF affinity haplotypes.  
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Figure 5. Threshold-free approach for detecting TF binding affinity variant associations with 
gene expression and validation using GUESSFM. (A) Association between log fold affinity 
change in CRM affinity for SIN3A relative to the highest affinity allele of GM12878 and mRNA level 
(normalised PEER residuals) of the connected gene, SLC23A (gene level FDR adjusted p-
value=1.60x10-4, beta=–0.14). (B) Examples of loci, whereby the SNP predicted to have the 
strongest impact on a CRM’s binding affinity for a given TF has been fine-mapped as a potentially 
causal variant driving the locus’s association with the expression of a physically connected target 
gene (GUESSFM marginal posterior probability of inclusion [mppi]>>0.001). Left panel: eGene: 
MB21D2; eQTL rs2886870, predicted to affect NFKB binding affinity. Right panel: eGene: PIEZO2; 
eQTL rs1255452, predicted to affect TCF12 binding affinity. See insets for the effects of the SNPs 
on the respective TF PWMs.       
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Figure 6. TF-binding affinity variants highlight transcriptional regulatory effects of 
epromoters. (A) Barplot showing the proportion of  distal CRMs showing association between TF 
binding affinity and target gene expression that map in close proximity (within 200 bp) of another 
genes TSS overlapping each genome segmentation category (108) for GM12878. (B) Genome 
browser representation of the distal interactions detected by promoter capture Hi-C (49) for 
SRD5A3, with CRMs identified at each fragment as well as the proximal window depicted in light 
blue. The genome segmentation track for GM12878 based on chromHMM (108) is also shown. 
Enlarged view of an interacting fragment containing three CRMs, one of which harbours variants 
predicted to impact ELF1 binding affinity and overlaps with the promoter of CLOCK. (B) The 
association between logFC in CRM affinity for ELF1 relative to the highest affinity allele of 
GM12878 and mRNA level (normalised PEER residuals) of SRD5A3 and CLOCK. (C) 
Colocalisation analysis showing shared association between epromoter-located SNP rs12889775 
and the expression of both its distal and proximal genes (IRF2BPL, top; and lncRNA 
RP11−7F17.7, bottom, respectively); Posterior probability of shared association estimated by the 
coloc software pH4=0.997. This SNP is predicted to affect the epromoter’s binding affinity for EGR1 
(see inset).      
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