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Abstract 

RNA-sequencing (RNA-seq) analysis of gene expression and alternative splicing should be 

routine and robust but is often a bottleneck for biologists because of different and complex 

analysis programs and reliance on skilled bioinformaticians to perform the analysis. To 

overcome these issues, we have developed the “3D RNA-seq” App, an R shiny App which 

provides an easy-to-use, flexible and powerful tool for the three-way differential analysis: 

Differential Expression (DE), Differential Alternative Splicing (DAS) and Differential Transcript 

Usage (DTU) of RNA-seq data. The full analysis is extremely rapidand can be done within 

hours. The program integrates Limma, a state-of-the-art, highly rated differential expression 

analysis tool and adopts best practice for RNA-seq analysis. It runs the analysis through a 

user-friendly graphical interface, can handle complex experimental designs, allows user 
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setting of statistical parameters, visualizes the results through graphics and tables, and 

generates publication quality figures such as heat-maps, expression profiles and GO 

enrichment plots. The utility of 3D RNA-seq is illustrated by analysis of Arabidopsis and mouse 

RNA-seq data. The program is designed to be run by biologists with minimal bioinformatics 

experience (or by bioinformaticians) allowing lab scientists to take control of the analysis of 

their RNA-seq data. 

 

Introduction 

RNA-seq is generally considered the method of choice to analyse gene expression but is often 

a source of frustration for experimental biologists. Analysis of RNA-seq data for most biologists 

is a bottleneck because of reliance on the skills of often over-stretched bioinformaticians who 

are needed to process large datasets and apply complex analytical programs to experimental 

data. Many RNA-seq differential analysis programs do not have the flexibility to handle 

complex experimental designs (such as time-course or developmental series data) and are 

error prone (Love et al., 2014; Hardcastle and Kelly, 2010; Anders et al., 2012; Nowicka and 

Robinson, 2016). Results can be inconsistent due to the use of multiple different combinations 

of tools or pipelines by different bioinformaticians. In addition, despite the ever-increasing 

appreciation that alternative splicing (AS) is an important level of post-transcriptional 

regulation, most RNA-seq analyses still focus on the gene expression level thereby losing 

important information. RNA-seq data, however, contains information that allows the 

quantification of expression of individual genes and transcripts and the detection of alternative 

splicing. The availability of programs such as Salmon (Patro et al., 2017) and Kallisto (Bray et 

al., 2016) to quantify transcript and gene level expression accurately and rapidly, allows 

transcript level analyses to be both feasible and routine.  

 3D RNA-seq is an interactive web application tool for RNA-seq analysis that is 

implemented using the R Shiny App. It is developed to carry out a) differential expression (DE) 

analysis of genes and transcripts; b) differential alternative splicing (DAS) and isoform switch 

(IS) analysis and c) differential transcript usages (DTU) for RNA-seq data, thus 3D RNA-seq. 

The definitions of DE, DAS, DTU and IS are explained in Figure 1. The program integrates the 

state-of-the-art, highly rated differential expression analysis tool, Limma (Ritchie et al., 2015; 

Law et al., 2014), and adopts current best practice for RNA-seq analysis. It also integrates 

downstream analysis steps and programs to deliver analyses such as up- and down-regulation 

of differentially expressed genes, differentially alternatively spliced genes and isoform switch 

analysis (Figure 2) (Sebestyén et al., 2015; Guo et al., 2017). 3D RNA-seq can be used 

regardless of the type of sample or species under investigation, it can handle complex 

experimental designs and standardizes the analysis process. An easy-to-use graphical 

interface takes users through the different steps of the analysis, visualizes the intermediate 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2019. ; https://doi.org/10.1101/656686doi: bioRxiv preprint 

https://doi.org/10.1101/656686


3 
 

and final results through graphics and tables, and generates publication quality figures such 

as heat-maps and expression profiles. The input to 3D RNA-seq is a set of transcript 

quantifications in transcripts per million (TPM) generated by rapid and accurate alignment-free 

programs, currently Salmon (Patro et al., 2017) or Kallisto (Bray et al., 2016). The data is pre-

processed by generating standardised read counts, it is then adjusted by removing low 

expressed transcripts and batch effects, followed by data normalisation to reduce technical 

variances. Then, 3D RNA-seq sets up statistical models with the user specifying experimental 

factors, comparisons (contrast groups) and parameters, runs the analysis and generates a full 

report. In a typical analysis, transcript quantification takes up to two days, and the differential 

expression analysis and report generation using 3D RNA-seq takes a few hours (3-Day RNA-

seq). There are five main advantages of 3D RNA-seq: 1) accessibility, ease-of-use and 

flexibility in setting cut-offs and parameters allows experimental biologists to control the 

analysis of their own data, 2) acceleration of RNA-seq analyses, 3) ability to handle complex 

experimental designs, 4) transcript level analysis for accurate differential expression and 

differential alternative splicing, and 5) the potential to provide an analysis platform to bring 

consistency in RNA-seq analysis. 

 

Methods 

   

Input files for 3D RNA-seq App 

Three types of input files are required for 3D RNA-seq analysis (Supplementary Figure 1). 1) 

A meta-data table in “csv” (comma delimited) format containing the information of experimental 

design, including conditions/treatments, biological replicates, sequencing replicates (if they 

exist) and quantification file names (Supplementary Figure 1A). 2) Transcript quantification 

outputs generated using programs Salmon (Patro et al., 2017) or Kallisto (Bray et al., 2016) 

(Supplementary Figure 1B) in conjunction with a reference transcriptome or Reference 

Transcriptome (Figure 2) which contains a comprehensive set of transcript sequences for the 

organism under study. Salmon and Kallisto will generate a quantification file (“quant.sf” from 

Salmon and “abundance.h5”/“abundance.tsv” from Kallisto) for each sample, which can be 

read into the 3D RNA-seq App and generate read counts and TPMs using the tximport R 

package (Soneson et al., 2016).  3) A transcript mapping file consisting of a “csv” spreadsheet 

with the first column listing transcript names and second column listing gene IDs. This relates 

transcript names to gene IDs in order to summarise transcript level quantifications to gene 

level expression (Supplementary Figure 1C). Alternatively, this information can be extracted 

from the “gtf” or “fa” files of the transcriptome and uploaded to 3D RNA-seq App. For a “gtf” 

file, transcript-gene mapping will be generated from the “gene_id” and “transcript_id” tags in 

the last column while for a “fa” file, the information can be generated from the tags in the 
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description lines of transcript sequences (Supplementary Figure 1D and E). All the inputs can 

be easily uploaded to the App by clicking “action” widgets and selecting corresponding files 

from a local computer. 

 

Data pre-processing with optimal quality control  

Once read counts and TPMs are obtained from Salmon and Kallisto, the data is pre-processed 

in various steps to reduce noise (e.g. removal of low expressed genes and transcripts) and 

technical variance (e.g. batch effects). In each step, interactive visualization plots are 

produced to facilitate the optimization of parameters for pre-processing. 1) Sequencing 

replicates, if present, will be merged to increase sequencing depth. 2) Unreliable lowly 

expressed transcripts are removed. Read counts follow approximately the negative binomial 

distribution. The variance of log2 transformed read counts decreases monotonically with the 

increase of mean (Supplementary Figure 2) (Benaroya and Mi Han, 2005; Law et al., 2014; 

McCarthy et al., 2012). However, the expression of lowly expressed transcripts follows a 

different distribution. This causes a drop of mean-variance trend towards low values of log2 

read counts (Supplementary Figure 2A). This problem can be solved by removal of lowly 

expressed transcripts on the basis that an expressed transcript should have a minimum count 

per million (CPM), n, in at least m samples. These cut-offs can be adjusted by the user and 

immediately visualized on mean-variance plots. In this way, the user can quickly define cut-

offs to optimise the plot until the decreasing trend at the low expression end of the mean-

variance plot is removed (Supplementary Figure 2B). A gene is defined as expressed if any of 

its transcripts are expressed using the above criteria. 3) Similarities and differences between 

samples are visualized by Principal component analysis (PCA) (Supplementary Figure 3). 

PCA is a method to project data variance of thousands of variables (transcripts/genes) to 

principal component (PC) dimensions from highest to lowest data variability. Therefore, the 

first few PCs typically reflect the major variance in an experiment. . 4) Batch effects are 

identified and removed. PCA plots identify the major differences between the samples in an 

unsupervised manner and effectively highlight whether the RNA-seq data is affected by batch 

effects, caused by biological replicates being processed, for example, in different laboratory 

conditions. Compared with random noise, batch effects can be distinguished due to the 

systematic biases across the biological replicates (Supplementary Figure 3A). When 

separations of biological replicates are observed in the PCA plot, the batch effect can be 

corrected by different methods; our preferred method is the RUVSeq R package, which is 

used to estimate a batch effect term which can be incorporated into the design matrix with the 

main factors in linear regression models for 3D analysis (Risso et al., 2014) (Supplementary 

Figure 3B). (5) Data is normalized to unbiased comparisons across samples. Read counts are 

normalized  by the widely used method Trimmed Mean of M-values (TMM), Relative Log 
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Expression (RLE) or upper-quartile method (Bullard et al., 2010) and log2 transformed in log2-

CPM) (Law et al., 2014). Read count distributions before and after normalization can be 

visualized in the plots.  

 

Principle of 3D analysis: identification of DE, DAS and DTU genes and transcripts  

RNA-seq experimental designs often involve a single factor or multiple factors that may affect 

gene expression. 3D RNA-seq App provides a flexible way to set up contrast groups where 

users can select any samples or groups of samples of interest for comparison.  Thus, it allows 

analyses both with simple pair-wise comparisons and complex experimental designs such as 

time-series, developmental series and multiple conditions (Supplementary Figure 4). For each 

contrast group, different statistics are defined for robust DE/DAS/DTU (3D) predictions (Figure 

1). 1) For differential expression, log2 fold change (𝐿2𝐹𝐶) is the difference of log2-CPM values 

in contrast groups; 2) for differential alternative splicing, Δ percent spliced (Δ𝑃𝑆) is the 

difference of 𝑃𝑆 values which are defined as the ratios of transcript average abundances 

divided by the average gene abundances; and 3) p-values of multiple comparisons are 

adjusted to control the false discovery rate (FDR) (Benjamini and Yekutieli, 2001). 

Stringency of the analysis can be modified by changing the cut-off settings. A 

gene/transcript is identified as DE in a contrast group if 𝐿2𝐹𝐶 of expression is greater than or 

equal to an established cut-off value (e.g. L2FC > 1) and with adjusted p-value less than a cut-

off (e.g. p<0.01 or 0.05) (Figure 1). At the AS level, gene expression is compared to transcript 

expression in the contrast groups (Ritchie et al., 2015). To identify DAS genes, the expression 

of each transcript is compared to the weighted average expression of all the transcripts for the 

same gene (weight on transcript expression variance; the average expression can be treated 

as gene level expression). The p-value of each test is converted to gene-wise p-value by using 

the F-test or Simes method (Ritchie et al., 2015). To identify DTU transcripts, each transcript 

is compared to the weighted average of all the other transcripts of the same gene (Figure 1). 

A gene is DAS in a contrast group if the adjusted p-value is less than an established cut-off 

value and at least one transcript of the gene has a ΔPS greater than an established cut-off 

value (e.g. ΔPS >0.1). A transcript is DTU if the adjusted p-value and ΔPS is less than or 

greater than the selected cut-off values, respectively. The 3D RNA-seq App thereby identifies 

significant DE genes and transcripts, DAS genes and DTU transcripts and these results are 

saved in summary figures (see Figure 3A and B), along with lists of genes and transcripts and 

tables with testing statistics. 

 

Transcript isoform switch analysis 

Transcript isoform switches (ISs) are a prominent type of DAS within a gene where a pair of 

alternatively spliced isoforms reverse the order of their relative expression abundances in 
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response to stimulus (Guo et al., 2017). In the 3D RNA-seq analysis pipeline, the iso-kTSP 

method is introduced to study the ISs between pair-wise conditions in the user-defined 

contrast groups (Sebestyén et al., 2015) while the Time-Series Isoform Switch (TSIS) method 

is used to identify the ISs between any consecutive time-points in time-series or 

developmental data (Guo et al., 2017). Significant ISs are determined by: 1) the probability of 

switch that indicates the frequency of sample replicates reversing their relative abundance at 

the switches; 2) the sum of average expression differences before and after a switch; and 3) 

the Benjamini-Hochberg (BH) adjusted p-values of these differences (Benjamini and Yekutieli, 

2001). In addition, in the TSIS analysis, two further metrics are used to describe ISs: 4) the 

number of time-points between two switch points and 5) the Pearson correlation of two 

transcript isoforms (Guo et al., 2017). Customised cut-offs can be applied to these metrics to 

define significant ISs.  

 

Outputs and visualization 

The 3D RNA-seq App enables users to save results of significant DE/DAS/DTU 

genes/transcripts, intermediate data of the whole analysis and publication-quality plots to a 

local folder by clicking “action” buttons at the various steps in the App. Four folders are created 

to save 3D analysis outputs, “result”, “figure”, “report” and “data”. The gene and transcript 

expression in read counts and TPMs, testing statistics and analysis results of 3D analysis will 

be saved as “csv” files (comma delimited) in the “result” folder. All the figures of data pre-

processing, 3D analysis and downstream visualization can be saved as “png” and “pdf” 

formats with user provided width, height and resolution in the “figure” folder. The intermediate 

variables generated during 3D analysis will be saved as “.RData” R objects in the “data” folder 

for R users to carry out further analysis if required. In the last step of 3D analysis, a report in 

three formats, html, pdf and word, will be generated in the “report” folder using R Markdown 

(Baumer and Udwin, 2015). The report includes sections of “Methods”, “Results”, 

“Supplementary figures”, “Supplementary material” and “References”, in which the contrast 

groups and parameters selected by the users are recorded. The publication-quality figures 

and reports provide the information required in publications. 

Significant results between contrast groups can be visualized within the App in Venn 

diagrams, histograms and volcano plots (e.g. the number of up- and down-regulated DE genes 

and transcripts, isoform switches etc.) (see Figure 3C-E). Heat-maps are used to visualize co-

expression clusters of significant 3D genes and transcripts and investigate their expression 

pattern changes across conditions (see Figure 4A and B). Individual gene and transcript 

profiles and ΔPS plots give users intuitive visualization of those with significant abundance 

and AS changes, thereby providing a means of selecting candidate genes and transcripts for 

experimental validation and future research. The lists of genes and transcripts with significant 
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changes in DE/DAS/DTU can be downloaded for gene ontology (GO) enrichment analysis 

using appropriate web databases or GO analysis programs, from which the significantly 

enriched annotation results can be re-imported to the 3D RNA-seq App to generate GO 

annotation plots (Supplementary Figure 5 and see Figure 4C and D). To generate publication-

quality figures, users can set widths, heights, resolution and colours for histograms, plots, 

heat-maps etc. to be saved. The interactive reports contain full details of the custom 

configured parameters, methods and results tables and figures from the entire 3D analysis. 

The interactive report is a detailed document that guarantees the reproducibility of the analysis 

and results. 

 

3D RNA-seq adopts the best practice and integrates the state-of-art methods for DE and 

DAS analysis 

3D RNA-seq adopts best practice and integrates many of the start-of-art methods for RNA-

seq data pre-processing: 1) Tximport to convert TPM values to read counts while taking 

transcript length and sequencing depth into account (Soneson et al., 2016); 2) PCA plots to 

visualize sample variances; 3) RUVSeq to estimate batch effects (Risso et al., 2014); 4) a 

number of read count normalization methods to correct the variances and reduce the false 

positives for highly abundant transcript outliers  (Bullard et al., 2010); and 5) mean-variance 

trend plots to filter low expressed genes/transcripts to improve fit to statistical models and 

remove discrepancies due to read count distribution assumptions (Law et al., 2014).  

Limma voom (Law et al., 2014) was chosen as the engine for the DE analysis (DE, 

DAS and DTU) for four reasons. Firstly, from different studies, limma is consistently one of the 

best performing methods for RNA-seq analysis and has a good control of FDR (Pimentel et 

al., 2017; Rapaport et al., 2013; Tang et al., 2015). Secondly, it allows both the DE and DAS 

analysis within the same framework. More importantly, the DE analysis and DAS analysis 

differentiates genes that are implicated in transcriptional regulation (e.g. by transcriptional 

factors) and alternative splicing regulation (e.g. by splicing factors). Thirdly, limma employs a 

linear model that runs very quickly and compared with methods requiring bootstrapping, the 

running time and memory required is significantly reduced. Lastly but most importantly, limma 

allows flexible experimental designs, where any pairs or groups of samples can be compared 

in contrast to most of the current DE tools which offer limited choices for comparisons. 

 

Availability of the 3D RNA-seq App 

The 3D RNA-seq App is available as a docker image and an R package. 1) A public version 

of the 3D RNA-seq App is running at the James Hutton Institute and can be viewed at: 

https://ics.hutton.ac.uk/3drnaseq. The user can upload input files and carry out the entire 

analysis within a browser. The intermediate data and results of 3D analysis can be 
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downloaded during the final step. This web interface allows biologists to use 3D RNA-seq 

without installing it. The 3D RNA-seq manual can be found at the same web address; 2) The 

R package ThreeDRNAseq can be installed locally and users can run the 3D RNA-seq App 

by typing a command “run3DApp()” through RStudio on a local PC. This version is suitable for 

people with a good knowledge of R and who prefer to run the analysis locally. The user 

manuals for both using ThreeDRNAseq App and command lines of ThreeDRNAseq R 

package for 3D analysis is provided at:  

https://github.com/wyguo/ThreeDRNAseq/tree/master/vignettes/user_manuals 

 

 

Results 

 

Application of 3D RNA-seq App to RNA-seq analyses of expression/AS in plants 

The 3D RNA-seq App was applied to selected time-points from time-series RNA-seq data of 

a study on changes in the Arabidopsis transcriptome in response to cold stress 

(Supplementary Figure 6) (Calixto et al., 2018, 2019). Briefly, 5-week-old Arabidopsis Col-0 

plants were grown at 20oC for 24 hours, then the temperature was reduced to 4oC. Samples 

were harvested every 3 hours for the last day at 20oC, Day 1 at 4oC  and Day 4 at 4oC, yielding 

26 time-points in total (Supplementary Figure 6A). The data from six of these time-points was 

extracted to illustrate the utility of 3D RNA-seq. The six time-points are 3 and 6 h into the dark 

period from the 20oC Day, Day 1 and Day 4 at 4oC (time points T2 and T3, T10 and T11, and 

T19 and T20, respectively, referred to here as time-points T2 and T3 from Day 0, Day 1 and 

Day 4 (Supplementary Figure 6A). The T2 and T3 time-points represent the equivalent time-

point in the three treatments and thereby control for time-of-day expression variation. 

Transcript quantification was generated using Salmon (Patro et al., 2017) and AtRTD2-QUASI 

(Zhang et al., 2017).  

In the data pre-processing procedure, we removed the lowly expressed 

genes/transcripts using the mean-variance trend plots (Supplementary Figure 2). In the 

original experiment, one biological replicate was harvested in a different year from the other 

two which gave rise to batch effects. The batch effects were corrected using the RUVSeq 

method in the App (Supplementary Figure 3). Expression data was normalised across 

samples to reduce sequencing biases. These pre-processing steps were essential to reduce 

the FDR and improve the sensitivity and accuracy for the DE and DAS analysis. We also 

employed stringent filters to control the FDR of multiple testing. These rigorous steps resulted 

in high confidence predictions of expression changes at both transcript and gene levels.  

Using the 3D RNA-seq analysis pipeline, contrast groups were set up to compare the 

equivalent time-points before and after cold stress to control for time-of-day variation in 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 31, 2019. ; https://doi.org/10.1101/656686doi: bioRxiv preprint 

https://doi.org/10.1101/656686


9 
 

expression due to photoperiodic and circadian changes (Calixto et al., 2018). For example, T2 

in day 1 at 4°C was compared to T2 in day 0 (20°C), T2 in day 4 at 4°C was compared to T2 

in day 0 (20°C) and so on (Supplementary Figure 6B). Other contrast groups can also be set 

up (Supplementary Figure 4). For example, the mean between T2 and T3 in day 1 at 4°C can 

be compared to the mean of T2 and T3 in day 0 (20°C) etc. or the difference between T2 and 

T3 in day 1 at 4°C can be compared to the difference between T2 and T3 in day 0 (20°C) etc. 

(Supplementary Figure 6C). We identified 5,023 DE genes and 2,346 DAS genes. These 

included 1,875 genes which were regulated only by AS (no significant differential expression 

at the gene level) and 4,185 DTU transcripts (Figure 3A and B). In addition, 471 of the DAS 

genes also had significant abundance (DE) changes across the contrast groups (DE+DAS 

genes). The abundance of significant DTU transcripts can either change significantly 

(DE+DTU) or non-significantly (DTU-only) (Figure 1). Output histograms illustrate the variation 

in up- and down-regulation of DE genes and the number of significant isoform switches 

between the contrast groups (Figure 3C and D). Volcano plots of fold changes in abundance 

(log2FC) against significance (FDR) highlight those DE genes and transcripts with the largest 

and most significant changes in the data (Figure 3E). Heat maps of clustered co-expressed 

DE genes and DTU transcripts are shown for the contrast groups of the six time-points in 

Figure 4A and B. Functional annotation of the DE genes showed enrichment in cold-induced 

physiological and molecular events such as response to various stresses, transcription and 

altered ribosome production (Figure 4C). Similarly, DAS genes were significantly associated 

with the spliceosome, RNA splicing and nucleotide/RNA/mRNA binding terms reflecting cold-

induced AS of splicing factors (Figure 4D). These results reflect the analysis of the complete 

time-series (Calixto et al., 2018). Experimental validation of expression, AS and isoform 

switches by high resolution RT-qPCR and high resolution RT-PCR have been described 

previously (Calixto et al., 2018, 2019).  

The TSIS analysis identified 1,688 significant switches between 1,144 pairs of 

alternative spliced transcript isoforms in DAS genes with stringent cut-offs: probability > 0.5, 

sum of average abundance differences > 1 TPM and p-value < 0.05 (Figure 3D). These ISs 

were related to various AS events and approximately half of the isoforms were protein-coding 

transcripts with different functions according to the transcript annotations in AtRTD2 (Zhang 

et al., 2017). The switch frequency along the time-series showed that ISs occurred in the 

contrast groups comparing 4°C and 20°C time-points (Figure 3D). Thus, a large number of 

genes and transcripts in Arabidopsis are sensitive to temperature reduction and likely 

contribute to acclimation and survival through AS regulation. 
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Application to RNA-seq analyses in animals 

To illustrate the utility of the 3D RNA-seq App in analysing multi-factor RNA-seq data from 

animals, we re-analysed RNA-seq data which studied the effects of dexamethasone treatment 

on cortical and hypothalamic neural progenitor/stem cells (NPSCs) from male and female mice 

(Frahm et al., 2018) The RNA-seq data consisted of male and female cortex and hypothalmus 

cell cultures treated or untreated with dexamethasone, each with three biological replicates 

(24 samples in total). The study identified differentially expressed genes common and unique 

to brain region, gender and dexamethasone treatment (Frahm et al., 2018). The same dataset 

has also been used to demonstrate the improved resolution of differentially expressed genes 

using Sleuth for transcript-level differential analysis and aggregation of transcript level p-

values to give gene-level p-values (Yi et al., 2018). Using this data, we performed two 

differential expression comparisons between: 1) the Sleuth/aggregated p-values method 

(Pimentel et al., 2017; Yi et al., 2018) and 3D RNA-seq and 2) the results of the differential 

analysis in Frahm et al., (2018) and those generated by 3D RNA-seq expression results. 

To compare the results from 3D RNA-seq and Sleuth directly, the Kallisto transcript 

quantifications were downloaded (see Data availability) and pre-processed in 3D RNA-seq. 

This identified 43,836 expressed transcripts which had at least 3 samples with ≥ 1 CPM and 

12,155 expressed genes which had at least one expressed transcript which were then used 

in the Sleuth and 3D RNA-seq analyses. In addition, the Sleuth analysis in Yi et al., (2018) 

only examined the effects of dexamethasone and did not distinguish brain region or gender 

effects and therefore the appropriate contrast groups were set up in 3D RNA-seq to match the 

analysis in Yi et al., (2018). We then ran the Sleuth/aggregated p-values pipeline (see Data 

availability) and 3D RNA-seq on the 43,836 expressed transcripts. Using Sleuth we identified 

3,237 DE genes (Figure 5). GO enrichment analysis was performed using Fisher’s exact test 

in topGO R package (Alexa and Rahnenfuhrer, 2019) in conjunction with genome annotation 

for mouse org.Mm.eg.db (Carlson, 2019). Significantly enriched GO terms in categories of 

biological process (BP), cellular component (CC) and molecular function (MF) were 

determined with FDR < 0.05. Significant enrichment terms relevant to response to stress, 

immune system, inflammation, hormone response, splicing/spliceosome were extracted to 

illustrate effects of dexamethasone treatment on gene function (Figure 6). The 3D RNA-seq 

analysis used the same contrast groups and a BH adjusted p-value cut-off of < 0.05 to identify 

significant changes. Note that to maintain similar parameters for the direct comparison to 

Sleuth, the log2 fold change and Δ percent spliced cut-offs were not applied in the 3D RNA-

seq analysis. The results of the 3D RNA-seq pipeline showed a high degree of similarity with 

the Sleuth pipeline in terms of identified DE genes but in addition resolved differentially 

alternatively spliced genes from DE genes and identified 1,649 genes with significant 

expression/AS changes.  3D RNA-seq identified a total of 4,284 genes with differential 
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expression and/or differential alternative splicing of which 3,700 and 896 were DE and DAS 

genes, respectively (with an overlap of 312 gene – DE+DAS genes) (Figure 5). The Sleuth 

pipeline (Yi et al., 2018), which does not identify DAS genes, recovered 3,237 DE genes. Of 

the total (DE and DAS genes) and DE genes identified by 3D RNA-seq, 2,635 and 2,346, 

respectively, were common to both analyses such that 81.4% and 72.5% of the total and DE 

genes identified by Sleuth were identified by 3D RNA-seq (Figure 5). The 3D RNA-seq pipeline 

also identified 5,573 DE transcripts and 1,480 DTU transcripts with adjusted p-value < 0.05. 

Interestingly, 531 of the DAS genes were among the DE genes defined by Sleuth – of these, 

242 were DE+DAS. Of the 602 DE genes unique to the Sleuth analysis, 372 had significant 

DE/DTU transcripts in 3D RNA-seq but did not carry over to significant DE or DAS genes 

(Figure 5).  

The resolution of DE and DAS genes by 3D RNA-seq was also illustrated in the GO 

enrichment annotations. The DE genes from Sleuth had significant terms that related to 

response to stress, response to hormone and immune system as well as multiple 

splicing/spliceosome terms indicating alternative splicing regulation of the gene level 

predictions (Figure 6A). The separation of DE and DAS genes by 3D RNA-seq resolved the 

majority of stress, hormone and immune response terms to DE genes (transcriptional 

regulation) (Figure 6B) and the splicing enrichment terms to the DAS genes (AS regulation) 

(Figure 6C). In addition, the 1,284 DE genes unique to the 3D RNA-seq analysis (Figure 5) 

were enriched for steroid hormone receptor activity (Figure 6D) reflecting the nature of the 

chemical.   

The second comparison exploited the flexibility of 3D RNA-seq to analyse the effects 

of multiple factors and detect sex-specific and brain region-specific DE and DAS genes and 

transcripts in the mouse data. In the original study, the effects of dexamethasone treatment 

on differential gene expression in NPSCs from different brain (cortical and hypothalamic) and 

sexes (male and female), were examined (Frahm et al., 2018). We therefore set up contrast 

groups (i.e. Female.Cortex.Dex vs Female.Cortex.Vehicle (untreated control), 

Male.Cortex.Dex vs Male.Cortex.Vehicle,  Female.Hypothalmus.Dex vs 

Female.Hypothalmus.Vehicle and  Male.Hypothalmus.Dex vs Male.Hypothalmus.Vehicle). 

The cut-offs were set as adjusted p-value < 0.05, 𝐿2𝐹𝐶 ≥1 and ΔPS≥0.1. Across the four 

contrast groups, the 3D pipeline identified 930 DE genes and 509 DAS genes, of which 462 

were only regulated by AS, and 2,121 DE transcripts and 628 DTU transcripts, of which 455 

were AS regulated only. The results of individual contrast groups revealed that 1) both 

transcription and AS regulation were much more affected in cortex cells than in hypothalamic 

cells (Figure 7A-C) and 2) more genes and transcripts were down-regulated in cortex cells 

while in hypothalamic cells up-regulation dominated the expression changes (Figure 7A-C). 

The relative differences between brain regions at the DE gene level was described by Frahm 
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et al., (2018). We also compared the DE genes from the 3D pipeline to those of Frahm et al., 

(2018) which used a p-value cut-off of < 0.05 (note: p-values were not adjusted and no 𝐿2𝐹𝐶 

cut-off was applied). There were 449 DE genes in common and 908 significant DE genes in 

Frahm et al., (2018) were filtered out in the 3D pipeline due to low 𝐿2𝐹𝐶 or insignificant 

adjusted p-values (Figure 7D). Although stringent filters were used, the 3D analysis identified 

481 unique DE genes. Finally, the isoform switch analysis identified 63 significant ISs of DAS 

genes in the contrast groups with switch probability ≥ 0.5, sum of average TPM differences 

≥ 1 TPM and BH adjusted p-value < 0.05 (Figure 7E). Thus, compared to the Sleuth pipeline, 

3D RNA-seq provides both transcript- and gene-level analysis to resolve both differentially 

expressed genes and transcripts, and provides information on AS regulation by identifying 

novel DAS genes, DTU transcripts and ISs. The re-analysis of the mouse data with 3D RNA-

seq demonstrates how novel information can be unlocked from publicly available RNA-seq 

data which has only been used to analyse differential gene-level expression.  

 

 

Discussion 

 

3D RNA-seq is easy to use and designed for the maximum take-up by biologists. 

The 3D RNA-seq web-based application requires no installation and no programming skills 

from users. The whole analysis can be accomplished entirely within a web browser. The 

pipeline consists of 21 single steps within six tabbed panels. It integrates widgets that provide 

users with technical summaries of the research behind each step so that they can set the 

parameters appropriate for their studies. Recommended parameters are also given in the 

manual and are used as defaults. More importantly, 3D RNA-seq integrates interactive 

visualization at every step of the analysis so that users can visualize the changes caused by 

modification of the parameters. Interactive visualization not only helps the user to understand 

the method behind this step better, but it also enables users to explore the optimum settings 

for the analysis, and ultimately offers reassurance and robustness in the results.  

3D RNA-seq also allows the analysis of RNA-seq data with simple and complex 

experimental designs, such as time-series and developmental series data etc. The 

comparisons (contrast groups) can be set up between any pairs or groups of samples to cater 

for different investigations, a feature that is important for the universal applicability of 3D RNA-

seq for RNA-seq analysis. The 3D RNA-seq App can be used to analyse RNA-seq data from 

any species for which transcript quantifications using Salmon/Kallisto can be generated. The 

accuracy of the analysis will depend on the quality and comprehensiveness of the reference 

transcriptome used to generate the transcript quantifications (Brown et al., 2017; Zhang et al., 

2015, 2017) Multiple factors such as missing transcripts, transcript redundancy, transcript 
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fragments and variation at the 5’ and 3’ ends of isoforms can drastically affect accuracy of 

transcript quantification (Alamancos et al., 2015; Zhang et al., 2015, 2017; Soneson et al., 

2019).  For many species, comprehensive, optimised transcriptomes do not exist and using 

partial, incomplete transcriptomes and/or which have not been filtered to remove such 

erroneous isoform information will also produce inaccurate transcript and AS quantification. 

As transcriptomes improve for many species, transcript quantification and results from 3D 

RNA-seq will also improve. 

The speed and accuracy of the 3D RNA-seq analysis has the potential to revolutionise 

gene expression research programmes. Generation of transcript quantifications and running 

3D RNA-seq is performed in less than three days. It reduces an analytical step which 

previously required skilled bioinformaticians and often took many weeks or even months to 

complete. This is significant not only in terms of satisfaction in result generation for the 

individual scientists/biologists but also for strategic planning of the research programme where 

now multiple, consecutive RNA-seq experiments can be planned within the period of funding 

proposal. More importantly, the rapid turn-over of the analysis provided by 3D RNA-seq 

creates a level playing field for research groups with very different access to bioinformatics 

expertise or resources thereby supporting, in particular, smaller groups and early career 

scientists.      

 

3D RNA-seq facilitates speedy publication of RNA-seq analysis and improves the 

transparency and reproducibility of the analysis. 

The fast turn-over of the analysis provided by 3D RNASeq will present a significant advantage 

for speedy publication of the results. In 3D RNA-seq, multiple types of figures/summaries are 

generated and saved including commonly used visualizations such as heatmaps, GO 

enrichment plots, expression profile plots, volcano plots etc. Users can easily generate and 

save new figures for each new set of parameters. The format, resolution and size of the figure 

can be customised and previewed in 3D RNA-seq before saving. In addition, the significant 

DE/DAS/DTU/IS gene and transcript lists are saved for further interpretation. The final 

technical report generated in the final step of 3D RNA-seq records each step in the analysis 

with the parameters used and integrates all the saved figures. The report is comprehensive, 

accurate and reproducible including all the information required for “Material and Methods” 

sections for the RNA-seq analysis as well as figures for the Results and Supplementary 

Materials. Furthermore, some publications have very poor technical descriptions of the 

methods and parameters used for RNA-seq analyses. In future, submission of such a report 

along with manuscripts to scientific journals would facilitate transparency and allow reviewers 

to identify issues with the analysis and how it relates to other published work. 
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3D RNA-seq provides enhanced alternative splicing analysis at the transcript level 

Over the last 20 years, genome-wide expression analyses have relied on microarrays and 

more recently, RNA-seq analyses mostly at the gene level. RNA-seq allows gene expression 

to be analysed at the level of both genes and transcripts which in turn provides a means to 

study post-transcriptional processes such as alternative splicing. AS regulation plays key roles 

in gene expression and novel genes with altered gene expression at AS level have been found 

in most of the RNA-seq studies. Despite the importance of AS and the potential to include AS 

analysis routinely in RNA-seq, AS is still largely ignored. For example, 4,065 publications from 

the Web of Science Core Collection (2008-2019) (https://wok.mimas.ac.uk/) were retrieved 

with the term “RNA-seq differential gene expression”, but only ca. 289 included “differential 

alternative splicing”.  3D RNA-seq provides by far the most detailed differential expression 

analysis on the transcript and alternative splicing level. In particular, it allows the identification 

of both DAS genes and DTU transcripts which are differentiated from DE genes/transcripts 

and a range of measurements, visualizations and statistical tests provide a comprehensive 

analysis of alternative splicing alongside differential expression. Additionally, 3D RNA-seq has 

also integrated methods that detect isoform switches which can play pivotal roles in re-

programming of gene expression through switching of functionally different transcript isoforms 

between, for example, normal and tumor tissues to provide signatures for cancer diagnostics 

and prognostics (Sebestyén et al., 2015).  With the enhanced AS analysis in 3D RNA-seq, 

key and novel genes under AS regulation which underpin important biological processes can 

be identified and provide new targets for medical intervention or crop improvement. 

 

3D RNA-seq unlocks the discovery potential for RNA-seq data  

Finally, the speed of 3D RNA-seq now makes it feasible for biologists to re-analyse existing 

or publicly available RNA-seq data to give improved differential expression analysis and novel 

AS information as demonstrated here for the mouse data. Datasets from different labs can 

now be quickly compared using the same parameters and without performing new 

experiments. In addition, with new transcriptome releases, it is feasible to re-analyse datasets 

and update results. 3D RNA-seq provides a reproducible platform to standardise analyses and 

utilise new and existing data for improved resolution and interpretation.   
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package version (ThreeDRNAseq) is available on Github at 
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Figures 

 

 

Figure 1. Definitions and criteria for identification of significant DE and DAS genes and 

DE and DTU transcripts. A) DE genes and transcripts are those whose abundance between 

conditions changes, as measured by changes in log2 fold change (L2FC).  For significantly DE 

genes and transcripts, the default setting is L2FC >1 with an adjusted p-value of <0.01 or 

<0.05. B) DAS genes must have more than one transcript and are determined by comparing 

the expression changes between individual transcripts to the gene level between conditions. 

The change in percent spliced (ΔPS) is calculated and for a gene to be DAS, the default is 

that at least one transcript must have a ΔPS >0.1 with a pre-set p-value cut-off. C) DTU 

transcripts are those transcripts which show different expression behaviour from the other 

transcripts of the gene. They are determined by comparing the change in expression of each 

transcript to the average expression change of all of the remaining transcripts of the gene. 

With these criteria, A) DE only genes are those where the gene and transcript expression 

levels change significantly but to the same degree such that transcripts do not differ from one 

another and are DE only. B) DAS only genes are those where the gene expression level does 

not change significantly but that of at least one transcript does. C) DE+DAS genes show both 

gene level expression changes and different changes of at least one transcript. A-C) The 

abundance of a DTU transcript can change significantly (DE+DTU) or may not change 

significantly (DTU only). Isoform switches (ISs) happen when two pair of transcripts reverse 

their relative abundance across different conditions or time points 
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Figure 2. 3D RNA-seq analysis pipeline. 
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Figure 3. Illustrations of visualization outputs from 3D RNA-seq. A) Summary figure of 

expressed genes and significant DE, DE+DAS and DAS genes from analysis of the six time-

points of the Arabidopsis data; B) Summary figure of expressed transcripts and DE, DE+DTU 

and DTU transcripts; C) Number of significantly up- and down-regulated DE genes in different 

contrast groups, and D) Number of significant isoform switches among contrast groups. E) 

Volcano plot of significant DE genes. The top 10 genes with the smallest p values and biggest 

fold changes are highlighted and different colours refer to different contrast groups.  
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Figure 4: Downstream analyses of co-expression clusters and functional annotation. 

Heatmaps show the grouped expression profiles for A) DE genes and B) DTU transcripts 

across the samples. The top enriched GO terms for of C) DE and D) DAS genes are visualized 

with their associated FDRs. 
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Figure 5. Comparison of the gene lists generated by 3D RNA-seq and Sleuth pipelines. 

The RNA-seq data on dexamethasone treatment of mice cells was taken from Frahm et al., 

(2018). Similar statistical parameters were applied when running 3D RNA-seq and Sleuth. The 

Venn diagram compares the DE genes from Sleuth to DE and DAS genes and DE and DTU 

transcripts from 3D RNA-seq.  
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Figure 6. Top enriched GO terms on  the significantly perturbed genes identified by 3D 

RNA-seq and Sleuth in the mouse RNA-seq data. The Fisher’s exact test and topGO R 

package were used to generate significant enrichment gene ontology (GO) terms with FDR < 

0.05. Only the GO terms of response to stress, immune system, inflammatory, hormone, 

splice, splicing, spliceosome and spliceosomal are presented. A) Significantly enriched GO 

terms of DE genes from Sleuth; B) Significantly enriched GO terms of DE genes from 3D RNA-

seq; C) Significantly enriched GO terms of DAS genes from 3D RNA-seq; and D) Significantly 

enriched GO terms of novel DE genes unique to 3D RNA-seq. Splicing/spliceosome related 
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GO terms are enriched in the DE genes in Sleuth (red dashed box in A) but are found in GO 

terms associated with DAS genes in 3D RNA-seq (C). . BP: Biological process; BP_splice: 

Biological process with terms of splice, splicing, spliceosome and spliceosomal; CC: Cellular 

Component; MF: Molecular Function. 
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Figure 7. Sex-specific and tissue-specific 3D RNA-seq analysis of the mouse data. 

Contrast groups were designed to investigate Dex-induced expression and alternative splicing 

changes between male and female and cortex and hypothalamus brain regions. Significant 

DE gene/transcript lists were generated by BH adjusted p-value < 0.05, 𝐿2𝐹𝐶 ≥ 1 and Δ𝑃𝑆 ≥ 

0.1. A) Up- and down-regulated DE genes and B) DE transcripts. C) Summary of statistical 

analysis results from 3D RNA-seq in each contrast group. D) Venn diagram comparing the DE 

genes in the 3D RNA-seq analysis to the results in Frahm et al., (2018) in which the significant 

DE genes were determined by p-value < 0.05 (multiple testing adjustment and 𝐿2𝐹𝐶 cut-off 

were not applied).  92 genes had low expression and were not included in the transcriptome 

quantification in 3D RNA-seq analysis. E) the number of Isoform switches in different contrast 

groups with the following cut-offs: probability of switch ≥ 0.5, difference of average TPMs at 

different conditions ≥ 1 TPM and adjusted p-value of the TPM difference < 0.05. 
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