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Abstract

Protein mass spectrometry with label-free quantification (LFQ) is widely used for quantitative
proteomics studies. Nevertheless, well-principled statistical inference procedures are still lacking,
and most practitioners adopt methods from transcriptomics. These, however, cannot properly treat
the principal complication of label-free proteomics, namely many non-randomly missing values.

We present proDA, a method to perform statistical tests for differential abundance of proteins.
It models missing values in an intensity-dependent probabilistic manner. proDA is based on linear
models and thus suitable for complex experimental designs, and boosts statistical power for small
sample sizes by using variance moderation. We show that the currently widely used methods
based on ad hoc imputation schemes can report excessive false positives, and that proDA not only
overcomes this serious issue but also offers high sensitivity. Thus, proDA fills a crucial gap in the
toolbox of quantitative proteomics.

Availability: The proDA method is implemented as an open-source R package, available on
https://github.com/const-ae/proDA.1

1. INTRODUCTION

Label-free quantification (LFQ) is a standard ap-
proach used in proteomics mass spectrometry (MS).
Due to the similarity of this data type to expression
microarray data, analysis methods from that field are
commonly used for LFQ-MS. A major difference, how-
ever, is the presence of missing values in MS, but not
in microarray data.

It is well established that missing values do not oc-
cur entirely at random, but more often at low intensi-
ties (Choi et al. 2015, Lazar et al. 2016, Ooijen et al.
2017, Välikangas et al. 2017). The fraction of miss-
ing values varies by experimental design, but it is not
uncommon to have more than 50% missing values, es-
pecially in affinity purification experiments. This is-
sue hence cannot simply be ignored but needs proper
handling, and doing so is a central challenge in statisti-
cal analysis of LFQ data, e.g., for identifying proteins
which are differentially abundant between conditions.
In the last years several method have been proposed
to tackle this challenge, most of which rely on impu-
tation, i.e., they simply replace missing values with
some number that is deemed realistic.

However, a fundamental problem with imputation
is that it obscures the amount of available information:
imputed values will be considered as equally certain as
actually measured values by any downstream process-
ing (identifying differentially abundant proteins, clus-
tering, quality control). This can invalidate inferential
conclusions due to underestimating statistical uncer-
tainty or cause loss of statistical power. Therefore, we
propose a probabilistic dropout model that explicitly
describes the available information about the missing

∗Electronic address: sanders@fs.tum.de
1Submission to Bioconductor is pending.

values.

Figure 1A demonstrates that missingness carries in-
formation: observations in proteins with many miss-
ing values (red) have a lower intensity than observa-
tions in proteins with only one or no missing values
(purple). In addition, Figure 1B illustrates that the
ratio of these densities forms a curve with sigmoidal
shape, clearly showing how the probability of a value
being missing depends strongly on overall intensity.

If sample size is limited, substantial gains in statis-
tical power can be gained from using shrinkage esti-
mation procedure for variance estimation (“variance
moderation”) (Lönnstedt and Speed 2002). This ap-
proach is widely used in transcriptomics data analysis,
e.g., by the limma package (Smyth 2004). The advan-
tage of using limma or similar approaches for LFQ-MS
has been advocated only rather recently (e.g., Kam-
mers et al. (2015)). For example, the DEP package
(Zhang et al. 2018) performs imputation followed by
a limma analysis to infer differentially abundant pro-
teins. As stated above, the use of imputation may
compromise the validity of limma’s statistical infer-
ence, and hence, the purpose of the present work is
to adapt limma-style inference to account for values
missing not at random and so improve power and reli-
ability of differential abundance analysis for LFQ-MS.

A typical analysis of a label-free tandem mass spec-
trometry experiment consists of a number of steps.
First, peaks in the MS1 need to be identified using
the corresponding MS2 spectra. Second, the MS1
peaks need to be quantified. In the literature, two ap-
proaches are popular for this tasks: spectral counting
and peak area integration (Wong and Cagney 2010).
Abundant peptides are more often recorded by the
MS2, thus the number of MS2 spectra associated with
a peptide can be used as a proxy for its abundance
(Liu et al. 2004). Alternatively, more abundant pro-
teins cause larger peaks in the MS1, thus a second ap-
proach is to integrate the peak area of a peptide (Bon-
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FIG. 1: Missingness in label-free mass spectrometry is informative. (A) Intensity distribution for six replicates of the
de Graaf dataset discussed in section 3. Shown is a ridgeline density plot of all the observed intensity values. They
have been stratified by the number of samples in which the protein’s value was missing. The height of the individual
densities is normalized per stratum. Panel (B) shows, in gray, a histogram of all the intensities. Overlayed are densities
combining either the values from proteins with at most one missing value (purple) or with more then one missing value
(red). The ratio of these two densities (gray line) is has sigmoidal shape. The density ratio has been bootstrapped 100
times to show its sampling distribution.

darenko et al. 2002, Chelius and Bondarenko 2002).
Subsequent comparisons of the methods by Gross-
mann et al. (2010) and Dowle et al. (2016) concluded
that peak area based methods perform better than
spectral counting. Consequently, we will only focus
on methods that handle continuous intensities. The
third important step is the aggregation of the peptide
level information to protein information. One popu-
lar method, that is directly integrated in the popular
MaxQuant platform (Cox and Mann 2008), is called
MaxLFQ (Cox et al. 2014). It combines the peptide
intensities across samples using their ratios and has
been shown to be highly accurate (Al Shweiki et al.
2017, Valikangas et al. 2017). The result of all those
steps is a table with intensities for each protein and
sample. The values in this table are commonly log2

transformed to account for the mean-variance rela-
tionship of the raw data (Supplementary Figure S1).

There are already some methods available to further
analyze this table and identify differentially abundant
proteins. Perseus (Tyanova et al. 2016) is a platform
with graphical use interface, developed by the same
group as MaxQuant, which provides functionality to
normalize the data, impute missing values, identify
significant proteins using a t-test and visualize the re-
sults. For multiple testing correction, Perseus offers
two options: either the Benjamini-Hochberg proce-
dure (Benjamini and Hochberg 1995) or significance
analysis of microarrays (SAM), a permutation-based
correction originally developed by Tusher et al. (2001).
As already mentioned, DEP (Zhang et al. 2018) is
an R package that provides a similar set of function-
alities, but uses the more powerful variance moder-
ated t-test to identify significant proteins using the
R package limma (Smyth 2004, Smyth et al. 2010).
For multiple testing correction DEP uses by default
the methods in the fdrtool package (Strimmer 2008).
In addition, it provides a simple interface to a large
number of imputation methods from the MSnbase R

package (Gatto and Lilley 2012). In contrast, Perseus
only provides two imputation methods, which either
replace the missing values with a small deterministic
value (MinDet) or with random values jittered around
that small value (MinProb). QPROT (Choi et al.
2015) is a command line tool that fits, like limma, an
empirical Bayesian model. It avoids imputation and
instead integrates out the position of missing values
using a cumulative normal distribution below a hard
limit of detection.

Here, we present proDA (inference of protein
d ifferential abundance by probabilistic dropout
analysis). In the following section, we will explain
the intuition behind proDA and how it differs from
the existing tools. In the third section, we will use
a semi-synthetic dataset to compare the performance
of the tools and check if they control the false dis-
covery rate (FDR). We will show that proDA shows
strong advantages over the existing approaches. In
the fourth section, we will use proDA to analyze a
real dataset studying ubiquitination, before we close
with a discussion of the advantages and limitations of
our method.

2. APPROACH

The core of our idea is to combine the sigmoidal
dropout curve for missing values with the information
from the observed values. Figure 2 gives a concep-
tual overview of our approach. All the mathematical
details of our method are described in Appendix A,
where we develop the approach for full linear models.
Here, in the main text, we aim to provide a more in-
tuitive explanation. We will first discuss the simple
setting of an experiment with only a single condition
with 3 replicates, and afterwards discuss inference of
differential abundance between two conditions.

We assume that, within one condition, there is one
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FIG. 2: Intuition behind the probabilistic dropout model. We assume that the real intensity values approximately follow
a normal distribution (”location prior”). The probability of not observing one of these values (”dropout probability”) is
high for low intensity and low for high intensity. Hence, the distribution of the actually observed values (gray histogram)
is skewed, with values missing in its left flank. The vertical lines indicate the observed intensities for three hypothetical
proteins: Protein 1 (green) has complete observations, protein 2 (orange) has 2 missing values, and protein 3 (purple)
has only missing values. The lower panel shows the inferred posterior probability distribution for the means for proteins
1, 2, and 3 (calculated using Stan (Stan Development Team 2017)). The dashed lines show the symmetric approximation
to these that we use for efficient inference.

expected value for each protein, the population av-
erage, i.e., the mean value we would get if we av-
eraged over infinitely many replicate samples. The
abundances in our 3 replicates scatter around this un-
known “true” mean value, and our goal is to infer a
posterior distribution that contains the true mean and
captures our uncertainty about its location. In case of
no missing values, such a posterior takes the shape of
the t distribution, which is the basis for the well known
Student’s t test (green posterior in Figure 2). Miss-
ing values cause these posteriors to become skewed ,
wider, and their mode (peak) to shift to the left of
the average of the observed values (because the miss-
ing values are likely lower than the observed ones); see
orange posterior in Figure 2. Even with no observed
values, we can infer a posterior (purple posterior in the
figure): its left flank follows the location prior, i.e., the
distribution of values we actually expect in our data,
and its right flank follows the dropout curve, because
higher values would have likely been observed.

Hence, our approach first estimates from the data
for all proteins the shape of the dropout probability
curve and of the location prior. It then uses this infor-
mation to infer for each protein an approximate poste-
rior for its mean, with the necessary shift in mode lo-
cation and widening due to the additional uncertainty
from any missing values. We approximate the skewed
posteriors with a symmetric approximation (dashed

lines in the figure) that follows the right flank. This
improves performance and is permissible because the
flank on the lower side is irrelevant for inference of
difference.

The process involves so-called shrinkage estimation
(or moderation), which shares information across pro-
teins in order to improve variance estimation (as orig-
inally proposed by Lönnstedt and Speed (2002) and
also used in limma (Smyth 2004)). Furthermore, we
apply shrinkage estimation not only to the variance
but also to the location, as this enables us to handle
the edge case of all observation missing in one condi-
tion.

To test a protein for differential abundance between
two conditions, we compare the approximate posteri-
ors inferred for the two conditions and calculate a p
value for the null hypothesis of both true means being
equal. We do this using linear models, which allows for
accommodating known covariates and complex exper-
imental designs, in the same manner as limma offers
for transcriptomics experiments.

3. VALIDATION AND COMPARISON

We validated our approach and compared it with
the existing methods discussed in the introduction.
In order to evaluate performance with data that is
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FIG. 3: Performance comparison on the de Graaf dataset with three against three samples and 20% changed proteins.
A) Comparison of the user specified FDR (cut-off on BH-adjusted p value) with the FDR that is actually achieved by the
tool according to the ground truth. The line for the QPROT method is missing because it is literally off the chart, with
an average FDR of 60%. B) Plot showing how many actually changed proteins (true positives) each method identified
at a specified FDR level. The two methods shown as dotted lines should be considered “disqualified” as they that failed
to control FDR in panel A.)

realistic, yet still has known ground truth, we will
use a data set comprising only replicates of a sin-
gle condition, so that we can expect there to be no
differentially abundant proteins. We will then intro-
duce differences artificially for some proteins so that
we know the ground truth. de Graaf et al. (2014) anal-
ysed phosphorylation dynamics in Jurkat T cells over
6 time points using affinity purification. We only use
the first time point, for which there are 18 samples, 3
biological replicates with 3 technical replicates each,
which were measured in two separate mass spectrom-
etry runs. Supplementary Figure S2 shows a heatmap
of the data. There are many missing values (49%),
which helps us to asses their impact on the different
methods.

In a typical affinity purification experiment, it is
not unusual to have only three replicates per condi-
tion. So, we chose six samples and divided them into
two synthetic conditions, ensuring that both contain
a mix of different biological replicates, so that there
is no signal in the null dataset (row marked “3v3” in
Supplementary Figure S2). In the next step, we select
20% of all proteins and randomly shuffle those rows,
but only in the first condition. This creates a realistic
dataset where we know which proteins differ between
condition one and two. Other approaches, where a se-
lected number of proteins are shifted by a fixed effect
size, are not applicable, because shifting the mean of
a protein would also imply a different probability for
missing observations.

We compare the four methods discussed in the in-
troduction (proDA, DEP, QPROT, and Perseus), run-
ning each tool with their default settings, except for
the multiple testing correction, where we always use
Benjamini-Hochberg’s method to make the results
more comparable. The R markdown notebook used
to conduct the tests is available on github.com/const-
ae/proDA-Paper. DEP offers a range of different im-

putation methods; we chose to test it with five typical
ones: Zero, MinDet, MinProb, KNN, and QRLIC. We
ran QPROT with 2000 burn-in and 10,000 sampling
iterations.

Figure 3 shows the performance of the tools: For
each cut-off value on the Benjamini-Hochberg ad-
justed p values (desired false discovery rate (FDR)),
we calculate the actual false discovery rate using the
ground truth. In the optimal case, both would be
identical and the lines of the tools would be on the di-
agonal. If a methods gets above the diagonal line, this
means that it called too many false positives (failed to
control type-I error), which is highly problematic. In
our test, most methods, including proDA succeed in
controlling FDR, with the exception of QPROT and
DEP with imputation mode Zero.

For those methods that passed the FDR control re-
quirement, we can now ask which has most inferential
power. Figure 3B shows the number of true positives
that each method recovered depending on the desired
FDR. proDA performs well in this test. Its actual
FDR always stays below the desired FDR and at 10%
desired FDR, it recovers 65% more true positives than
the second best approach, DEP with MinDet impu-
tation. The performance of DEP depended on the
imputation method that is used. Zero imputation is
problematic, as can be seen in this example, because
it fails to control the FDR at small values. The best
imputation methods are MinDet and MinProb, which
perform nearly identical. Perseus with the MinProb
imputation recovers fewer true positives than DEP,
which is expected, because it uses the classical t-test
and not the variance moderated version. QPROT con-
sistently fails to control the FDR. At an desired FDR
of 10%, it calls a total of 363 proteins significant, of
which 216 are false positives (i.e., the actual FDR is
60%).

In Supplementary Figure S3, we further distinguish
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the calibration and performance by the number of ac-
tually observed values in condition one and two. This
shows that QPROT is unable to control the FDR,
because it has many false positives for proteins with
zero against one observations. proDA is more pow-
erful than the other methods, because it shows con-
sistently good performance across comparisons and in
particular if only one or two observations are miss-
ing. The zero imputation methods always identifies
all zero against three observations as significant. In
many cases this is correct, but as this does not de-
pend on the desired FDR, this can lead to an actual
FDR that is too large if the user specifies a small FDR.

In Supplementary Figure S4-S6, we show that we
get consistent results even if we change the number of
compared samples (3 vs 3, 4 vs 4, and 6 vs 6) and also
if we change the percentage of true positive proteins
(5%, 10%, 20%, and 30%), although the degree by
which proDA outperforms the other tools seems to
dependent on the number of missing values.

4. APPLICATION

After demonstrating that proDA controls the FDR
and is able to recover the largest number of changed
proteins, we applied it to analyze a dataset on the
interaction landscape of ubiquitin (Zhang et al. 2017).
In this example, we do not know the ground truth, but
show that we recover proteins that biologically make
sense. In the original publication the authors analyzed
the dataset using Perseus, later they presented the
DEP R package for analyzing such datasets (Zhang
et al. 2018). We will re-run the analysis that Zhang
et al. describe with proDA.

Ubiquitin is a small protein that plays an impor-
tant role in many different signaling pathways. There
are three different kinds of ubiquitination: mono-
ubiquitination, multi-mono-ubiquitination and poly-
ubiquitination. Poly-ubiquitination is further distin-
guished by the linkage between the donor and the ac-
ceptor ubiquitin. The donor is linked with its C ter-
minus to any of the seven lysines (K6, K11, K27, K29,
K33, K48, K63) or the terminal methionine (M1) of
the acceptor. Zhang et al. studied the recognition of
those eight linkages and mono-ubiquitin by ubiquitin
binding proteins. For this, they developed a new tech-
nique called ubiquitin interactor affinity enrichment-
mass spectrometry (UbIA-MS) (Zhang et al. 2018).

They run an enrichment experiment for each of the
eight ubiquitin linkages plus one condition with mono-
ubiquitin (Mono) and one empty control condition
(ctrl). Each condition was measured in triplicates. To
determine which proteins bind (directly or indirectly)
to any of the ubiquitin linkages, we always compare
the intensity for each protein to the corresponding in-
tensity in the control group.

Figure 4 shows the results of the analysis with
proDA. Figure 4A compares the total number of sig-
nificant interactors at a nominal FDR of 10%, filtering
out all proteins that had higher intensity in the control

condition than in the ubiquitin condition. Figure 4B
further stratifies the data from panel A. It not just
describes how many proteins bind to a linkage, but
also how many proteins bind to a specific combina-
tion of linkages. We can see that a majority interacts
significantly with with all ubiquitins, but there are
also proteins showing significant interactions only for
specific linkages.

Figure 4D demonstrates that proDA has not just re-
covered many interactors, but proteins related to gene
ontology sets relevant for ubiquitination (Ashburner
et al. 2000, Carbon et al. 2019, Yu et al. 2012). In
addition to the 9 ubiquitination conditions, here we
also list the results of conducting an F test to identify
all proteins that differ in any condition, as an exam-
ple for the ability of proDA to perform missing value
aware ANOVA.

5. DISTANCES

A commonly used approach for sample quality con-
trol is to calculate some measure of similarity for all
pairs of samples, in order to check whether replicate
samples appear more similar than samples from dif-
ferent conditions.

Typically, Euclidean distance is used, e.g. by Zhang
et al. (2018) who use MinProb imputation before Eu-
clidean distance is calculated. Figure 4C shows the
outcome of this procedure for the ubiquitin data. Dif-
ferences in the shape of the dropout probability curve
can strongly influence a distance calculated in this
manner. Based on the proDA model, we developed an
approach to calculate Euclidean distance in a proba-
bilistic manner without the need for imputation in
order to reduce the effect of differences in dropout
probabilities (Appendix B). In fact, our distance cal-
culation is able to recover the triplet structure of the
data set, while the MinProb imputation based dis-
tances do not (Figure 4C).

6. CONCLUSION

In this paper, we have presented our R package
proDA for identifying proteins that are differentially
abundant in label-free mass spectrometry data sets.
The main challenge for analyzing label-free mass spec-
trometry data are the large number of missing val-
ues. We suggest to handle them using a probabilis-
tic dropout model combined with empirical Bayesian
priors to combine the available information from ob-
served and missing values.

In the performance comparison with existing tools
on a semi-synthetic data set with known ground truth,
we saw that proDA recovers more true positives, while
controlling the false discovery rate. We showed that
imputation can be problematic because it either leads
to a loss of power or worse to not controlling the false
discovery rate. The improved sensitivity of proDA
comes at the prize of a somewhat increased run time.
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FIG. 4: Ubiquitination analysis with proDA. A) shows the number of interactors for each of the nine conditions. The
green bars show the number of proteins identified as significant interactors for each condition with proDA. B) breaks
down those interactors into more detail. It shows the number of proteins that interact with a specific combination of
ubiquitin linkages. The total number of intersections was limited to the largest 25 sets ordered by degree. C) shows
two heatmaps with the sample distances, calculated according to Equation (B4) (upper heatmap) and on the imputed
dataset (lower heatmap). The rows and columns were clustered using hierarchical clustering on the distances. D) shows
a dot plot with the seven most significant gene ontology (GO) terms related to the set of interactors with any of the nine
conditions and the set of proteins that differ over all conditions (“F-test”).

Whereas the imputation based methods finish within
seconds, our model might need one or two minutes
to calculate a result. In the end, we believe the in-
creased computational demands are justified, because
the analysis run time is still fast enough for interactive
use.

In conclusion, we have demonstrated that imputa-
tion can be problematic and that properly modelling

the uncertainty posed by missing values boosts power.
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Appendices

Appendix A: Mathematical Description of the Probabilistic Dropout Model

At the center of proDA is the idea of a probabilistic dropout model. As we saw in Figure 1, the chance of a
missing value decreases with increasing protein intensity. We will model this relationship with a sample specific
sigmoid dropout curve. To better understand our model, we will describe it as a generative model, ie. the
mathematical relations that we believe could be responsible for the data table from which we start our analysis.

We will call this table a matrix Y with I × J rows and columns, where I is the number of proteins and J is
the number of samples. The information about each sample is encoded in a model matrix X with J rows and
p columns. Our goal is to find for each protein the p coefficients of the vector βi. For each sample and protein

we define the predicted value as µ̂i = Xβ̂i.

We assume that for each protein i ∈ {1, . . . , I} the observations yij are drawn from a Normal distribution with
mean µij and variance σ2

i . However, not every yij is observed; importantly, some are missing (yij = NA). As
we have previously discussed, we assume that the probability of a dropout depends on the underlying intensity
and we will model this with a sigmoidal relationship. There are several possible functions describing curves
with sigmoidal shape; for mathematical convenience, we chose the inverse probit, i.e., the cumulative density
function (CDF) of a Normal distribution. In formal notation, this model is

µij = Xjβi

zij |µij , σ2
i ∼ Normal(µij , σ

2
i )

dij |zij , ρj , ζj ∼ Bernoulli(Φ(zij ; ρj , ζ
2
j ))

yij |zij , dij =

{
NA, if dij
zij , else.

(A1)

Here, zij are the latent intensities, that we do not have full access to because of the dropouts. βi are the
coefficients for which we want to find out if they or their linear combination are different from zero. dij indicates
if a protein is missing in the specific sample. The probability of missingness (zij = 1) is given by the sigmoidal
dropout curve Φ(·) (Normal CDF), which is parameterized using the inflection point ρj and the scale ζj :

Φ(x; ρ, ζ2) =
1√
2πζ

∫ x

−∞
exp

(
− (t− ρ)2

2ζ2

)
dt. (A2)

In addition, we assume that the means µij and the variances σ2
i are similar across proteins and add the priors

µij |µ0, σ
2
0 ∼ Student-t(dfloc, µ0, σ

2
0) (A3)

and

σ2
i |df0, τ

2
0 ∼ Scaled-inv-χ2(df0, τ

2
0 ). (A4)

The prior in Equation (A3) on the protein means µij is important to handle the edge case if in one condition
a protein is completely missing. The prior in Equation (A4) corresponds to the variance moderation of limma
(Smyth 2004).

The probability density function of the generalized Student’s t-distribution is defined as

ft(x; dfloc, µ, σ
2) =

Γ
(
dfloc+1

2

)
Γ
(
dfloc
2

)√
πdflocσ2

(
1 +

1

dfloc

(x− µ)2

σ2

)− dfloc+1

2

(A5)

and the probability density function of the scaled inverse χ2 distribution is

fInv-χ2(x; τ2,df) =
(τ2df/2)df/2

Γ (df/2)

exp
(
−dfτ2

2x

)
x1+df/2

. (A6)
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We iteratively estimate the hyper parameters and the protein specific parameters using a maximum a pos-
teriori approach until the model converges. To identify which coefficients in βi are significant, we use a Wald
test or likelihood ratio F-test (Dunn and Smyth 2018).

1. Model Fitting

In the following section, we will explain how to infer the feature parameters βi and σ2
i , and then the hyper-

parameters µ0, σ2
0 , τ20 , df0, ρ and ζ. We assume that dfloc is fixed by the user.

To simplify the notation, we will first focus on only one protein and assume that all samples belong to the
same condition and thus suppress all subscripts i and j. This also allows us to directly talk about µ instead of
Xβ, because in that specific case they are identical.

If there were no missing values and if we ignored the priors, the likelihood of the mean µ and σ2 given the
observations y would be

L(µ, σ2|y) ∝
∏
j

fNormal(yj ;µ, σ
2). (A7)

To handle the mix of observed and missing values in y, we will extend the above equation by marginalizing out
the missing values

L(µ, σ2|y) ∝
∏

j:yj 6=NA

fNormal(yj ;µ, σ
2)

×
∏

j:yj=NA

∫ ∞
−∞

fNormal(z;µ, σ
2)Φ(z; ρj , ζ

2
j )dz.

(A8)

The integral in Equation (A8) can be simplified∫ ∞
−∞

fNormal(z;µ, σ
2)Φ(z; ρ, ζ2)dz = Φ(µ; ρ, ζ2 + σ2), (A9)

with the proof for example provided by Ellison (1964) and Zacks (1981).

Now, we can combine Equation (A8) and Equation (A9), add the priors that we proposed in Equation (A3)
and Equation (A4), and use Xβ instead of µ. We find that the joint density is

p(β, σ2, µ0, σ
2
0 ,df0, τ

2
0 ,ρ, ζ|y, X) ∝fInv-χ2(σ2; τ20 ,df0)

×
∏
j

ft(Xjβ; dfloc, µ0, σ
2
0)

×
∏

j:yj 6=NA

fNormal(Xjβ;xj , σ
2)

×
∏

j:yj=NA

Φ(Xjβ; ρj , σ
2 + ζ2).

(A10)

Equation (A10) is the starting point from which we will derive the feature and hyper-parameters. We use a
two-step procedure where we first fix the hyper-parameters to estimate the feature parameters and then fix the
feature parameters to estimate the hyper-parameters. We iterate between those two steps until the estimates
have converged.

2. Feature Parameter Estimation

Given the set of hyper-parameters, we use a maximum a posteriori (MAP) approach to find the β̂i and σ̂2
i

that best explain the values yi. We take the logarithm of Equation (A10) and derive its Jacobian and Hessian
to efficiently find the mode. We use the nlminb function in R that wraps the PORT routines (Gay 1990) for
the actual optimization.
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a. Unbiased Variance Estimates

The MAP estimates for the coefficients (β̂) are already good, but the bias in σ̂2 is problematic. In a standard
linear model, we would expect the maximum likelihood estimator σ̂2 to be biased and underestimate the true
variance σ2 by

E[σ̂2] = σ2n− p
n

, (A11)

and hence correct it by multiplying with n/(n− p).

With missing values, the challenge is that we do not know n. The direct approaches of setting n = J or
n = |{yj 6= NA}| are problematic because they over- or underestimate the amount of information from the
missing values. Instead we will estimate n using the variance of σ̂2 at the mode, which is given by

V[σ̂2] = − 1
∂2 log p
∂(σ2)2

,

where p is the posterior given in Equation (A10). We get this second derivative for free as an element of the
Hessian matrix H, which is calculated anyway during the maximization of log p:

H =


∂2 log p
∂β2

1
· · · ∂2 log p

∂β1∂βp

∂2 log p
∂β1∂σ2

...
. . .

...
...

∂2 log p
∂βp∂β1

· · · ∂2 log p
∂β2

p

∂2 log p
∂βp∂σ2

∂2 log p
∂σ2∂β1

· · · ∂2 log p
∂σ2∂βp

∂2 log p
(∂σ2)2

 (A12)

and that we get for free with the optimization.

We find the value of n using an analogy to the standard linear model without missing values. If we have some
values y and use their mean ȳ as the mean estimate µ̂, the density of σ2 would be

p(σ2|y) ∝
n∏
i=1

fNormal(yi; ȳ, σ
2)

∝
(

1

σ2

)n/2
exp

(
−
∑
i(yi − ȳ)2

2σ2

)
∝ fInv-Gamma(σ2;α = n/2− 1, β = RSS/2),

(A13)

where RSS =
∑
i(yi − ȳ)2. The mode of the inverse gamma distribution is

mode =
β

α+ 1
. (A14)

We can now find the expected value of the second derivative that the inverse gamma distribution has at the
mode, which is

d2fInv-Gamma(x, α, β)

(dσ2)2

∣∣∣∣
x=mode

=
β2

(α+ 1)3
. (A15)

With missing values, we can still identify identify the MAP for σ̂2 and the associated uncertainty V[σ̂2]. If we
now plug in those values

mode = σ̂2 (A16)

and

d2fInv-Gamma(x, α, β)

(dσ2)2

∣∣∣∣
x=mode

= V[σ̂2] (A17)

and solve Equation (A14) and (A15) using Equation (A13) for n and RSS, we find that

n̂ = 2

(
σ̂2
)2

V[σ̂2]
, (A18)
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and

R̂SS = 2

(
σ̂2
)3

V[σ̂2]
. (A19)

Finally, we can now identify the unbiased estimate of the variance, which is

ŝ2 =
R̂SS

n̂− p
(A20)

and estimate the degrees of freedom

d̂f = n̂− p. (A21)

Sometimes n̂ < p, in which case we fix d̂f to a small, but positive value (ie. 0.001), and estimate

ŝ2 =

√
V[σ̂2]

(d̂f + p)3

2d̂f
2 (A22)

so that the approximation matches the scale of the original distribution, although the mode is slightly off.

b. Variance of the Coefficient Estimates

In a standard linear model, it is easy to find the standard error for the coefficients because it is just

V[β̂] = ŝ2 (X ′X)
−1
. (A23)

Again, this cannot be directly applied to the case with missing values, because it is possible that ŝ2 is small, but
we nevertheless are very uncertain of βj because there are many missing values for that coefficient. Instead, we
will therefore use the inverse of the Hessian of the coefficients, which we calculate using the unbiased estimate
ŝ2

V[β̂]σ2=ŝ2 = −(Hσ2=ŝ2)−1. (A24)

This works well for the cases where the distribution of βj does not have too much skew. But in Figure 2, we
saw that for the cases with many missing values the skew can be considerable. If we would just use the matched
variance at the mode, we would be wrong on both sides of the distribution. On the left, the approximation
would be too narrow and on the right, it would be too wide.

We know that the distributions with considerable skew are always on the low end of the intensity distribution.
Thus, in the typical comparison it is most important to get the right flank of the distribution correct, in order
to not unnecessarily lose power. We will calculate a correction factor that reduces the variance in order to

match the right flank of the distribution. If there is no skew, we know that if we go k units from the mode β̂
in the direction of βi the log probability should decrease by k

2V[βi]
, because the log density should behave like a

multivariate parabola. Note that we still use the Hessian with σ2 = σ̂2.

From this relation we can calculate the correction factor which is

cfβj =
k

2(log p(β; σ̂2, ·)− log p(β + βshift; σ̂2, ·))
(A25)

where βshift is a vector of zeros, except for j’s entry which is

βshiftj =
√
k(V[β̂]jj − V[β̂]j,−jV[β̂]−1−j,−jV[β̂]−j,j) (A26)

We then identify the final covariance matrix as

Σ = V[β̂]
(corr)
σ2=ŝ2 = diag(

√
cf)V[β̂]σ2=ŝ2diag(

√
cf), (A27)

where cf is the vector formed by the correction factors from Equation (A25).
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3. Hyper-parameter Estimation

In the previous section, we have focused on individual proteins and suppressed the subscript i and handled
y as vector of size j. Now, we will describe how to fit the hyper-parameters across proteins and thus mention i
and work with the full data matrix Y .

a. Dropout Curves

We usually fit one dropout curve per sample, because the number of missing proteins can differ substantially
between samples and the effect cannot be fixed by normalization. We find ρj and ζj as the parameters that
maximize

log p(ρj , ζj |Y, µ̂j ,σ2
µ̂j

) ∝
∑

i:yij 6=NA

log
(
1− Φ(yij ; ρj , ζ

2
j )
)

+
∑

i:yij=NA

log
(

Φ(µ̂ij ; ρj , ζ
2
j + σ2

µ̂ij
)
)
,

(A28)

where we use the predicted values µ̂ij for the missing observations and the associated uncertainty

σ2
µ̂ij

= X ′jΣiXj . (A29)

We use the general purpose optimizer implemented by the R function optim (Broyden 1970, Fletcher 1970,
Goldfarb 1970, Shanno 1970) to find the maximum.

b. Variance Prior

In the model without missing values, Smyth (2004) has described how to estimate the hyper-parameters of
the variance prior τ20 and df0 from the unbiased variances s2i and the degrees of freedom. In the previous section
(Equation (A20) and (A21)), we have shown how derive those values in the case of missing values. But if we
were to use those values directly we would have the problem that they already contain the information of last
rounds hyper-parameter, and thus the variance prior would get narrower and narrower. To avoid this problem,
we recalculate the quantities from the last section without location and variance moderation (simply by setting

the first two lines of Equation (A10) to 0) and call them uŝ
2 and ud̂f. We use those for the inference of τ20 and

df0, which are just the quantities that maximize the log likelihood∑
i

log fF

(
uŝ

2
i ; τ

2 = τ20 ,df1 = ud̂fi,df2 = df0

)
. (A30)

c. Location Prior

Lastly, we will explain how to find the hyper-parameters for the prior on the protein means. Equation (A3)
states that we believe that the proteins means µi are drawn from a Normal distribution. We estimate the mean
of that location prior using a trimmed mean of the predicted values across all proteins and samples

µ0 = trimmed-mean0.2(µ̂ij). (A31)

But, we cannot calculate the variance the same way, because using the already regularized values µ̂ij would
lead to narrower and narrower estimates. This means that we need the un-regularized value uµ̂i.

We are only able to calculate uµ̂i if we have at least one observation, but we more likely to have proteins
without any observations left of the global mean µ0. Thus, we will ignore all uµ̂ij < µ0 and assume that the
distribution is symmetric.
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To find the empirical Bayesian estimate of σ2
0 , we use the approach described by Efron and Morris (1975) for

a Normal prior density, who showed that σ2
0 is the value that solves

σ2
0 =

∑
i,j(uµ̂ij

2 − σ2

uµ̂ij
)(σ2

0 + σ2

uµ̂ij
)−2∑

i,j(σ
2
0 + σ2

uµ̂ij
)−2

(A32)

which we find using the root function in R.

Appendix B: Distances

Understanding which samples are similar and which are not is an important step for quality control. Again,
missing values make this task difficult. If we were to impute the missing values, we would get unrealistic high
similarity for samples with many missing values. Instead, we propose to construct a probabilistic similarity
measure.

The most typical measure of sample similarity is the Euclidean distance between two samples in the feature
space. If there were no missing values this would just be

dist1,2 =

√∑
i

(yi1 − yi2)2. (B1)

The feature space is the I dimensional space where each axis corresponds to one protein and each sample is a
point in that space. If a protein measurement is missing, we know that its intensity was low, but we cannot
exactly say where along that particular axis the point is. Thus, we will convert the deterministic point x·j into
a multivariate Gaussian with a diagonal covariance matrix Σ. The entries on the diagonal of Σ are zero if the
protein was observed and correspond to the uncertainty of the protein intensity if it is missing. Equivalently,
the mean vector of the Gaussian µ is either the intensity measurement for observed proteins or the mean of our
estimate where a missing value could realistically have been. As we are not certain anymore where each sample
is in the feature space, we cannot calculate a deterministic distance between two samples, but we can estimate
the expected distance and the associated uncertainty. Mathai and Provost (1992, p.53) provide exact formulas
for the moments for the squared distance

E[dist2] =
∑
i

(µi1 − µi2)2

+
∑
i

(
σ2
µi1

+ σ2
µi2

) (B2)

and

V[dist2] =4
∑
i

(µi1 − µi2)2
(
σ2
µi1

+ σ2
µi2

)
+ 2

∑
i

(
σ2
µi1

+ σ2
µi2

)2
.

(B3)

We use those equations to approximate the actual quantities of interested the estimated distance and the
associated uncertainty

E[dist] ≈
√
E[dist2] (B4)

and

V[dist] ≈ V[dist2]

(
d
√
x

dx

∣∣∣∣
x=E[dist2]

)2

≈ V[dist2]

4E[dist2]
.

(B5)
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Appendix C: Supplementary Figures
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Suppl. Figure S1: Mean-variance relationship on the full de Graaf dataset. Each dot represents mean and
variance for one protein at one time point and MS run. The blue line is a ggplot2 smoothing fit. A) the
mean-variance relation on the raw data. B) the mean variance relation on the log2 transformed data.
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Suppl. Figure S2: Heatmap of the de Graaf dataset. Each column is a sample and each row is a protein.
The color shows the intensity of the respective protein and missing values are greyed out. The samples and
proteins are clustered using a hierarchical clustering on the expected distances calculated with Equation (B4).
The annotations on top of the heatmap indicate which samples were compared in the different performance and
calibration experiments shown in Figure 3 and Supplementary Figure S4-S6.
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Suppl. Figure S3: Calibration and performance stratified by the number of observations on the three vs three
comparison on the de Graaf dataset with 20% changed proteins. The x-axis shows the four tested methods
and the y-axis the number of observed values in condition one and two. The smaller number is listed first. In
addition the top line on the y-axis shows the marginal over all combination of observations. A) and B) show
the results when fixing the desired FDR at 10%. A) shows the actual FDR for each method and B) shows the
number true positives. C) and D) show the same features if the desired FDR is fixed at 1%. The color scales
show the FDR (A and C) or the number of true positives (B and D). White indicates the optimal value. In A)
and C) light blue color indicates a conservative FDR, whereas orange indicates an anti-conservative FDR.
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Suppl. Figure S4: Calibration and performance comparison with three vs. three samples. A,C,E,G) comparison
of the desired FDR with the FDR that is actually produced by the tool acording to the ground truth. The line
for the QPROT method is missing because it is literally of the charts. B,D,F,H) Plot of how many actually
changed proteins (true positives) each method identified at a specified FDR level.
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Suppl. Figure S5: Same as Supplementary Figure S4, but for a comparison of 4 vs 4 samples.
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Suppl. Figure S6: Same as Supplementary Figure S4, but for a comparison of 6 vs 6 samples.
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