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ABSTRACT 
Objective: Many antineoplastics are designed to target upregulated genes, but quantifying 
upregulation in a single patient sample requires an appropriate set of samples for comparison. 
In cancer, the most natural comparison set is unaffected samples from the matching tissue, but 
there are often too few available unaffected samples to overcome high inter-sample variance. 
Moreover, some cancer samples have misidentified tissues or origin, or even composite-tissue 
phenotypes. Even if an appropriate comparison set can be identified, most differential 
expression tools are not designed to accommodate comparing to a single patient sample.  
Materials and Methods: We propose a Bayesian statistical framework for gene expression 
outlier detection in single samples. Our method uses all available data to produce a consensus 
background distribution for each gene of interest without requiring the researcher to manually 
select a comparison set. The consensus distribution can then be used to quantify over- and 
under-expression. 
Results: We demonstrate this method on both simulated and real gene expression data. We 
show that it can robustly quantify overexpression, even when the set of comparison samples 
lacks ideally matched tissues samples. Further, our results show that the method can identify 
appropriate comparison sets from samples of mixed lineage and rediscover numerous known 
gene-cancer expression patterns. 
Conclusions: This exploratory method is suitable for identifying expression outliers from 
comparative RNA-seq analysis for individual samples and Treehouse, a pediatric precision 
medicine group that leverages RNA-seq to identify potential therapeutic leads for patients, plans 
to explore this method for processing their pediatric cohort.  
 
BACKGROUND 
RNA-seq has been used in the cancer field for a number of purposes: to examine differences 
between tumor and normal tissue, to classify cancers for diagnostics, and--with the advent of 
single cell RNA-seq--to characterize tumor heterogeneity 1–6. Recently, precision medicine 
researchers have also begun exploring RNA-seq’s potential to aid in target selection and drug 
repositioning by identifying clinically actionable aberrations in tumor samples  7–10. Clinical 
studies have demonstrated actionable findings for up to 50% of patients through RNA-seq 
analysis, particularly for pediatric patients who often do not possess actionable coding DNA 
mutations 11–15. This has led to efforts like Treehouse, a precision medicine initiative for 
pediatric cancer that evaluates the utility of  RNA-seq analysis to inform clinical interpretation. 
Treehouse has created a large compendium of open-access cancer gene expression data, 
which is incorporated into their analysis 16–18.  

Protocols for such precision medicine initiatives involve identifying up-regulated 
druggable gene targets as therapeutic leads.  Differential expression is commonly used to 
identify up- and down-regulation of genes between two groups of samples. However, most 
differential expression tools operate best under experimental conditions where both groups 
consist of several technical replicates, or lacking that, biological replicates 19–22. Thus, most 
existing tools are poorly suited to the clinical setting, where one group consists of only a single 
biological replicate from one patient (N-of-1), and the other comparison group is a library of 
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diverse potential comparison samples. In particular, none of the existing methods have any way 
of suggesting what an appropriate subset of the sample library should be used for comparison. 
This limitation is especially acute in cancer, where uncertainty as to the cell of origin, 
histological complexity, and metastasis can make it difficult to identify the appropriate 
reference tissues for a sample  23. While some work exists to address statistical uncertainty of 
working with N-of-1 samples 24, we focus on solving the second problem, which is the principled 
selection of an appropriate comparison set. 

Existing N-of-1 protocols compare targeted genes in an N-of-1 sample to an outlier 
cutoff generated from a large compendium of either cancer samples or unaffected tissue in 
order to determine whether a gene is up-regulated 16,25–27. While this outlier cutoff method is fast, 
there are some notable drawbacks. Applying a cutoff binarizes data, which makes it difficult to 
meaningfully rank outliers or to be aware of samples just short of meeting the cutoff. This 
cutoff method is also intended for Gaussian distributions, which is empirically common for gene 
expression within a tissue group, but not typical when considering the distribution of expression 
across tissues 25.  

Ultimately, the most difficult problem is justifying the choice of what samples constitute 
the comparison set that generates the cutoff, since different comparison sets will identify 
different genes as outliers. Many comparison datasets are small (almost half of The Cancer 
Genome Atlas’ (TCGA) normal tissues have 10 or fewer samples), so they lack the statistical 
power to characterize the variability of the expression landscape in the normal tissue on their 
own 28.  This power can be increased by also including samples from different tissues, but 
including tissues with larger sample sizes can drown out the information from the matched 
tissue. In addition, it is unclear which other tissues should be included in the pooled comparison 
set.  

These concerns led us to propose a new approach for identifying outliers for N-of-1 
samples. In contrast to previous methods, our method adaptively constructs a meaningful 
comparison set and avoids selection bias by automatically weighting the background sets to 
generate a consensus distribution of expression. It then uses the consensus distribution to 
quantify over-expression for genes of interest. 
 
Materials and Methods 
The core of our method is a Bayesian statistical model for the N-of-1 sample’s gene expression. 
The model implicitly assumes that the sample’s gene expression can be approximated by a 
convex mixture of the gene expression of the background datasets.  The coefficients of this 
mixture are shared across genes, much like a linear model in which each data point is the 
vector of expressions for a gene across the background datasets. In addition, we model 
expression for each gene from each background dataset as a random variable itself. This allows 
us to incorporate statistical uncertainty from certain background sets’ small sample size directly 
in the model without drowning out any background set’s contribution through pooling (Figure 1).  
 
Model Specification 
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Suppose we have a  background datasets for expression, which we will call . 
Within each background set , we model the expression of gene  as a 
normal-distributed random variable: 
 

 
 
The parameters of each of these normal distributions are distributed according to a shallow but 
proper normal-inverse gamma prior: 
 

 
 
Next we assume there is another unobserved random variable  from the same distribution 

. Conceptually, this corresponds to the expression value that the background 
distribution would influence the N-of-1 sample to take for that gene. We model the expected 
expression  from a new sample as a convex combination of the unobserved expression 
values across the datasets. 
 
 

 
 

 
Note that  is shared across all genes. A Dirichlet distribution was chosen for  to enforce the 
convexity constraint. Finally, we model the observed expression of the new sample  , which 
adds Laplacian error to the expected expression  : 
 

 
 

 
 
The distribution of the model error  is shared between genes and incorporates uncertainty into 
the posterior to account for variance generated by a poor match of the N-of-1 to any particular 
background group, weak model fitting, and biological and technical noise. We use a Laplace 
distribution instead of the more conventional normal because we are interested in identifying 
expression outliers. The Laplace distribution is heavier-tailed, so it will fit to outliers less 
aggressively and thereby preserve their outlier status.  

This model fits the data well for most cases. However, it behaves poorly on genes that 
have large variances in the background dataset. The reason is that the  parameter has a 
uniform scale across genes. This causes expression outliers that are modest relative to the 
variance appear to be more significant. To address this limitation, we normalize the background 
datasets for variance, but not for location. This normalization step must be incorporated into the 
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model specification, since it is not known a priori which background datasets the model will 
learn to be important, and different background datasets have different variances. This leads to 
the following equation: 
 

 
 
which simplifies to 
 

 
The model can be explored using Markov chain Monte Carlo (MCMC) to obtain samples 

for  that approximate its posterior distribution. If we have an observed expression value for a 
gene of interest (from the N-of-1 cancer sample), we can compare it to the sampled values. The 
proportion of sampled values for  that are greater (or lesser) than the observed value is an 
estimate of the posterior predictive p-value for this expression value. The posterior predictive 
p-value can be seen as a measure of how much of an outlier the expression is given the 
expectations of the comparison set. 

The model is implemented in PyMC3 and each N-of-1 sample is trained using the 
No-U-turn MCMC sampler 29,30. Due to the computational burden of sampling from the model, 
we employ a couple computational tricks to reduce runtime. First, we integrate out the  and 

 parameters so that each  is distributed according to a posterior predictive Student-t. 
Given our choice of a Dirichlet distribution for , most of the background datasets are assigned 
0 weight which means it is inefficient to include all  background datasets for every training run. 
Instead, background datasets are heuristically ranked for similarity to the N-of-1 sample by a 
combination of analysis of variance (ANOVA) and pairwise distance, and then iteratively added 
until the posterior predictive p-values converge to Pearson correlation > 0.99 (S6: Background 
Dataset Selection). The model is available as a Python package for convenience, a Docker 
container for reproducibility, and a Toil workflow for scalability. The software also provides 
comprehensive output to aid users in interpreting model results (S10: Software Engineering). 

 
Results 
TCGA & GTEx Validation 
We ran the model on 977 TCGA tumor samples — spanning ten different tissues that had 
corresponding normals in The Genotype-Tissue Expression Consortium (GTEx) — using 
normals from GTEx and TCGA as different background datasets (Figure 2, S2: Assignment of 
Model Weight to Background Datasets)  31. For every group of samples within a tissue type, 
the matched tissue in GTEx or TCGA-normal was afforded a majority of the model weight with 
only two groups of samples receiving less than 60% of all total weight: bladder and stomach. 
Dimensionality reduction reveals that bladder and stomach samples tend to cluster near other 
tissue groups that the model assigns weight to (S2.1.1: Dimensionality Reduction of 
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Low-Weight Samples) . Despite GTEx and TCGA being independent projects and with no 
attempts to correct for batch effects, the model identifies the corresponding tissue for most 
samples. 
 
Negative Control 
As a negative control experiment, we ran 100 samples across ten GTEx tissues using three 
different backgrounds: TCGA tumor, TCGA normal, and GTEx. Our expectation was that there 
would be relatively few outliers when either normal (non-cancer) dataset is used as the 
background comparison set relative to TCGA-tumor. Figure 3A shows that when either GTEx or 
TCGA-normals were used as the background dataset, the gene p-values shrink towards the 
middle and outliers are rarely identified. The model tends to assign almost all weight to the 
N-of-1’s matched tissue in GTEx or TCGA-normal, and the N-of-1 does not deviate significantly 
from other samples in that tissue group, with few exceptions.  
 
Testing Model Robustness by Removing Matched Tissues 
In most cases, our method is robust to situations in which there is no obvious matched normal 
tissue (Figure 3B). To demonstrate this, we used our method with a comparison dataset in 
which we artificially removed the tissue matched to the sample, and then we compared the 
results with the restricted dataset to the results we obtain with the full dataset. The model will 
often go from assigning almost all of the weight to the matched normal tissue to distributing it 
among several other phenotypically similar tissues. However, in most tissues the model largely 
compensates for the missing data in the final results: the p-values remain highly correlated to 
those produced with the full dataset (S4: Effect of Removing Matched Normal on Gene 
P-values). That said, the p-values do move slightly away from the tails, indicating lower power 
to detect outliers.  
 
Mixture Simulation 
We used a simulation to validate the method’s ability to identify comparison sets in tumors of 
non-specific lineage. Simulated N-of-1 samples were created by randomly selecting tissue pairs 
from GTEx then averaging gene expression between random samples from those tissue pairs. 
PCA of the mixture samples show a tight cluster in between the two clusters for the contributing 
tissues (S3: Mixture Simulations) . Mixture samples were run through the model and the 
weights from the two contributing tissues were collected (Figure 3C). Ideally, 50% of the model 
weight should be assigned to each of the contributing tissues used to generate those mixture 
samples, which is true for a majority of the tissue pairs. We would not want the model to split 
weight evenly between the two contributing tissues if the generated mixtures happen to be more 
similar to other tissue types in the background dataset. For mixture samples that did not match 
to the tissues used to generate them, dimensionality reduction clearly shows that other tissues 
happen to cluster closer to the mixtures than one or both of the contributing tissues (S3.7: 
Dimensionality Reductions of Mismatched Mixture Samples) . 
 
Upregulated Gene Outlier Counts Across Tumor Subtypes 
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Gene amplification and overexpression are a common hallmark of cancer cells, resulting from 
extra copies of a locus (amplicon) as well as other genetic and epigenetic changes. In many 
cases, these changes occur in genes that are specific to their tissue of origin  32–34. Many of 
these commonly mutated genes can be targeted by existing drugs 35. Eighty-five such druggable 
genes, mostly receptor tyrosine kinases, were curated and provided to us by Treehouse. We 
calculated p-values for these genes using our method across the 977 TCGA samples (Figure 
4). Genes with p-values below a cutoff (< 0.05) that also appeared in more than a third of the 
tumor samples within a subtype were all identified as known biomarkers in the literature (S5.3: 
Literature Corroboration of Outlier Findings). These include AURKA in both bladder and 
breast cancer 36–38, AURKB, CDK4, EGFR, and PDGFRA in brain cancers and gliomas 39–43, 
MET in thyroid carcinomas and gastric cancers 44–47, and ROS1 in lung cancers 48. 
 
Exploring Results For a Single Sample 
To illustrate how our method is used in practice, we demonstrate the model on a single sample 
rather than summary statistics over many samples. Figure 5 compares our method on a 
random tumor sample from TCGA to Treehouse’s standard practice approach of pooling normal 
samples and applying a cutoff based on inner-quartile range on a selection of 85 cancer genes 
which could be targeted by an available therapy 49,50. The random sample is labeled thyroid 
carcinoma in TCGA. Over 8,000 samples from GTEx dataset were used as the comparative 
normal dataset, categorized by tissue type. The model automatically weights each tissue group 
and assigns a majority of the weight to thyroid tissue in GTEx. Where the pan-normal cutoff 
method returns a binary classification for each of the selected genes, our method returns a 
posterior predictive p-value generated from a distribution informed by the background datasets 
that are most similar to the N-of-1 sample. Where there is disagreement in outlier classification 
between the two methods (PIK3CB and CCND2), the posterior distribution can be examined in 
the context of the highest weighted background dataset(s) to clearly understand how the 
p-value was generated. For example, our method does not identify PIK3CB as an outlier (given 
a p-value cutoff of 0.05), because the method down-weights non-thyroid tissues, which have 
lower average expression for this gene than normal thyroid tissue. 
 
Discussion 
Method Contribution 
Our method avoids selection bias introduced by having to choose a single comparison 
background dataset. It also provides continuous p-values for genes that can be ranked and also 
avoid missing borderline cases that would be ignored by existing cutoff methods. Moreover, in 
addition to under- and overexpression, the model quantifies the similarity of the analyst’s 
sample to background comparison sets. Researchers can use this feature as a diagnostic — 
diffuse weight distributions suggest that the model did not identify a strong set of matches 
among the background datasets. The model has also been demonstrated to be robust to false 
positives, incomplete comparison datasets, and when analyzing samples of mixed lineage.  

These benefits do come with a tradeoff in computation — calculating outliers via other 
methods can be very fast whereas the runtime of this method quadratically increases with the 
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number of genes and datasets. The method is only appropriate for analyzing small targeted 
gene sets — fewer than ~200 ideally — due to the way model complexity scales. After ~200 
genes it is better to parallelize multiple runs for a single sample, which is facilitated by a 
Toil-based version of the workflow that makes scaling trivial and allows the method to run 
hundreds of samples in parallel on both standard local and cloud-based clusters 51. The 
software provides intermediate output at every step in the workflow so users can validate model 
convergence, assess the model’s similarity metrics for background datasets to the N-of-1, and 
examine every model parameter to reproduce how p-values were calculated for every gene. 

 
Limitations 
The model makes certain mathematical assumptions that we know to be unrealistic. First, it 
implicitly assumes independence between the N-of-1 sample’s genes. It also assumes that the 
sample’s gene expression can be approximated by a convex mixture of the gene expression of 
the background datasets, which aids interpretability at the expense of descriptive accuracy.  

These limitations could be addressed by extending the model. To incorporate correlation 
between genes, random variables for each  could be replaced with multivariate distributions 
that are shared between all genes belonging to that group of coexpressed genes, where groups 
could be formed through a clustering process or according to existing annotations.  Prior 
knowledge could also be used to introduce non-independence between genes into the model. 
For instance, the independent error terms could be replaced by errors that are structured 
according to the Laplacian of a gene interaction network 52. 
 
Extensibility to Single-Cell RNA-seq 
Our model could be theoretically extended to single cell RNA-seq analysis in addition to bulk. 
However, without any modifications to the existing model, this would require training the model 
for each cell, which would be computationally expensive. A faster alternative would be to cluster 
the cells and sample a small number of representative cells from each cluster to run through the 
model to get summary information about each of the single-cell clusters. However, the high 
levels of technical noise, biological variability between cells, and dropouts, may require too 
many training genes to obtain robust estimates of the model parameters  53. Finally, the 
distribution of the random variable  would need to be replaced with a more appropriate 
distribution to model single-cell expression, such as a beta-Poisson mixture model 54. 
 
Conclusions 
As clinicians have begun to demonstrate that RNA-seq analysis can produce actionable findings 
for cancer patients, it is necessary to have informed and principled analytic tools for an 
individual patient. The method we have proposed detects gene expression outliers among a 
panel of target genes. It also provides additional information for researchers to explore and 
validate the results through examination of the model’s parameters. For portability, scalability, 
and reproducibility, we have made this open-source tool available as a Python package, Docker 
container, and Toil workflow available at https://github.com/jvivian/gene-outlier-detection/.  
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662338doi: bioRxiv preprint 

https://paperpile.com/c/4QfNtG/Z5Mi
https://www.codecogs.com/eqnedit.php?latex=x_%7Bd%2Cg%7D%0
https://paperpile.com/c/4QfNtG/wBTx
https://paperpile.com/c/4QfNtG/qon5
https://www.codecogs.com/eqnedit.php?latex=x_%7Bd%2Cg%7D%0
https://paperpile.com/c/4QfNtG/PWiE
https://github.com/jvivian/gene-outlier-detection/
https://doi.org/10.1101/662338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Declarations 
Ethics approval and consent to participate 
Not applicable 
 
Consent for publication 
Not applicable 
 
Availability of data and material 

● Raw expression data used in these experiments is available at UCSC Xena 
○ https://toil.xenahubs.net  

● All data used to produce every figure and experiment is publicly available on UCSC 
○ http://courtyard.gi.ucsc.edu/~jvivian/outlier-paper/ 

● Our model’s code is open-source and available on GitHub 
○ https://github.com/jvivian/gene-outlier-detection 

 
Competing interests 
The authors declare that they have no competing interests 
 
Funding 

● 1R01HG009737 
○ Research reported in this publication was supported by the National Human 

Genome Research Institute of the National Institutes of Health under Award 
Number R01HG009737. The content is solely the responsibility of the authors 
and does not necessarily represent the official views of the National Institutes of 
Health. 

● 2U41HG007234 
○ This publication was supported by a Subagreement from European Molecular 

Biology Laboratory with funds provided by Agreement No. 2U41HG007234 from 
National Institute of Health, NHGRI. Its contents are solely the responsibility of 
the authors and do not necessarily represent the official views of National 
Institute of Health, NHGRI or European Molecular Biology Laboratory. 

● 1U01HL137183 
○ Research reported in this publication was supported by the National Heart, Lung, 

And Blood Institute of the National Institutes of Health under Award Number 
U01HL137183. The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the National Institutes of Health. 

● DT06172015 
○ The research was made possible by the generous financial support of the W.M. 

Keck Foundation. 
● 1U54HG007990 

○ Research reported in this publication was supported by the National Human 
Genome Research Institute of the National Institutes of Health under Award 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662338doi: bioRxiv preprint 

https://toil.xenahubs.net/
http://courtyard.gi.ucsc.edu/~jvivian/outlier-paper/
https://github.com/jvivian/gene-outlier-detection
https://doi.org/10.1101/662338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Number U54HG007990. The content is solely the responsibility of the authors 
and does not necessarily represent the official views of the National Institutes of 
Health.” 

● 427053 
○ St. Baldrick's Foundation Treehouse Childhood Cancer Project 

● OPR014109 
○ California Precision Medicine Initiative: California Kids Cancer Comparison 

 
Authors' contributions 
JV, JE, and BP wrote the manuscript and developed the method. JV wrote the software 
implementation, documentation, and supplement. HB, OMV, and BP oversaw project details. 
 
Acknowledgements 
We thank the members of the Computational Genomics Laboratory at the UC Santa Cruz 
Genomics Institute for numerous conversations that helped shape this work as well as the 
Treehouse organization for their collaborative efforts.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 6, 2019. ; https://doi.org/10.1101/662338doi: bioRxiv preprint 

https://doi.org/10.1101/662338
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures 

 
Figure 1. Bayesian plate notation of the model. The plates (G) and (D) stand for Gene and Dataset 
respectively.  represents gene expression for one background dataset and is multiplied by the dot 

product of  to produce the convex combination . We specify "jointly Dirichlet" as there is not one 
Dirichlet distribution per background dataset. Instead, each background dataset is one component 
of the Dirichlet  vector. We add Laplacian error  to the expected expression  when modeling the 
observed expression of a new sample . 
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Figure 2. HeatMap of the average model weight assigned to GTEx tissues across tumor subtypes in 
TCGA. The model assigns a majority of weight to the matched tissue in GTEx for every tumor 
subtype. Only two tumor tissues, bladder and stomach, received less than 60% of the average model 
weight. GTEx has only 9 bladder samples and PCA shows those bladder samples cluster on top of 
minor salivary gland and vagina samples which helps explain its lower average weight relative to 
other tumor types (Supplement:  Dimensionality Reductions of Low-Weight Samples). 
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Figure 3. Different aspects of model robustness. (A) Robustness to false positives. Negative control 
experiment where 100 GTEx samples were run using GTEx, TCGA-normal, and TCGA-tumor as 
different backgrounds. Since posterior predictive p-values measure how different the observed 
result is from model expectations, we assume that using normal tissues as backgrounds for GTEx 
N-of-1 samples will result in a peak around 0.5 and very few outliers compared to when TCGA-Tumor 
is used as a background. (B) Robustness to imperfect comparison sets. The effect that removing a 
matched tissue has on the gene p-values the model generates as measured by Pearson correlation. 
The x-axis is the weight assigned to the matched tissue by the model. Gene p-values are relatively 
consistent even when a matched tissue is removed, particularly if the model can redistribute that 
weight to tissues of similar phenotypes. (C) Robustness to mixed lineage samples. Average model 
weight of mixture samples generated from random pairings of GTEx tissues. Samples were 
generated by averaging gene expression between randomly sampled subsets of each tissue group.  
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In most cases, the two tissues used to generate the mixture are assigned the majority of the model 
weight, which is the expected result. Three sets of mixture samples — Adrenal-Brain, Brain-Lung, and 
Liver-Thyroid — do not get the same result. PCA of those mixture samples, in the context of similar 
tissues, shows the generated mixture samples happen to cluster closer to other tissues than one or 
both of the tissues used to generate the samples (S3.7: Dimensionality Reductions of Mismatched 
Mixture Samples). In these circumstances, we expect the model to assign weight to those tissues 
that are more similar to the mixture samples. 
 

 
Figure 4.  Outlier counts given a p-value cutoff of 0.05. Eighty-five “druggable” genes curated by 
Treehouse were used as the target gene set for this analysis. All genes with counts for more than 
half of the samples within a tumor subtype were identified as known tumor biomarkers within that 
subtype in the literature (S5.3: Literature Corroboration of Outlier Findings).  
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Figure 5. Comparing results between a pan-normal cutoff approach and our model for a single 
sample. (A) Gene expression distributions for 4 genes using the GTEx dataset, overlaid with the gene 
expression value from our N-of-1 tumor in green and an outlier cutoff in red generated from Tukey's 
method (Q3 + IQR * 1.5). (B) Same plots as (A) along with the gene expression distribution for 
Thyroid in GTEx (orange) and the posterior predictive distribution (dotted black). The posterior 
distribution closely matches the GTEx Thyroid distribution because the model assigned almost all of 
the weight to that tissue. Posterior predictive p-values for each gene were added to the plot titles 
which is based on the relative proportion of samples in the posterior distribution greater than the 
value from the N-of-1 sample. (C) Trace plots for  and  from the MCMC sampling step.  is a 
Dirichlet distribution and sums to 1 and in this case assigned essentially all model weight to Thyroid 
in GTEx. 
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