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Abstract—Advances in sequencing technologies have pushed
the limits of genome assemblies beyond imagination. The sheer
amount of long read data that is being generated enables the
assembly for even the largest and most complex organism for
which efficient algorithms are needed. We present a new tool,
called Ra, for de novo genome assembly of long uncorrected
reads. It is a fast and memory friendly assembler based on
sequence classification and assembly graphs, developed with large
genomes in mind. It is freely available at https://github.com/lbcb-
sci/ra.

Index Terms—de novo genome assembly, long reads, read
classification

I. INTRODUCTION

The pace of improvement in sequencing technologies is
staggering. From modest fragments up to a thousand nu-
cleotides obtained with the first two generations of sequencing,
the read length increased manifold after just a few decades,
but with a setback in accuracy. Nonetheless, the increase
in maximal sequencing length facilitated significant advances
in contiguity of genome assemblies. Both leaders of the
third generation of sequencing, Oxford Nanopore Technolo-
gies (ONT) and Pacific Biosciences (PB), are continuously
improving their methods and throughput. Their novel protocols
enable the generation of ultra-long [1] or highly-accurate reads
[2], which will mitigate the assembly problem even further.
However, de novo assemblies for larger genomes are still
fragmented and substantial amount of computational resources
is needed to acquire them.

There is a vast amount of available genome assemblers
today. Some are specialized for short reads, others for long,
and the middle balances the advantages and disadvantages
of both sides. Almost all employ graph based techniques to
retrieve contiguous chains of sequenced reads, followed by a
polishing step to get rid of the remaining sequencing errors.
Short read assemblers are successors of the De Bruijn graph
approach [3], while long read assemblers compute pairwise
overlaps between all reads in order to build the string graph
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[4] or some of its variations, like the best overlap graph [5] and
the assembly graph [6]. Portion of the research shifted to the
generalization of de Bruijn graphs to make them more resilient
to error-ridden third generation data. Presence or absence of
read error-correction prior the assembly is another criterion by
which the assemblers distinguish themselves amongst others.
A list of available tools for long read assembly and their
characteristics can be observed in Table 1.

In this paper we present yet another approach to genome
assembly of long reads, incorporated in a tool called Ra
(short for Rapid Assembler), which is based on the Overlap-
Layout-Consensus paradigm (OLC) and is a mixture of well
established concepts developed in a memory friendly manner.

II. METHODS

Ra uses pairwise overlaps generated by minimap2 [12]
for a given set of raw sequences to build an assembly
graph, a directed graph that is both Watson-Crick complete
and containment free [6]. As a preprocessing step, it trims
sequence adapters, purges chimeric sequences and removes
false overlaps induced by repetitive genomic regions located
at sequence ends. This is achieved by examining their pile-
o-grams, which are produced directly from pairwise overlaps
[10]. After graph construction, Ra follows the default graph
simplification path, i.e. transitive reduction, tip removal and
bubble popping. Leftover tangles are resolved by cutting short
overlaps. Linear paths of the assembly graph are extracted
and passed to the consensus module Racon [13] to iteratively
increase the accuracy of the reconstructed genome. Further-

TABLE I
TOOLS FOR DE NOVO GENOME ASSEMBLY OF LONG READS

Tool Approach Reference
Canu Error correction → Bogart [7]

Falcon Error correction → String graph [8]
Flye ABruijn graph [9]

Hinge Repeat-aware BOG [10]
Miniasm Assembly graph [6]
Wtdbg2 Fuzzy Bruijn graph [11]

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 8, 2019. ; https://doi.org/10.1101/656306doi: bioRxiv preprint 

https://doi.org/10.1101/656306
http://creativecommons.org/licenses/by-nc/4.0/


Algorithm 1 Ra algorithm for de novo genome assembly
Input: Set of long and noisy sequences T obtained with
third generation of sequencing. Optionally, a set of short
and accurate sequences S obtained with second generation
of sequencing.
Output: Set of assembled and polished unitigs A.

1: procedure RA(T , [S])
2: O ← Minimap2(T , T ) . [12]
3: P ← TransformOverlaps(O) . Create pile-o-grams
4: for all p ∈ P do
5: Trim(p)
6: FindCoverageSlopes(p)
7: RemoveContainedSequences(P , O)
8: C ← FindConnectedComponents(P , O) . [14]
9: for all c ∈ C do

10: m ← FindCoverageMedian(c)
11: for all p ∈ c do
12: AnnotateChimericRegions(p, m)
13: . Retain the longest non-chimeric part of uncontained

sequences
14: U ← TransformSequences(P , T )
15: Q ← Minimap2(U , T , f ← 10−5)
16: P ← TransformOverlaps(Q) . Recreate pile-o-grams
17: for all c ∈ C do
18: m ← FindCoverageMedian(c)
19: for all p ∈ c do
20: AnnotateRepetitiveRegions(p, m)
21: . Use repeat annotations to identify false overlaps
22: RemoveFalseOverlaps(O, P )
23: G ← CreateAssemblyGraph(U , O) . [6]
24: RemoveTransitiveEdges(G) . [4]
25: repeat
26: G′ ← G
27: RemoveTips(G)
28: RemoveBubbles(G)
29: until G′ = G
30: RemoveLongEdges(G) . [6]
31: A ← CreateUnitigs(G)
32: R ← [T, T, S]
33: for all r ∈ R do
34: O ← Minimap2(A, r)
35: A ← Racon(r, O, A) . [13]
36: return A

more, if second generation sequencing data is available, it
can be used to further increase the accuracy of the assembly.
Pseudocode of the whole Ra pipeline can be seen in Algorithm
1.

A. Preprocessing

Pile-o-grams are an impressive tool to dive deeper into
the assembly problem, i.e. identification of sequence types.
They can be created by stacking all pairwise overlaps of a
sequence on top of each other. Summing up the number of
overlaps covering each base yields a one-dimensional signal

that has a characteristic outline depending on the sequence
type. Sequences that uniquely and fully map to the sequenced
genome should have almost uniform coverage across their
length as shown in Fig. 1. Others have noticeable fluctuations
in the signal. Chimeric sequences are sequencing artefacts
consisting of multiple parts which are arranged in a way that is
absent in the genome. Such signals mostly have a sharp decline
in coverage which is followed with a sharp increase, between
each of the connected parts (Fig. 2a). There are also cases
when those parts overlap a certain amount, causing a spike
that reminds of a Dirac delta function (Fig. 2b). Sequences
containing a repetitive region at either of the ends can spawn
false suffix-prefix overlaps. Those regions can be identified as
an increase in coverage in form of a step function (Fig. 2c).

Hinge uses pile-o-grams to detect chimeric sequences and
annotate repetitive genomic regions by calculating coverage
gradients [10]. Chimeric sequences are truncated to the longest
non-chimeric part. On the other hand, repeat annotations are
used to find sequences that do not fully bridge certain repeats
to allow some of them multiple overlaps in an otherwise
best overlap graph, and later use this information for repeat
resolution [10].

In the first stage Ra implements a similar approach. All
pairwise overlaps are loaded in blocks and immediately trans-
formed into pile-o-grams to decrease the memory footprint.

Fig. 1. Pile-o-gram that is almost uniform. It was obtained by adding up the
number of overlaps covering each base in a sequence which can be uniquely
mapped to the reference genome.
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Fig. 2. Pile-o-gram representatives for other sequence types with highlighted
regions of interest. Chimeric sequences, those that partially map to different
regions of the genome, can be seen in subfigures a) and b). The pile-o-gram in
a) has a rift denoting that there is almost no overlaps covering this part of the
sequence. The one in b) has a narrow ridge that indicates a little overlapping
region between parts that constitute this chimeric sequence. On the other hand,
repetitive regions in pile-o-grams can be identified by large ridges as seen in
pile-o-gram c).

At this point, each sequence is represented with a vector of
unsigned short integers containing base coverages which is
approximately equal to storing the complete FASTQ version
of the input sequence file. Such pile-o-grams are first used to
trim sequences to the largest region covered by at least three
sequences, similarly to Miniasm [6]. Afterwards, Ra scans
through the coverage vector to identify slopes in the signal
by keeping sliding windows left and right of each position in
the sequence. The maximal value of each window is compared
to the current position and the slope is stored if the coverage
ratio is large enough. Collected slopes are grouped into more

complex shapes such as rifts and ridges, and each group is
further investigated. To decrease the number of false positive
annotations, we utilize the information about approximate
sequencing depth. The pairwise overlaps are parsed again,
contained sequences are dropped, internal overlaps are set
aside, and only the remaining prefix-suffix overlaps are kept.
They are used to group sequences in connected components
with a simple depth-first search [14]. Coverage medians are
calculated from pile-o-grams and a global median is ob-
tained for each connected component separately. This way we
can treat different sequencing depths correctly. The coverage
median of a component is used to determine the relevance
of each rift and ridge in all signals of that component. A
rift is chimeric if it contains a base with coverage bellow
the coverage median divided by 1.84, while ridges represent
repetitive regions if majority of their bases have coverage
above the coverage median multiplied with 1.42 (both values
empirically determined). Narrow ridges located inside the mid-
dle of each sequence also undergo a chimeric test. During the
second parsing of the overlap file they are declared chimeric
if there are not at least three overlaps containing them. Once
annotation is finished, Ra breaks sequences over rifts and
chimeric ridges, retains the longest non-chimeric region and
reconsiders corresponding overlaps that have been classified
as internal beforehand. Remaining overlaps that either start or
end inside a ridge located at a sequence end are removed, if
at least one of overlapped sequences has another overlap that
pierces through the ridge in question.

Ra was developed atop minimap2 because it is the fastest
pairwise overlapper for long reads. Minimap2 and its predeces-
sor minimap both filter out the most frequent k-mers in order
to decrease the number of matching minimizers bound to be
stored into memory and thus increases the execution speed
[6] [12]. The affected k-mers mostly originate from repetitive
regions or from higher copy-number molecules (e.g. plasmids).
By employing the layout step hierarchically, first removing
contained and chimeric sequences in the preconstruction step,
we postpone the repeat annotation to the second step. The
whole sequence set is mapped only against the leftover se-
quences (which constitute a tiny bit of the dataset) and the
k-mer filter is decreased by at least one order of magnitude.
Pile-o-grams are constructed anew and the increase in base
coverage of repetitive regions greatly aids the annotation
process.

As mentioned before, pile-o-grams can be treated as one-
dimensional signals which makes them suitable for ma-
chine learning algorithms. Therefore, we also applied semi-
supervised [15] and unsupervised learning algorithms [16] in
order to aid sequence classification and annotation. Unfortu-
nately, current results are still outperformed by heuristics.

B. Graph simplification

After preprocessing, the assembly graph is built and simpli-
fied stepwise. Transitive reduction is applied first, as described
in [4]. Next, paths consisting of less than seven sequences
and without any incoming edges are treated as dead ends
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e)

d)

b)

c)

a)

Fig. 3. Path types in bubble-like structures of the assembly graph. Paths in
consideration consist of solid lines and are inspected for edges which removal
will not discontinue any other path. Subfigure a) depicts the simplest scenario
in which the whole path can be removed. When they are several nodes with
multiple outgoing edges and a single incoming edge, everything after the last
node can be deleted as in b). Similar rule applies to the case in c) where
they are several nodes with multiple incoming edges and a single outgoing
edge. Everything before the first such node can be deleted. When there is a
combination of those node types, the edges after the last node with multiple
outgoing edges and before the first node with multiple incoming edges can be
deleted, as seen in d). This only applies when those two nodes do not have
multiple edges of the other type, i.e. if a node has multiple incoming edges
it may not have multiple outgoing edges (subfigure e)).

in the graph (tips) and are removed in an iterative fashion.
Finally, bubble-like structures are found with breadth-first
search similar to [17]. Each bubble is inspected for edges
whose removal will not cause a break in any other path of the
graph (Fig. 3). The path of the bubble with fewer sequences is
examined first, and if such edges do not exist, the other path
is considered. Bubbles are detected and popped iteratively as
well.

Above described simplification methods coupled with se-

quence preprocessing are often enough to fully reconstruct
the genome. Sequence preprocessing being a heuristic method
can sometimes miss a portion of chimeric sequences and
false overlaps, leaving us with tangles in the assembly graph.
Miniasm solves its leftover tangles by removing short overlaps
[6]. Ra follows the same approach but removes only those
overlaps that are much shorter than any other overlap in a
given tangle (4.2 times by default).

III. RESULTS

We evaluated our de novo assembler on several publicly
available Oxford Nanopore and Pacific Biosciences data sets.
Results such as NG50, memory consumption and CPU time
can be seen in Table II. We run Ra (commit 07364a1) with
12 threads on a machine with Intel Xeon CPU (2.40GHz),
and used QuastLG [18] (v5.0.2) and dnadiff [19] (v1.3) for
evaluation.

We can observe how NG50 can still be improved and we
believe that this is achievable with more relaxed constraints in
sequence annotation and better heuristics for solving leftover
tangles in the assembly graph. The memory consumption is
bound by the sequence file plus some overhead for the overlap
files which should be small enough for most use cases. The
overlap and consensus steps dominate the execution time, but
we believe it is possible to speed up the overlap step, which
is the future path of optimizations we will consider.

Ra is a simple and lightweight assembler which happens
to perform well on genomes sizes ranging from bacteria to
plants shown by independent evaluations. For example, in a
comparison of long read assembler applied to various bacterial
datasets [20]), Ra was declared the most reliable assembler. In
addition, it was used by [21] and yielded the most contiguous
plant assemblies in their study.
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