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 2 

Abstract 10 

Taxonomic classification is a crucial step for metagenomics applications 11 

including disease diagnostics, microbiome analyses, and outbreak tracing. Yet 12 

it is unknown what deep learning architecture can capture microbial genome-13 

wide features relevant to this task. We report DeepMicrobes 14 

(https://github.com/MicrobeLab/DeepMicrobes), a computational framework 15 

that can perform large-scale training on > 10,000 RefSeq complete microbial 16 

genomes and accurately predict the species-of-origin of whole metagenome 17 

shotgun sequencing reads. We show the advantage of DeepMicrobes over 18 

state-of-the-art tools in precisely identifying species from microbial community 19 

sequencing data. Therefore, DeepMicrobes expands the toolbox of taxonomic 20 

classification for metagenomics and enables the development of further deep 21 

learning-based bioinformatics algorithms for microbial genomic sequence 22 

analysis.  23 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/694851doi: bioRxiv preprint 

https://doi.org/10.1101/694851
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 24 

Shotgun metagenomic sequencing provides an unprecedented high-resolution 25 

insight into the critical roles of microorganisms in human health and 26 

environment1. One of the fundamental analysis steps in metagenomics is to 27 

assign individual reads to their species-of-origin. Unlike 16S rRNA sequencing 28 

data, which ignores more than 99% of the genomic sequences, taxonomic 29 

classification of whole genome shotgun sequencing data is more challenging 30 

and capacity demanding for machine learning algorithms. The models should 31 

learn genome-wide patterns during training, whereas only information from a 32 

short genomic fragment is available during application. Current taxonomic 33 

classification algorithms mainly utilize handcrafted sequence composition 34 

features such as oligonucleotide frequency2,3. However, they are either too slow 35 

to process large data sets or comparable to, if not worse than, traditional 36 

alignment in terms of precision and recall4. Additionally, the features used by 37 

these models are often too inflexible to meet the requirement of specific 38 

applications beyond their original narrow use cases. 39 

 Deep learning is a class of machine learning algorithms capable of 40 

modeling complex dependencies between input data (e.g., genomic fragments) 41 

and target variables (e.g., species-of-origin) in an end-to-end fashion. Thanks 42 

to graphical processing units (GPUs), deep learning-based bioinformatics tools 43 

can rapidly process large amounts of metagenomics sequencing data. We thus 44 
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hypothesize that deep learning can automatically discover taxonomic 45 

classification-relevant and genome-wide shared features appearing in short 46 

metagenomics sequencing reads given a well-designed deep neural network 47 

(DNN) architecture.   48 

Deep learning has made tremendous recent advances in genomics5. 49 

Taking one-hot encoded DNA sequences as input, the DNNs that have been 50 

employed to genomic data fall into two major categories, convolutional neural 51 

networks (CNNs) and a hybrid of CNNs and recurrent neural networks (RNNs). 52 

For example, DeepSEA6, PrimateAI7 and SpliceAI8 used CNNs to predict the 53 

impact of genetic variation. Seq2species9 also adopted CNNs to predict the 54 

species-of-origin of 16S data. DeeperBind10 and DanQ11 used hybrid 55 

architectures to predict transcription factor binding and DNA accessibility. 56 

Despite the success of these applications, it remains unknown what DNN 57 

architecture and DNA encoding method are suitable for taxonomic classification 58 

of metagenomics data.  59 

Here we describe DeepMicrobes, a k-mer embedding-based recurrent 60 

network with attention mechanism (Fig. 1a). We trained the DNN on synthetic 61 

reads from RefSeq complete bacterial and archaeal genomes. The first layer of 62 

DeepMicrobes is designed to encode k-mers to dense vectors through 63 

embedding. The vectors are fed into a bidirectional long short-term memory 64 

network (BiLSTM) followed by self-attention and a multilayer perceptron (MLP). 65 
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DeepMicrobes surpasses other explored architectures both on synthetic and 66 

real sequencing data. Specifically, k-mer embedding rather than one-hot 67 

encoding boosts model performance. In addition, we show that our deep 68 

learning approach produces less false positive identifications than other 69 

taxonomic classification tools based on database searching.  70 

 71 

Results 72 

A deep learning architecture for taxonomic classification 73 

To determine what kind of DNN is suitable for modeling the taxonomic 74 

signatures of shotgun metagenomic sequencing reads, we presented a 75 

systematic exploration of DNN architectures with different combinations of 76 

network architectural building blocks, DNA encoding schemes, and other 77 

hyperparameters. We used a curated RefSeq complete bacterial genome 78 

subset for model selection to release the computational burden of architecture 79 

searching (Methods). The training set consisted of simulated 100 bp reads in 80 

equal proportion from each species. To test the performance of these models, 81 

we created a synthetic data set consisted of 100,000 read pairs in equal 82 

proportion from 1,000 genomes (Supplementary Table 1). We used genome 83 

sequencing data sets from Sequence Read Archive (SRA) to evaluate their 84 

robustness on real data (Supplementary Table 2-3). We used confidence > 85 

50% as the threshold for classified reads.  86 
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 To determine whether the deep learning architectures for other DNA 87 

sequence modeling tasks can be transferred to taxonomic classification, we 88 

respectively trained the models which are representatives of two major types of 89 

previously employed DNNs. We began with ResNet-like convolutional models, 90 

which achieved state-of-the-art performance in predicting the impact of 91 

mutations7,8. The convolutional models took as input one-hot encoded DNA 92 

sequences, and fed them into multiple stacking convolutional blocks (Methods). 93 

We varied the number of convolutional blocks and found that the model with six 94 

blocks achieved the highest area under the precision recall curve (AUPRC = 95 

0.055), followed by eight blocks (AUPRC = 0.052) on the synthetic data set (Fig. 96 

1b). Due to low-confidence predictions, the sensitivity and specificity of the 97 

model were closed to zero on the real data sets (Fig. 1c and Supplementary 98 

Table 2-3).  99 

 We next trained the hybrid architecture of CNN and RNN, which was proved 100 

to be effective in predicting transcription factor binding10,11. One-hot encoded 101 

DNA sequences were fed to a convolutional layer followed by BiLSTM 102 

(Methods). Despite its simplicity, the hybrid model (AUPRC = 0.115) surpassed 103 

the ResNet-like CNN (Fig. 1b). Also, the hybrid model achieved higher than 90% 104 

specificity for 16 out of 72 real sequencing data sets (Fig. 1c and 105 

Supplementary Table 2). Nonetheless, the sensitivity remained low due to the 106 

low prediction confidence (Fig. 1c and Supplementary Table 3).  107 
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 Seq2species was an architecture designed for predicting species-of-origin 108 

of 16S data9. Taking one-hot encoded DNA vectors as input, seq2species used 109 

depthwise separable convolution as its main component. We retrained the 110 

model to assess whether this architecture could be transferred to shotgun 111 

metagenomic reads classification (Methods). It is worth noting that we used a 112 

batch size of 2,048 which performed better than 500 as of training on 16S data, 113 

suggesting the importance of larger batch size in metagenomic setting. In 114 

general, the performance of seq2species was only slightly better than the 115 

hybrid model both on the synthetic data (AUPRC = 0.120) and the real 116 

sequencing data (Fig. 1b, c). These results demonstrate that applying subtle 117 

variants of CNN or combination with RNN provides more performance boost 118 

than stacking a deeper CNN for shotgun metagenomic sequences classification.  119 

 The deep learning architectures above share the idea that a convolutional 120 

layer should be adopted as the first layers to locate pattern features from one-121 

hot encoded DNA sequences. Indeed, CNNs excel in the recognition of motifs, 122 

which is helpful for predicting splicing site and cis-acting elements like promoter 123 

and enhancer. Notably, CNNs might not take into account the spatial ordering 124 

of local motifs, given the evidence from image classification12. This can have 125 

little impact on tasks where only the occurrence of a few nucleotides in a DNA 126 

sequence are the key to classification (e.g. transcription factor binding site 127 

detection). However, it is more complex to model taxonomic signatures, such 128 
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as single-nucleotide variants (SNVs), insertion–deletions (indels), and unique 129 

genes, especially for short microbial sequencing reads. Moreover, one-hot 130 

encoding has its own limitations. Apart from being sparse in information, one-131 

hot approach encodes double strands of a DNA sequence into two unrelated 132 

matrices.  133 

 To overcome these limitations, we made an analogy between k-mers and 134 

words and used k-mer embedding to represent DNA sequences, which is 135 

common practice in natural language processing (NLP). Reverse complement 136 

k-mers are treated as the same word (Methods). To determine the contribution 137 

of this encoding scheme to model performance, we trained an embedding-138 

based baseline model whose only trainable parameters were the weights in the 139 

embedding layer (Methods). The preliminary experiments showed that the 140 

models performed better using longer k-mer, thus we chose the longest k-mer 141 

(k = 12) whose vocabulary was able to fit in the memory of our GPUs. 142 

Interestingly, the baseline model (AUPRC = 0.877) outperformed the models 143 

taking one-hot encoded DNA as input (Fig. 1b). On the real sequencing data 144 

sets, the model assigned reads to the target species in > 90% specificity for 56 145 

data sets, and > 95% specificity for 39 data sets (Fig. 1c and Supplementary 146 

Table 2). Meanwhile, all the target species was successfully identified (Fig. 1c 147 

and Supplementary Table 3). This implies that the k-mer embedding layer is 148 

capable of embedding taxonomic attributes in each k-mer vector. 149 
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 9 

 We next asked what types of neural networks were appropriate to learn 150 

useful information from k-mer embedding. To investigate this, we made two 151 

extensions on the baseline model by respectively adding a convolutional and 152 

BiLSTM layer after the k-mer embedding layer (Methods). Surprisingly, the 153 

embedding-based convolutional model was worse than the baseline model on 154 

the synthetic data (AUPRC = 0.809) and real genomic sequencing data in 155 

specificity (P < 6.7 × 10-5) and sensitivity (P < 1.8 × 10-22), though it contained 156 

more parameters in the convolutional layer (Fig. 1b, c). In contrast, the 157 

embedding-based recurrent model (AUPRC = 0.881) further increased the 158 

performance of the baseline on the real data in specificity (P < 1.1 × 10-2) and 159 

sensitivity (P < 1.9 × 10-4; Fig. 1b, c). 160 

 Self-attention is an attention mechanism capable of extracting relevant 161 

aspects from sentences with no need for additional information13. Inspired by 162 

its successful applications in a variety of NLP tasks, we applied self-attention 163 

mechanism on top of the BiLSTM of the embedding-based recurrent model to 164 

evaluate if this could further improve the model performance (Methods). Instead 165 

of directly taking the hidden state of the BiLSTM as features for the MLP, self-166 

attention enabled the model to focus on specific regions of input DNA 167 

sequences, and generated sequence-level representation. Indeed, the model 168 

reached an AUPRC of 0.907 (Fig. 1b). When evaluated on the real sequencing 169 

data sets, the model also surpassed the embedding-based recurrent model 170 
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 10 

without self-attention mechanism in specificity (P < 1.2 × 10-2) and sensitivity 171 

(P < 2.6 × 10-14; Fig. 1c). This suggests that paying more attention to some 172 

specific parts of reads might help DNNs better model the unique features 173 

among short genomic sequences from different microorganisms. This deep 174 

learning architecture is selected and termed DeepMicrobes in the following 175 

studies (Fig. 1a).  176 

To confirm the impact of embedding k-mer length, we trained a series of 177 

variant models of DeepMicrobes using k < 12. We observed that on the 178 

synthetic data the AUPRC increased from 0.255 (k = 8) to 0.589 (k =11), and 179 

the trend was consistent on the real data (Supplementary Fig. 1 and 180 

Supplementary Table 4-5). These results support the potential of using even 181 

longer k-mer to improve the performance. Other architectures, such as 182 

hierarchical attention networks14 and the Transformer15 that entirely based on 183 

attention mechanisms, have potential in taking more advantage of the 184 

information in k-mer embedding. But they were too big to be trained on shotgun 185 

metagenomic reads classification task, by hindering the use of large batch sizes. 186 

Taken together, DeepMicrobes is the best feasible deep learning architecture 187 

in our problem setting.  188 

 189 

DeepMicrobes generalizes to different taxonomic ranks and read lengths 190 

To test the general applicability of DeepMicrobes on different taxonomic ranks, 191 
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we used the same architecture as species-level model to build the classifiers at 192 

the level of genus, family, order, class and phylum, respectively (Methods). We 193 

evaluated the six models on the synthetic data sets whose read lengths was 194 

different from the 100 bp training sets. As expected, when tested on the 100 bp 195 

data, the performance consistently increased from species to phylum, reaching 196 

an AUPRC of 0.951 at the genus level, and a nearly perfect AUPRC of 0.998 197 

at the phylum level (Fig. 2a). This probably resulted from reduced burden to 198 

the models in distinguishing similar taxa. The monotonically increasing pattern 199 

with taxonomic ranks retained for 150 bp and 200 bp test sets, while the 250 200 

bp and 300 bp test sets showed small fluctuation of AUPRC between 0.989 and 201 

0.995 (Fig. 2a). The species-level model performed better on longer sequences, 202 

with an AUPRC of 0.974 on the 150 bp data set (Fig. 2a). Interestingly, the 203 

models at the level higher than order tended to perform better on the read 204 

lengths similar to training sets. Nonetheless, the AUPRCs of these high-rank 205 

models were all above 0.99. These results indicate the overall robustness of 206 

DeepMicrobes on multiple taxonomic ranks and varying length of reads that 207 

were not seen during training.  208 

Unlike traditional species classification approaches based on alignment, k-209 

mer frequency or machine learning systems with hand engineered features, our 210 

deep neural network extracts novel, useful, and reusable features from the 211 

underlying data sets. We hypothesized that DeepMicrobes makes robust 212 
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predictions by extracting high-level features that are shared among hundreds-213 

of-nucleotide fragments across the genomes of a taxon from primary 214 

metagenomic sequences. To test this hypothesis, we used a published mock 215 

community sample consisted of 11 species members from 7 genera16, and 216 

obtained the feature maps generated from the last hidden layer of the species-217 

level model and genus-level model, respectively (Methods).  218 

We then applied t-Distributed stochastic neighbor embedding (T-SNE) 219 

dimension reduction17 to visualize a randomly drawn subset of the metagenome 220 

sample using these features (Methods). The sequencing reads originated from 221 

the same species clustered into unique groups (Fig. 2b). Furthermore, the 222 

distance between clusters could partly reflect the evolutionary relationships. 223 

Species of the same genus tended to be closer (Fig. 2b). Escherichia coli and 224 

Salmonella enterica, reported to share a supraspecies pangenome18, also 225 

showed this pattern (Fig. 2b). When using features extracted by the genus-226 

level model, species of the same genus mixed together to form one big cluster 227 

(Fig. 2b). This pattern indicates that the characteristics of the learned features 228 

depend on the training target allowing for a flexible and tunable approach to 229 

extracting meaningful sequence features. Thus, DeepMicrobes could 230 

potentially extract more specific features that enable discrimination among 231 

even more similar taxa such as strain provided suitable training data is available. 232 

Notably, one of the species (and also genus) in the community, 233 
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Paeniclostridium sordellii, was excluded from the training sets due to 234 

incomplete genomes. Nonetheless, the taxon formed a distinguishable cluster 235 

both at the species and genus level (Fig. 2b), demonstrating the versatility of 236 

the high-level features in grouping microbial sequences from the same taxon 237 

as well as identifying novel organisms that were not part of the training data.  238 

 239 

DeepMicrobes improves species identification by database searching 240 

Accurate species identification from metagenomics samples is a critical aspect 241 

of taxonomic classification. However, most database search tools for 242 

metagenomics only retain high precision and recall until the family level19. To 243 

test the advantage of our deep learning-based approach in species and genus 244 

identification, we analyzed the Critical Assessment of Metagenome 245 

Interpretation (CAMI) data sets19 using DeepMicrobes and seven other 246 

taxonomic classification tools, including Kraken20, Kraken 2, Centrifuge21, 247 

CLARK22, CLARK-S23, Kaiju24 and BLAST-MEGAN25. To this end, we trained 248 

DeepMicrobes to assign species label to reads using 10,857 RefSeq complete 249 

bacterial and archaeal genomes covering 3,640 species (Methods). Apart from 250 

the classification results generated using their pre-built reference databases if 251 

available, we also filtered the results to only consider the species shared by all 252 

reference databases or training set. This was to eliminate the effect of database 253 

setting on performance metrics, and focus on the algorithms.   254 
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 We observed that DeepMicrobes substantially outperformed other tools in 255 

terms of precision at the species and genus level (Fig. 2c and Supplementary 256 

Fig. 2). For example, Kraken identified 1,754 more false positive species than 257 

DeepMicrobes from the medium-complexity sample, based on the filtered 258 

results. Specifically, DeepMicrobes identified less false positive species than 259 

BLAST-MEGAN regardless of the database setting. Meanwhile, DeepMicrobes 260 

classified reads faster than the other tools, except for Kraken and Kraken 2 261 

(Supplementary Fig. 2). In detail, when processing 100 bp reads, 262 

DeepMicrobes was 1.3 times faster than Centrifuge, and 519.9 times faster 263 

than BLAST-MEGAN, which was the second most precise tool. Notably, we 264 

used eight CPUs to run the other tools and one GPU to run DeepMicrobes. 265 

Moreover, since the number of reads that can be processed in parallel totally 266 

relies on available memory, the classification speed of DeepMicrobes has large 267 

room to improve given a more powerful GPU than the one used in this study. 268 

These results suggest that our deep learning approach has advantages over 269 

database searching, especially when false positives would strongly increase 270 

the cost in downstream efforts.   271 

 272 

Discussion 273 

In this study, we introduce DeepMicrobes, a deep learning architecture able to 274 

accurately predict the species-of-origin from primary shotgun metagenomic 275 
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sequencing reads. Although trained on simulated reads, it performed well on 276 

real data with sequences different from the genomes used for training. Including 277 

real sequencing reads might further improve the performance.  278 

Effective taxonomic classification requires a distinct DNA encoding scheme 279 

and deep neural network architecture for precise genomic modeling tasks. We 280 

show that replacing one-hot encoding with k-mer embedding significantly 281 

boosts model performance. One likely reason for the improvement may be that 282 

taxonomic information is encoded by the k-mer representations in the 283 

embedding space. With this representation, difference between similar 284 

sequences originating from closely related species could be amplified. Finally, 285 

a pair of reverse complement DNA sequences consist of the same words, thus 286 

knowledge could be easily transferred between them. Interestingly, k-mer 287 

embedding has recently been showed to surpass one-hot encoding in 288 

predicting transcription factor binding26. This suggests the general applicability 289 

of k-mer embedding in other biological fields.  290 

Our finding that RNNs surpass CNNs in taxonomic classification highlights 291 

the importance of order and context of oligonucleotides in taxonomic 292 

classification. CNNs and k-mer exact alignments only take into account the 293 

presence of specific oligonucleotides, while early machine learning-based 294 

taxonomic classifiers employed their frequency as features. In contrast, 295 

BiLSTM understands a k-mer better with the help of knowledge learned from 296 
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the previous and next k-mer. Hence, ordering and contextual information are 297 

retained and passed to the next layer.  298 

To our knowledge, DeepMicrobes is the first deep learning architecture that 299 

incorporates attention mechanisms in DNA sequences analysis. Apart from a 300 

performance boost, attention scores provide an easy way to visualize what 301 

parts of the DNA sequences contribute most to prediction. This characteristic 302 

makes algorithm more interpretable than perturbation-based and 303 

backpropagation-based approaches opening the possibility of exploring the 304 

biological meaning of the extracted features in contrast to black-box prediction 305 

algorithms.  306 

DeepMicrobes provides a novel tool and information source for taxonomy 307 

identification and expands the repertoire of metagenome analysis methods. 308 

Unlike algorithms based on read mapping, discriminative k-mer, or sequence 309 

composition, DeepMicrobes extracts task-relevant features from DNA 310 

sequences using a deep neural network learning architecture. Notably, the k-311 

mer length we recommend is far from being discriminative among species as 312 

is the case of Kraken, CLARK, and Centrifuge. Current binning methods using 313 

sequence compositions as features typically perform well on long contigs. 314 

However, we show that the sequences as short as 100 bp formed separable 315 

clusters using high-level features extracted by DNNs. The feature type 316 

generated by supervised learning depends on training targets, which is more 317 
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focused and task-relevant than auto-encoder methods27. Future researches 318 

might investigate how to utilize these features, and also incorporate them with 319 

co-occurrence or coverage information to build a powerful metagenome binning 320 

tool.  321 

 We demonstrate that DeepMicrobes is capable of discovering microbial 322 

genome-wide features appearing in short genomic fragments. Apart from 323 

general microbiome analysis, taxonomic classification is also useful in other 324 

scenarios such as outbreak tracing, pathogen identification, and virulence 325 

prediction. Given the flexibility and expressiveness of deep learning modeling 326 

techniques, DeepMicrobes might be easily transferred to these tasks by shifting 327 

training sets. For example, predicting the source of food-borne disease would 328 

require the deep learning model to be trained on whole-genome sequencing 329 

data of Salmonella enterica collected from different hosts28. We believe that 330 

DeepMicrobes will be of benefit for development of deep learning-based 331 

bioinformatics tools that are able to extract new insights from the exponentially 332 

increasing amount of microbial genomic sequencing data.  333 

 334 

Methods 335 

Data sets for model training 336 

Source genomes for training were collected from National Center for 337 

Biotechnology Information (NCBI) reference sequences (RefSeq) bacterial and 338 
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archaeal genome database (downloaded on 2018-11-30). Training sets were 339 

constructed by simulating sequencing reads from complete genomes using 340 

wgsim in the SAMtools software package29. We simulated 100 bp error-free 341 

reads in equal proportion for each species. The number of reads to simulate 342 

depended on how many training steps were required for models to converge. 343 

Apart from sampling from both strands of genomes, we also included the 344 

reverse complement reads in the training set. Each read was given a numerical 345 

label based on NCBI taxonomy IDs at the species level (more details provided 346 

with the source code at https://github.com/MicrobeLab/DeepMicrobes). The 347 

reads for training at other taxonomic ranks (phylum, class, order, family, and 348 

genus) were labeled at that specific rank. 349 

The species included in the training set for model selection was required to 350 

contain at least one genome of a strain at the reference or representative 351 

assembly level of quality in the RefSeq database. We drew one genome as 352 

representative for each species. This training set was also used to train the 353 

variants of DeepMicrobes at different taxonomic level 354 

(https://github.com/MicrobeLab/DeepMicrobes). The full training set used to 355 

train the model for comparison with other taxonomic classifiers contained 356 

filtered RefSeq bacterial and archaeal species. We first screened the similar 357 

pairs of species using the tetranucleotide signature correlation index 358 

implemented by pyani30 (http://widdowquinn.github.io/pyani). We next 359 
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computed the average nucleotide identity (ANI) between these species pairs 360 

whose tetranucleotide signature correlation index > 0.99 31 using a window size 361 

of 100 bp. If > 80% coverage of the genomes of a species showed an ANI > 362 

95%, the species was excluded from training. This resulted in 10,857 genomes 363 

of 3,640 species. Full list of the genomes and species is available at 364 

https://github.com/MicrobeLab/DeepMicrobes. 365 

 366 

Data sets for model selection 367 

We created an evaluation set consisting of 10,000 100 bp reads for each 368 

species, which was simulated using wgsim with a random seed different from 369 

the one used to generate the training sets. This evaluation set was used to 370 

search for optimal hyperparameters and decide when to stop training. This data 371 

set was not seen during training to protect against overfitting the model. We 372 

used Mason read simulator32 to create the synthetic test set from 1,000 373 

bacterial genomes (Supplementary Table 1). Before genome fragmentation, a 374 

SNP rate of 0.1% and an indel rate of 0.1% were injected in genomes. In 375 

addition, an indel rate of 0.1% and a mutation rate of 0.4% were injected in the 376 

reads. We simulated equal proportion of 100 bp read pairs for each genome, 377 

and benchmarked the models with different architectures on this data set with 378 

100,000 reads. We also created the data sets in 150 bp, 200 bp, 250 bp, and 379 

300 bp, which are common lengths for next-generation sequencing reads. The 380 
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data sets used to evaluate model performance at different taxonomic ranks 381 

were the same, except for the true labels were given at the target rank. We 382 

downloaded 72 bacterial genome sequencing samples from the Sequence 383 

Read Archive (SRA) at NCBI (Supplementary Table 2). We filtered reads 384 

shorter than 100 bp after quality control, and truncated longer reads to 100 bp.  385 

 386 

Representation of DNA sequences 387 

We adopted two strategies to encode DNA sequences into numeric matrices, 388 

namely one-hot encoding and k-mer embedding. For one-hot encoding we 389 

converted DNA into 4 × L matrix, where A = [1, 0, 0, 0], C = [0, 1, 0, 0], G = [0, 390 

0, 1, 0] and T = [0, 0, 0, 1]. For k-mer embedding, we split a DNA sequence of 391 

length L into a list of substrings of length K with a stride of S. We used a stride 392 

of one for the final model, ending up with L – K + 1 substrings. The length of K 393 

was chosen to reach balance between the model’s fitting capacity and 394 

computational resources since the vocabulary size grows exponentially in K by 395 

4K (Supplementary Table 6). We used 12-mers unless otherwise stated. The 396 

k-mer vocabulary was constructed using Jellyfish. We only retained canonical 397 

k-mers as representatives (-C parameter of Jellyfish), which downsized the 398 

vocabulary (Supplementary Table 6). We included a word symbol <unk> in 399 

the vocabulary to represent k-mers with Ns. Each k-mer was further encoded 400 

as a zero-based integer according to its lexical order in the vocabulary. These 401 
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integers then served as indexes for the word embedding layer.  402 

 403 

Model architectures  404 

Convolutional model 405 

The ResNet33-like CNN took as input the one-hot encoded DNA sequences. 406 

The architecture started with one layer of convolutions, followed by a stack of 407 

shortcut connected ResNet-like temporal convolutional blocks. One 408 

convolutional block consisted of two convolutional layers, each followed by a 409 

layer of batch normalization and activation. A pooling layer was inserted every 410 

two convolutional blocks. This resulted in a DNN with 1 + 2N convolutional 411 

layers, where N is the number of convolutional blocks. Unless otherwise stated, 412 

we used MLP as a classifier for species label prediction, which was also the 413 

case of the other models.  414 

 415 

Hybrid convolutional and recurrent model 416 

DNA sequences were input as one-hot matrices. The models began with one 417 

convolutional layer and one pooling layer, followed by BiLSTM.  418 

 419 

Seq2species 420 

We used the hyperparameters of Seq2species optimized for 100 bp reads9, 421 

except that the number of nodes in the output layer was changed to the number 422 
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of species in our setting. To train the model, we used the code available at 423 

https://github.com/tensorflow/models/tree/master/research/seq2species. To 424 

benchmark running time and other performance metrics, we adapted the code 425 

to our input and output pipelines without changing the code related to the model 426 

architecture (https://github.com/MicrobeLab/DeepMicrobes).  427 

 428 

Embedding baseline 429 

The k-mer embedding layer learned a mapping from each k-mer index to an 430 

embedding vector. We randomly initialized the parameters in the embedding 431 

layer. Before the fully connected layers, we performed max pooling and 432 

average pooling over the dimension of token length of the embedding matrix 433 

and concatenated together the two feature vectors. 434 

 435 

Embedding-based convolutional model 436 

We extended the embedding baseline model by adding a convolutional layer 437 

after the embedding layer. The 1D convolution kernel was convolved with the 438 

input embedding matrix over the dimension of token length. In addition to 439 

convolutional layer with one fixed filter width, the feature maps generated by 440 

convolutional layers with multiple filter widths could also be concatenated. We 441 

optionally applied an over-time pooling over the features before feeding them 442 

to the MLP.  443 
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 444 

Embedding-based recurrent model 445 

We applied a BiLSTM over the embedding vector of each k-mer. Similar to the 446 

convolution extension, we also tried different types of pooling operation over 447 

the hidden states generated by the BiLSTM. Alternatively, the hidden states 448 

were directly fed to the MLP. 449 

 450 

Embedding-based recurrent self-attention model 451 

The summation vectors generated by the self-attention operation were used to 452 

weight LSTM hidden states. The attention vector was softmax normalized so 453 

as to ensure all the weights summed up to one. Multiple rows of attention were 454 

used to focus on multiple aspects of the DNA sequences that reflected 455 

taxonomic signatures. For downstream classification task, the self-attention 456 

weighted hidden states were fed to the MLP.  457 

 458 

Model training and evaluation metrics 459 

The DNNs were implemented using TensorFlow framework. We used NVIDIA 460 

Tesla P40 24GB GPU to accelerate computation. The training set was only 461 

seen by the models for one time (i.e., epoch = 1). We trained the models till 462 

they converged on the evaluation set. Reads in fasta or fastq format were 463 

converted to the TensorFlow format TFRecord before loading into the models.  464 
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 For each architecture of DNN, we performed random search to pick the 465 

optimal combination of hyperparameters. In detail, we randomly sampled 30 466 

candidate hyperparameters setting from the search space (Supplementary 467 

Table 7) and picked the models which performed best on the evaluation set. 468 

We used micro-averaging AUPRC to evaluate model performance on the 469 

synthetic test sets. Sensitivity and specificity were used to measure the 470 

performance of models on the genome sequencing data sets. Here sensitivity 471 

is defined as the proportion of correctly classified reads out of the total number 472 

of reads in the sample, and specificity is defined as the proportion of correctly 473 

classified reads among all reads classified. The statistical difference was 474 

measured by paired t-test.  475 

 476 

Comparison of DeepMicrobes with other taxonomic classifiers 477 

We compared the performance of DeepMicrobes with Kraken, Kraken 2, 478 

Centrifuge, CLARK, CLARK-S, Kaiju and BLAST-MEGAN, using the CAMI data 479 

sets. These tools were run with default options. The tools were run in paired-480 

end mode, except for BLAST-MEGAN. For paired-end data we averaged the 481 

softmax probability distributions generated by DeepMicrobes for two ends of 482 

reads. We ran Kraken (v1.0) using the pre-built MiniKraken 8GB database 483 

included complete bacterial, archaeal, and viral genomes in RefSeq (as of Oct. 484 

18, 2017). We ran Kraken 2 (v2.0.6) using pre-built MiniKraken2 v1 8GB 485 
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database including RefSeq bacteria, archaea, and viral libraries (available on 486 

Apr. 23, 2019). Centrifuge (v1.0.3) was run using pre-built reference database, 487 

which was compressed prokaryotic database containing bacteria and archaea 488 

(updated on Apr. 15, 2018). The bacteria (and archaea) database for CLARK 489 

and CLARK-S (v1.2.5) was downloaded via the set_targets.sh script (on Aug. 490 

25, 2018). Kaiju (v1.5.0) was run using pre-built microbial subset of the NCBI 491 

nr database (as of May. 16, 2017). To run MEGAN, we first queried unpaired 492 

reads using BLAST executable (v2.6.0+) against nt index downloaded from 493 

NCBI (on Aug. 25, 2018). We used the Megablast mode and an e-value of 1e-494 

20. Next, we ran MEGAN (V5.3.11) to summarize the lowest common ancestor 495 

(LCA) taxon for each read.  496 

 Speed was evaluated using 8 threads on the same computer. 497 

DeepMicrobes was run with 8 threads on CPU for input pipeline, and 1 GPU for 498 

prediction using a batch size of 20,000. The data used for speed evaluation has 499 

1,000,000 reads in 100 bp. We computed the precision and recall for species 500 

and genus identification for each tool, demanding at least one supporting reads 501 

for the presence of a taxon. Precision refers to the fraction of taxon identified 502 

by an analysis tool that is actually present. Recall refers to the fraction of 503 

expected taxon that is identified by a tool. The reads whose prediction 504 

confidence > 50% were treated as being classified at the species level. Reads 505 

with confidence > 45% were treated as classified at the genus of that species. 506 
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 507 

Reads clustering using high-level features extracted by DNN 508 

We downloaded the mock community sequencing sample from SRA using 509 

accession SRR2081071. The identity of each read was confirmed by running 510 

BLAST against nt database. For each species included in training, we randomly 511 

sampled 100 reads that were correctly classified by DeepMicrobes. For the 512 

species not included we randomly sampled 100 reads from those confirmed via 513 

BLAST. We used T-SNE to visualize the feature map generated by the last 514 

hidden layer of MLP. Before running T-SNE, we used principal component 515 

analysis (PCA) to reduce the features into 150 dimensions explaining > 90% of 516 

the variation.  517 

  518 

Code availability 519 

The DeepMicrobes program, trained model parameters, hyperparameters and 520 

the implementation of the other DNN architectures are provided at GitHub 521 

(https://github.com/MicrobeLab/DeepMicrobes). 522 
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Figure 1 
a  
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Figure 1. The architecture of DeepMicrobes and the performance of different DNN 
methods 
(a) The deep learning architecture of DeepMicrobes. (b) The AUPRC of different models on the 
synthetic test set consists of reads from 1,000 microbial genomes in equal proportion. (c) The 
specificity (left) and sensitivity (right) of different models on the genome sequencing data. 
ResNet-like CNN, a convolutional model; CNN + Pool + LSTM, a hybrid convolutional and 
recurrent model; Seq2species, a previously proposed architecture for 16S data; Embed + CNN, 
an embedding-based convolutional model; Embed + Pool, an embedding baseline; Embed + 
LSTM, an embedding-based recurrent model; Embedding + LSTM + Attention, an embedding-
based recurrent self-attention model, which is selected for DeepMicrobes.  
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Figure 2 
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Figure 2. Generalization of DeepMicrobes to different taxonomic ranks, and comparison 
of DeepMicrobes with state-of-the-art tools 
(a) The test performance of DeepMicrobes taxonomic-rank variants on reads of different 
lengths. We used the synthetic test sets containing reads from 1,000 genomes in equal 
proportion. Each model variant was trained on 100 bp reads, and tested on 100 bp (magenta), 
150 bp (orange), 200 bp (green), 250 bp (blue), and 300 bp (purple) reads. (b) T-SNE 
visualization of the mock community reads using high-level feature maps generated by 
DeepMicrobes trained at the species (left) and genus (level) level. (c) Relative precision and 
recall of the medium-complexity CAMI data set at the species level, computed on the basis of 
default (left) and shared-species filtered (right) results. Metrics were normalized by the maximal 
value.  
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Supplementary Figure 1 
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b 
 
 
 
 
 
 
 
Supplementary Figure 1. The effect of k-mer length on model performance 
(a) The AUPRC of DeepMicrobes variants using different k-mer lengths. The AUPRC was 
computed on the synthetic test set consisting of reads from 1,000 microbial genomes in equal 
proportion. The DNA sequences were split into a list of 8-mer, 9-mer, 10-mer, 11-mer and 12-
mer, respectively. All model hyperparameters were the same except for the vocabulary size. (b) 
The specificity (left) and sensitivity (right) of DeepMicrobes k-mer variants on the genome 
sequencing data.  
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Supplementary Figure 2 
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Supplementary Figure 2. The genus-level comparison of DeepMicrobes with state-of-
the-art tools and speed evaluation 
(a) Relative precision and recall of the medium-complexity CAMI data set at the genus level, 
computed on the basis of default (left) and shared-genus filtered (right) results. Metrics were 
normalized by the maximal value. (b) Speed comparison of classification programs for 
1,000,000 single-end 100 bp reads. DeepMicrobes was run using a batch size of 20,000. The 
time of DeepMicrobes included converting fasta sequences to TFRecord and making 
predictions. 
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Supplementary Table 1. Assembly summary of the 1,000 genomes used to 

create the synthetic test set 

 

Supplementary Table 2. Specificity of different deep learning architectures on 

the genome sequencing data set 

 

Supplementary Table 3. Sensitivity of different deep learning architectures on 

the genome sequencing data set 

 

Supplementary Table 4. Specificity of DeepMicrobes k-mer variants on the 

genome sequencing data set 

 

Supplementary Table 5. Sensitivity of DeepMicrobes k-mer variants on the 

genome sequencing data set 
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Supplementary Table 6. The effect of k-mer length on vocabulary size 
 

Length of k-mers # of all possible k-mers (4k) # of merged k-mers (vocabulary size) 

8 65,536 32,896 

9 262,144 131,072 

10 1,048,576 524,800 

11 4,194,304 2,097,152 

12 16,777,216 8,390,656 
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Supplementary Table 7. The search space of hyperparameters 
 

 
 

Hyperparameters Search space 

Number of CNN filters 64, 128, 256, 320, 512, 1024 

Size of CNN filters 3, 4, 5, 6, 13, 26, 30, concatenate 

Number of residual block  1, 2, 3, 4 

LSTM dimension (in each direction) 256, 300, 320, 400, 512, 600, 640, 1024 

Number of LSTM layers 1, 2 

Number of FC layers 1, 2, 3 

Number of FC units 150, 350, 512, 1024, 2048, 3000, 4000, 4096 

Type of pooling Max, average, concatenate, none 

Window size of pooling 2, 13, 15, length of input sequence (for embedding models) 

Pooling stride 13, 15 

Number of attention rows 10, 20, 30, 40, 50 

Penalization coefficient 0, 1e-5, 1e-4, 1e-3, 0.01, 0.1, 0.2, 0.5, 0.8, 1 

Batch size 128, 256, 500, 512, 1024, 2048, 3000, 4000, 4096 

Learning rate 0.05, 0.01, 5e-3, 1e-3, 5e-4, 1e-4 

Decay rate (for learning rate) 1e-3, 5e-3, 0.01, 0.05, 0.1, 0.5 

Dropout (keep probability) 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1.0 

L2 regularization 1e-5, 1e-4, 1e-3, 0.01, 0.1, none 

Activation function ReLu, tanh, Leaky Relu  

Optimizer Adam, Adagrad 

Encoding method One-hot, k-mer embedding 

K-mer length 7, 8, 9, 10, 11, 12 

K-mer redundancy 4k, merged 

Embedding dimension 50, 100, 200, 300 

Embedding stride 1, 2, 3 

Embedding weights initialization Random, pre-trained GloVe vectors 
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