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Abstract 

Mitochondrial DNA copy number (mtDNA-CN), a measure of the number of mitochondrial 

genomes per cell, is a minimally invasive proxy measure for mitochondrial function and has 

been associated with several aging-related diseases. Although quantitative real-time PCR 

(qPCR) is the gold standard method for measuring mtDNA-CN, mtDNA-CN can also be 

measured from genotyping microarray probe intensities and DNA sequencing read counts. To 

conduct a comprehensive examination on the performance of these methods, we use known 

mtDNA-CN correlates (age, sex, white blood cell count, Duffy locus, incident cardiovascular 

disease) to evaluate mtDNA-CN calculated from qPCR, two microarray platforms, as well as 

whole genome (WGS) and whole exome sequence data across 1,085 participants from the 

Atherosclerosis Risk in Communities (ARIC) study and 3,489 participants from the Multi-Ethnic 

Study of Atherosclerosis (MESA). We observe mtDNA-CN derived from WGS data is 

significantly more associated with known correlates compared to all other methods (p < 0.001). 

Additionally, mtDNA-CN measured from WGS is on average more significantly associated with 

traits by 5.6 orders of magnitude and has effect size estimates 5.8 times more extreme than the 

current gold standard of qPCR. We further investigated the role of DNA extraction method on 

mtDNA-CN estimate reproducibility and found mtDNA-CN estimated from cell lysate is 

significantly less variable than traditional phenol-chloroform-isoamyl alcohol (p = 5.44x10-4) and 

silica-based column selection (p = 2.82x10-7). In conclusion, we recommend the field moves 

towards more accurate methods for mtDNA-CN, as well as re-analyze trait associations as more 

WGS data becomes available from larger initiatives such as TOPMed.  

 

Introduction 

Mitochondrial dysfunction has long been known to play an important role in the underlying 

etiology of several aging-related diseases, including cardiovascular disease (CVD), 

neurodegenerative disorders and cancer1. As an easily measurable and accessible proxy for 
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mitochondrial function, mitochondrial DNA copy number (mtDNA-CN) is increasingly used to 

assess the role of mitochondria in disease. Several population-based studies have shown 

higher levels of mtDNA-CN to be associated with decreased incidence for CVD and its 

component parts: coronary artery disease (CAD) and stroke2,3; neurodegenerative disorders 

such as Parkinson’s and Alzheimer’s4,5; as well as several types of cancer including breast, 

kidney, liver and colorectal6–8. Furthermore, mtDNA-CN measured from peripheral blood has 

consistently been shown to be higher in women, decline with age, and correlate negatively with 

white blood cell (WBC) count9–11.  

 

Although the mtDNA-CN field is relatively young, the number of publications has been steadily 

increasing at an average rate of 12% per year since 201512. However, there has yet to be a 

rigorous examination of the various methods for measuring this novel phenotype and the factors 

which may influence its accurate estimation. Without such an examination, studies may be 

severely underestimating or misrepresenting the relationship of mtDNA-CN with their traits of 

interest. 

 

Quantitative real-time PCR (qPCR) has been the most widely used method for measuring 

mtDNA-CN, partly due to its low cost and quick turnaround time. However, recent work has 

demonstrated the feasibility of accurately measuring mtDNA-CN from preexisting microarray, 

whole exome sequencing (WES) and whole genome sequencing (WGS) data2,10,13. With these 

advances, it is important for the field to evaluate these methods in the context of the current 

gold standard.  

 

In addition to the method for determining mtDNA-CN, it is important to consider the impact of 

DNA extraction method on mtDNA-CN, particularly due to the small size and circular nature of 

the mitochondrial genome. Previous research has shown organic solvent extraction is more 
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accurate than silica-based methods at measuring mtDNA-CN, which is unsurprising as column 

kit parameters are typically optimized for DNA fragments ≥ 50 Kb14. However, as all DNA 

extraction methods have bias in the DNA which they target, measuring mtDNA-CN from direct 

cell lysate may prove to be a more accurate method. 

 

In the present study, we assess the relative performance of various methods for measuring 

mtDNA-CN and the effects of DNA extraction on mtDNA-CN estimation accuracy. We leverage 

mtDNA-CN calculated across 4,574 individuals from two prospective cohorts, the 

Atherosclerosis Risk in Communities study (ARIC) and the Multi-Ethnic Study of Atherosclerosis 

study (MESA). Using mtDNA-CN estimates calculated from qPCR, WES, WGS, and two 

microarray platforms – the Affymetrix Genome-Wide Human SNP Array 6.0 and the Illumina 

HumanExome BeadChip genotyping array – we compare associations for known correlates of 

mtDNA-CN including age, sex, white blood cell count, the Duffy locus and incident CVD to  

determine the optimal method for calculating copy number. We additionally determined the 

reproducibility of mtDNA-CN measurements in vitro from three separate DNA extraction 

methods: silica-based column selection, organic solvent extraction (phenol-chloroform-isoamyl 

alcohol), and measuring mtDNA-CN from direct cell lysis without performing a traditional DNA 

extraction. We hypothesized that mtDNA-CN calculated from WGS data would outperform other 

estimation methods and mtDNA-CN measured from direct cell lysate would be more accurate 

than traditional DNA extraction methods. 

 

Methods 

Study Populations 

The ARIC study recruited 15,792 individuals between 1987 and 1989 aged 45 to 65 years from 

4 US communities. DNA for mtDNA-CN estimation was collected from different visits and was 

derived from buffy coat using the Gentra Puregene Blood Kit (Qiagen). Our analyses were 
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limited to 1,085 individuals with mtDNA-CN data available across all four platforms performed 

within ARIC: Affymetrix Genome-Wide Human SNP Array 6.0, Illumina HumanExome BeadChip 

genotyping array, WES and WGS. Eighty-eight percent of our final ARIC participants were 

African American.  

 

The MESA study recruited 6,814 individuals free of prevalent clinical CVD from 6 US 

communities across 4 ethnicities. Age range at baseline was 45 to 84 and the baseline exam 

occurred between 2000 and 2002. DNA for mtDNA-CN analyses was isolated from exam 1 

peripheral leukocytes using the Gentra Puregene Blood Kit. Our analyses were restricted to 

3,489 white and African American (36%) individuals with mtDNA-CN data available across the 

three platforms with mtDNA-CN data available at the time of analysis: qPCR, Affymetrix 

Genome-Wide Human SNP Array 6.0 and Illumina HumanExome BeadChip genotyping array.  

 

All participants provided written informed consent and all centers obtained approval from their 

respective institutional review boards. 

 

Measurement of mtDNA-CN 

qPCR 

mtDNA-CN was determined using a multiplexed real time qPCR assay as previously 

described11. Briefly, the cycle threshold (Ct) value of a mitochondrial-specific (ND1) and nuclear-

specific (RPPH1) target were determined in triplicate for each sample. The difference in Ct 

values (ΔCt) for each replicate represents a raw relative measure of mtDNA-CN. Replicates 

were removed if they had Ct values for ND1 > 28, Ct values for RPPH1 > 5 standard deviations 

from the mean, or ΔCt values > 3 standard deviations from the mean of the plate. Outlier 

replicates were identified and excluded for samples with a ΔCt standard deviation > 0.5. The 

sample was excluded if the ΔCt standard deviation remained > 0.5 after replicate removal. We 
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corrected for an observed linear increase in ΔCt value due to the pipetting order of each 

replicate via linear regression. The mean ΔCt across all replicates was further adjusted for plate 

effects as a random effect to represent a raw relative measure of mtDNA-CN. 

 

Microarray 

mtDNA-CN was determined using the Genvisis15 software package for both the Affymetrix 

Genome-Wide Human SNP Array 6.0 and the Illumina HumanExome BeadChip genotyping 

array. A list of high-quality mitochondrial SNPs were hand-curated by employing BLAST to 

remove SNPs without a perfect match to the annotated mitochondrial location and SNPs with 

off-target matches longer than 20bp. The probe intensities of the remaining mitochondrial SNPs 

(25 Affymetrix, 58 Illumina Exome Chip) were determined using quantile sketch normalization 

(apt-probeset-summarize) as implemented in the Affymetrix Power Tools software. The median 

of the normalized intensity, log R ratio (LRR) for all homozygous calls was GC corrected and 

used as initial estimates of mtDNA-CN for each sample. 

 

Technical covariates such as DNA quality, DNA quantity, and hybridization efficiency were 

captured via surrogate variable analysis or principal component analysis as previously 

described2. Surrogate variables or principal components were applied to the BLAST filtered, GC 

corrected LRR of the remaining autosomal SNPs (43,316 Affymetrix, 47,512 Exome Chip).  

These autosomal SNPs were selected based on the following quality filters: call rate > 98%, 

HWE p value > 0.00001, PLINK mishap for non-random missingness p value > 0.0001, 

association with sex p value > 0.00001, linkage disequilibrium pruning (r2 < 0.30), with maximal 

spacing between autosomal SNPs of 41.7 kb. 

 

WES 
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Whole exome capture was performed using Nimblegen’s VChrome2.1 (Roche) and sequencing 

was performed on the Illumina HiSeq 2000. Sequence reads were aligned using Burrows-

Wheeler Aligner (BWA)16 to the hg19 reference genome. Variant calling, and quality control 

were performed as previously described17. mtDNA-CN was calculated using the mitoAnalyzer 

software package, which determines the observed ratios of sequence coverages between 

autosomal and mtDNA18,19.  

 

Due to large batch effects observed in our raw mtDNA-CN calls, alignment summary, insert 

size, quality score, base distribution, sequencing artifact and quality yield metrics were collected 

using Picard tools (version 1.87) to take into account differences in capture efficiency as well as 

sequencing and alignment quality20. Picard sequencing summary metrics to incorporate into our 

final model were selected through a stepwise backwards elimination model (Supp. Table 1). 

 

WGS 

Whole genome sequencing data was generated at the Baylor College of Medicine Human 

Genome Sequencing Center using Nano or PCR-free DNA libraries on the Illumina HiSeq 2000. 

Sequence reads were mapped to the hg19 reference genome using BWA16. Variant calling and 

quality control were performed as previously described21. A count for the total number of reads 

in a sample was scraped from the NCBI sequence read archive using the R package RCurl22 

while reads aligned to the mitochondrial genome were downloaded directly through Samtools 

(version 1.3.1). A raw measure of mtDNA-CN was calculated as the ratio of mitochondrial reads 

to the number of total aligned reads. Unlike WES, we did not observe large batch effects in our 

WGS raw mtDNA-CN calls, obviating the need for adjustment for Picard sequencing summary 

metrics. 

 

Cardiovascular Disease Definition and Adjudication 
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Event adjudication through 2017 in ARIC and 2015 in MESA consisted of expert committee 

review of death certificates, hospital records and telephone interviews. Incident cardiovascular 

disease (CVD) was defined as either incident coronary artery disease (CAD) or incident stroke. 

Incident CAD was defined as first incident MI or death owing to CAD while incident stroke was 

defined as first nonfatal stroke or death due to stroke. Individuals in ARIC with prevalent CVD at 

baseline were excluded from incident analyses. 

 

Genotyping and Imputation 

Genotype calling for the WBC count locus was derived from the Affymetrix Genome-wide 

Human SNP Array 6.0 in ARIC and MESA. Haplotype phasing for both cohorts was performed 

using ShapeIt23 and imputation was performed using IMPUTE224. Genotypes were imputed to 

the 1000G reference panel (Phase I, version 3). Imputation quality for the Duffy locus lead SNP 

(rs2814778) was 0.946 and 0.92 in ARIC and MESA, respectively. 

 

DNA extraction method 

All DNA used in the DNA extraction comparison were derived from HEK293T cells grown in a 

single 150T flask to minimize variation due to clonality and cell culture procedures. Extraction 

were performed with 15 replicates each containing one million cells. mtDNA-CN was determined 

using qPCR as described previously. To account for the inherent variability in mtDNA-CN 

estimation, qPCR was run in triplicate.  

 

Silica-based Column Extraction 

We performed a silica-based column extraction using the AllPrep DNA/RNA Mini Kit (Qiagen) 

according to the manufacturer’s instructions for fewer than 5 x 106 cells. Briefly, HEK293T cells 

were lysed and the subsequent lysate was pipetted directly onto the DNA Allprep spin column 

for homogenization and DNA binding. The bound DNA was then washed and eluted. 
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Organic Solvent Extraction 

An aliquot of cells were lysed with 350 µL of RLT Plus Buffer (Qiagen) and one volume of 

phenol:chloroform:isoamyl alcohol (25:24:1) (PCIAA) was added to the sample and mixed until it 

turned milky white. The solution was centrifuged and the upper aqueous phase containing DNA 

was transferred to a separate tube. We proceeded with an ethanol precipitation protocol using 

3M sodium acetate to complete the DNA extraction. 

 

Direct Cell Lysis 

Cells were pelleted at 500g for 5 minutes and the supernatant was removed. The cell pellet was 

agitated in 100 µL of QuickExtract DNA Solution (Lucigen) to disrupt the pellet and placed in a 

thermocycler for 15 minutes at 68°C followed by 10 minutes at 95°C. The cell lysate was then 

centrifuged at 17,000g for 15 minutes to pellet any insoluble inhibitors and the supernatant was 

transferred to a clean tube. The supernatant containing DNA was finally diluted 1:30 with water 

to limit the impact of any soluble inhibitors on qPCR. 

 

Statistical Analyses 

Our final mtDNA-CN phenotype for all measurement techniques is represented as the 

standardized residuals from a linear model adjusting the raw measure of mtDNA-CN for age, 

sex, DNA collection center, and technical covariates. Additionally, mtDNA-CN in ARIC was 

adjusted for WBC count, and the 14.9% of individuals with missing WBC data were imputed to 

the mean. WBC was not available in MESA for the same visit in which the DNA was obtained. 

As mtDNA-CN was standardized, the effect size estimates are in units of standard deviations, 

with positive betas corresponding to an increase in mtDNA-CN.  
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For analyses involving outcomes which also served as covariates in our final phenotype model 

(age, sex, WBC count), mtDNA-CN was calculated using the full model minus the outcome 

variable. For example, when exploring the relationship between mtDNA-CN and age, our 

mtDNA-CN phenotype would represent the standardized residuals from a model controlling for 

sex, sample collection center, WBC count and any technical covariates. We would then use this 

phenotype to explore the association between age and mtDNA-CN such that effect sizes for all 

comparisons remain in standard deviation units.  

 

Single SNP regression for mtDNA-CN on the WBC count locus was performed in blacks with 

FAST25. In ARIC, mtDNA-CN not adjusted for WBC count was used as the independent 

variable. Single SNP regression models were additionally adjusted for age, sex, sample 

collection site, and genotyping PCs.  

 

Cox-proportional hazards regression was used to estimate hazard ratios (HRs) for incident CVD 

outcomes. Follow-up time was defined from DNA collection through death, loss to follow-up, or 

study end point (through 2017 in ARIC and 2015 in MESA).  

 

Pairwise F-tests were used to test the null hypothesis that the ratio of variances between the 

DNA extraction methods is equal to one. 

 

All statistical analyses were performed using R (version 3.3.3).  

 

Results 

The study included 1,085 participants from ARIC with mtDNA-CN data from the Affymetrix 6.0 

microarray, the Illumina Exome Chip microarray, WES, and WGS while MESA included 3,489 

participants with mtDNA-CN data available from qPCR, the Affymetrix 6.0 microarray, and the 
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Illumina Exome Chip microarray (combined N = 4,574). The mean age of study participants was 

61.4 years (ARIC, 57.1 years; MESA 62.7 years), 55.3% of participants were female (n = 

2,528), and 46.4% of participants were black (n = 2,124) (Table 1). While the Affymetrix and 

Illumina Exome Chip arrays were run in both cohorts, at the time of analysis WES and WGS 

were unique to ARIC and qPCR was unique to MESA. 

 

mtDNA-CN Estimation Method Comparison 

To determine the optimal method for measuring mtDNA-CN, we ranked the performance of 

each technique based on strength of the association, as measured by p values, with the 

relevant mtDNA-CN correlate (Supp. Table 2). Kendall’s W tests26 show significant agreement 

in rankings across correlates in ARIC (p = 0.0019, Kendall’s W = 0.79) and MESA (p = 0.036, 

Kendall’s W = 0.82) with WGS and the Affymetrix array performing best for each measure in 

ARIC and MESA, respectively (Table 2).  

 

To additionally quantify performance, we created a scoring system for each method using 

negative log transformed p values standardized to the least significant method for each 

correlate. These values were then summed across the correlates for each method to achieve an 

overall rating of performance (Supp. Table 3).  These ratings were compared to 1,000 

permutations of a random sampling of the standardized and transformed p values for each 

correlate across the different estimation techniques. In ARIC, WGS had a significantly higher 

performance score compared to all other methods (p < 0.002) while the Illumina Exome Chip 

had a significantly lower score (p = 0.03) (Supp Fig 1A). In MESA, Affymetrix had a significantly 

higher score than qPCR and the Illumina Exome Chip (p = 0.002) (Supp Fig 1B). When 

removing the contribution of WGS in ARIC, the Affymetrix array had a significantly higher score 

than the Illumina Exome Chip and WES (p = 0.01) (Supp Fig 1C). 
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As WGS and Affymetrix performed similarly, we sought to further parse out their performance by 

evaluating the 2,746 ARIC samples which contained mtDNA-CN from both platforms. On 

average, WGS performed 2.2 orders of magnitude more significantly than the Affymetrix array 

(Supp Table 4). 

 

DNA Extraction Comparison 

Raw mitochondrial estimates from qPCR were mean-zeroed to the plate average and the mean 

value across the triplicate plates was used to determine the variance across the 15 replicates 

for each method (Fig 1). The variance for our novel Lyse method was significantly lower at 0.02 

compared to 0.17 and 0.59 for the PCIAA and Qiagen Kit extractions respectively (F = 0.13, p = 

5.44x10-4; F = 0.04, p = 2.82x10-7). Additionally, our findings support previous work14 

demonstrating PCIAA had significantly lower variability compared to the Qiagen Kit (F = 0.29, p 

= 0.03). 

 

Discussion 

We explored several methods for measuring mtDNA-CN in 4,574 self-identified white and black 

participants from the ARIC and MESA studies. We found mtDNA-CN estimated from WGS read 

counts and Affymetrix Genome-Wide Human SNP Array 6.0 probe intensities was more 

significantly associated with known mtDNA-CN correlates compared to mtDNA-CN estimated 

from WES, qPCR and the Illumina HumanExome BeadChip. When observing the relative 

performance of these methods, mtDNA-CN calculated from either WGS or Affymetrix array are, 

respectively, 5.6 and 5.4 orders of magnitude more significant than the current gold standard of 

qPCR (Fig 2). These results are not limited to significance as we see similar trends when 

exploring effect size estimates (Fig 3). For example, when looking at incident CVD, mtDNA-CN 

measured from WGS observes a substantial HR of 0.63 (0.54 – 0.74) where as mtDNA-CN 

measured from qPCR only has a HR of 0.93 (0.82 – 1.05), a marked difference. As a result, 
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when exploring the relationship between mtDNA-CN and a trait of interest, on average one 

could expect a result 5.6 orders of magnitude less significant and 6 times less extreme when 

using mtDNA-CN estimated from qPCR data as opposed to WGS.  

 

Interestingly, mtDNA-CN measured from two seemingly similar microarray platforms differed 

drastically (Supp. Fig 2). However, this finding is unsurprising when exploring the underlying 

biochemistry of sample preparation for each microarray platform. While the Affymetrix protocol 

starts with two restriction enzyme digests prior to whole genome amplification (WGA), the 

Illumina Exome Chip requires WGA with a processive polymerase prior to sonication. As a 

result, the mitochondrial genome undergoes rolling circle amplification which occurs at a 

significantly faster rate than linear WGA27. 

 

Lower mtDNA-CN has been found to be associated with an increased incidence for several 

diseases, including end stage renal disease, type 2 diabetes, and non-alcoholic fatty liver 

disease28–30. However, such studies have relied on mtDNA-CN estimated from qPCR data. Our 

findings suggest much of the current literature may be severely underestimating disease 

associations with mtDNA-CN as well as its potential as a predictor of disease outcomes. 

Despite this, at <$2 per sample qPCR may remain the principal method for measuring mtDNA-

CN due to the prohibitive costs of WGS. As a result, it may be time for the field to start exploring 

other low cost methods, such as digital droplet PCR, which may improve upon the accuracy of 

qPCR31,32. 

 

We additionally showed DNA extraction method affects mtDNA-CN estimate reproducibility with 

copy number measured directly from cell lysate significantly outperforming silica-based column 

extraction and organic solvent extraction. Although several other studies have explored the 

impact of DNA isolation protocol on mtDNA-CN estimation14,33,34, to our knowledge, this is the 
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first study to interrogate the possibility of measuring mtDNA-CN directly from cell lysate. In 

addition to the superior performance of direct cell lysis, this method is cheaper and has less 

hands-on time than PCIAA or Qiagen Kit extractions. However, the authors recognize DNA from 

cell lysate has less downstream utility than traditional DNA extraction procedures potentially 

limiting its adoption within the mtDNA-CN field when sample availability is limited. Furthermore, 

it is important to note the various DNA extraction methods resulted in significantly different 

mtDNA-CN estimates (p = 3.56x10-11, 0.02, 2.85x10-7 for Lyse:PCIAA, Lyse:Qiagen Kit, and 

PCIAA:Qiagen Kit respectively). As such, when choosing an extraction method, it is important to 

remain consistent across the study. 

 

In conclusion, our study demonstrates mtDNA-CN calculated from WGS reads or Affymetrix 

microarray probe intensities significantly improves upon the current gold standard method of 

qPCR. Furthermore, we show direct cell lysis introduces less variability to mtDNA-CN estimates 

than popular DNA extraction methods. Despite the relative infancy of using mtDNA-CN as a 

novel risk marker, these findings highlight the need for the field to adapt to current technologies 

to ensure disease and trait associations are fully realized with a move toward more accurate 

microarray and WGS methods. Furthermore, due to the prevalence of qPCR in the literature, 

the authors recommend re-analyzing trait associations as more WGS data becomes available 

from large initiatives such as the Trans-Omics for Precision Medicine program.  
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*Duffy locus associations were performed in blacks only 

Table 2. Performance Rankings for mtDNA-CN Estimation Methods 

Values are number (%) or mean ± SD  
Abbreviations: SD, standard deviation; WBC, white blood cell; 
CVD, cardiovascular disease 

Table 1. Participant Characteristics 
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Figure 2. Relative overall performance of mtDNA-CN estimation methods 

Overall performance for each method scored as mean or median of the negative log-

transformed p value across all correlates normalized to the least significant method of each 

correlate. For ExomeChip and Affymetrix, the mean value across both cohorts was used as the 

final measure of performance.  

Figure 1. mtDNA-CN measured across DNA extraction methods. 

mtDNA-CN measured by qPCR was mean-zeroed and averaged across three runs for 

Lyse, PCIAA and Qiagen Kit DNA extractions. Variance for Lyse, PCIAA and Qiagen Kit 

are 0.02, 0.17 and 0.59 respectively. PCIAA, phenol:chloroform:isoamyl alcohol. 
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Figure 3. Effect size and Hazard Ratio estimates for mtDNA-CN with known correlates. 

Data points and their corresponding 95% confidence intervals represent the effect size or Hazard 

Ratio estimates for mtDNA-CN with Age, Sex, WBC count, Duffy locus, and incident Cardiovascular 

Disease. Effect size estimates are in standard deviation units. The significance of each estimate is 

represented as ‘*’ for P < 0.05, ‘**’ for P < 0.01, and ‘***’ for P < 0.001. WBC, white blood cell. 
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