
Efficient de novo assembly of eleven human genomes
using PromethION sequencing and a novel nanopore

toolkit

A Preprint

Kishwar Shafin*,1, Trevor Pesout*,1, Ryan Lorig-Roach*,1, Marina Haukness*,1, Hugh E. Olsen*,1, Colleen
Bosworth1, Joel Armstrong1, Kristof Tigyi1,7, Nicholas Maurer1, Sergey Koren4, Fritz J. Sedlazeck5, Tobias

Marschall6, Simon Mayes3, Vania Costa3, Justin M. Zook8, Kelvin J. Liu9, Duncan Kilburn9, Melanie
Sorensen10, Katy M. Munson10, Mitchell R. Vollger10, Evan E. Eichler10,7, Sofie Salama1,7, David

Haussler1,7, Richard E. Green1, Mark Akeson1, Adam Phillippy4, Karen H. Miga4, Paolo Carnevali†,2, Miten
Jain†,1, and Benedict Paten†,1

1UC Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
2Chan Zuckerberg Initiative, Redwood City, CA 94063, USA

3Oxford Nanopore Technologies, Oxford Science Park, OX4 4DQ, UK
4Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome

Research Institute, Bethesda, MD 20892, USA
5Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX 77030, USA

6Max Planck Institute for Informatics, 66123 Saarbrücken, Germany
7Howard Hughes Medical Institute, University of California, Santa Cruz, CA 95064, USA

8National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
9Circulomics Inc, Baltimore, MD 21202, USA

10Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
*These authors contributed equally.

†Corresponding Authors.

Abstract

Present workflows for producing human genome assemblies from long-read technologies have
cost and production time bottlenecks that prohibit efficient scaling to large cohorts. We
demonstrate an optimized PromethION nanopore sequencing method for eleven human
genomes. The sequencing, performed on one machine in nine days, achieved an average
63x coverage, 42 Kb read N50, 90% median read identity and 6.5x coverage in 100 Kb+
reads using just three flow cells per sample. To assemble these data we introduce new
computational tools: Shasta - a de novo long read assembler, and MarginPolish & HELEN -
a suite of nanopore assembly polishing algorithms. On a single commercial compute node
Shasta can produce a complete human genome assembly in under six hours, and MarginPolish
& HELEN can polish the result in just over a day, achieving 99.9% identity (QV30) for
haploid samples from nanopore reads alone. We evaluate assembly performance for diploid,
haploid and trio-binned human samples in terms of accuracy, cost, and time and demonstrate
improvements relative to current state-of-the-art methods in all areas. We further show that
addition of proximity ligation (Hi-C) sequencing yields near chromosome-level scaffolds for
all eleven genomes.

Keywords Nanopore · Assembly · Polishing · PromethION · Human Genomes · Shasta · MarginPolish ·
HELEN

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Introduction

Short-read sequencing reference-assembly mapping methods only assay about 90% of the current reference
human genome assembly [1], and closer to 80% at high-confidence [2]. The latest incarnations of these
methods are highly accurate with respect to single nucleotide variants (SNVs) and short insertions and
deletions (indels) within this mappable portion of the reference genome [3]. However, short reads are much
less able to de novo assemble a new genome [4], to discover structural variations (SVs) [5, 6] (including
large indels and base-level resolved copy number variations), and are generally unable to resolve phasing
relationships without exploiting transmission information or haplotype panels [7].
Third generation sequencing technologies, including linked-reads [8, 9, 10] and long-read technologies [11, 12],
get around the fundamental limitations of short-read sequencing for genome inference by providing more
information per sequencing observation. In addition to increasingly being used within reference guided
methods [1, 13, 14, 15], long-read technologies can generate highly contiguous de novo genome assemblies
[16].
Nanopore sequencing, as commercialized by Oxford Nanopore Technologies (ONT), is particularly applicable
to de novo genome assembly because it can produce high yields of very long 100+ kilobase (Kb) reads [17].
Very long reads hold the promise of facilitating contiguous, unbroken assembly of the most challenging regions
of the human genome, including centromeric satellites, acrocentric short arms, rDNA arrays, and recent
segmental duplications [18, 19, 20]. We contributed to the recent consortium-wide effort to perform the de
novo assembly of a nanopore sequencing based human genome [17]. This earlier effort required considerable
resources, including 53 ONT MinION flow cells and an assembly process that required over 150,000 CPU
hours and weeks of wall-clock time, quantities that are unfeasible for production scale replication.
Making nanopore long-read de novo assembly easy, cheap and fast will enable new research. It will permit
both more comprehensive and unbiased assessment of human variation, and creation of highly contiguous
assemblies for a wide variety of plant and animal genomes. Here we report the de novo assembly of eleven
diverse human genomes at near chromosome scale using a combination of nanopore and proximity-ligation
(HiC) sequencing [8]. We demonstrate a substantial improvement in yields and read lengths for human
genome sequencing at reduced time, labor, and cost relative to earlier efforts. Coupled to this, we introduce
a toolkit for nanopore data assembly and polishing that is orders of magnitude faster than state-of-the-art
methods.

Results

Nanopore sequencing eleven human genomes in nine days

We selected for sequencing eleven, low-passage (six passages), human cell lines of the offspring of parent-child
trios from the 1000 Genomes Project (1KGP) [21] and Genome-in-a-Bottle (GIAB) [22] sample collections.
The subset of 1KGP samples were selected to maximize allelic diversity and minimize passage (see Online
Methods).
We performed PromethION nanopore sequencing and HiC Illumina sequencing for the eleven genomes. Briefly,
we isolated HMW DNA from flash-frozen 50 million cell pellets using the QIAGEN Puregene kit, with
some modifications to the standard protocol to ensure DNA integrity (see Online Methods). For nanopore
sequencing, we performed a size selection to remove fragments <10 kilobases (Kb) using the Circulomics
SRE kit, followed by library preparation using the ONT ligation kit (SQK-LSK109). We used three flow cells
per genome, with each flow cell receiving a nuclease flush every 20-24 hours. This flush removed long DNA
fragments that could cause the pores to become blocked over time. Each flow cell received a fresh library
of the same sample after the nuclease flush. A total of two nuclease flushes were performed per flow cell,
and each flow cell received a total of three sequencing libraries. We used Guppy version 2.3.5 with the high
accuracy flipflop model for basecalling (see Online Methods).
The nanopore sequencing for these eleven genomes was performed in nine days, producing 2.3 terabases of
sequence. This was made possible by running up to 15 flow cells in parallel during these sequencing runs.
Results are shown in Fig. 1 and Supplementary Tables 1, 2, and 3. Nanopore sequencing yielded an average
of 69 gigabases (Gb) per flow cell, with the total throughput per individual genome ranging between 48x
(158 Gb) and 85x (280 Gb) coverage per genome (Fig. 1a). The read N50s for the sequencing runs ranged
between 28 Kb and 51 Kb (Fig. 1b). We aligned nanopore reads to the human reference genome (GRCh38)
and calculated their alignment identity to assess sequence quality (see Online Methods). We observed that

2

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 1: Nanopore sequencing results. (a) Throughput in gigabases from each of three flowcells for
eleven samples, with total throughput at top. (b) Read N50s for each flowcell. (c) Alignment identities
against GRCh38. Medians in a, b and c shown by dashed lines, dotted line in c is mode. (d) Genome
coverage as a function of read length. Dashed lines indicate coverage at 10 and 100 Kb. HG00733 is bolded
as an example. (e) Alignment identity for standard and run-length encoded (RLE) reads. Data for HG00733
chromosome 1 are shown. Dashed lines denote quartiles.

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

the median and modal alignment identity was 90% and 93% respectively (Fig. 1c). The sequencing data per
individual genome included an average of 55x coverage arising from 10 Kb+ reads, and 6.5x coverage from
100 Kb+ reads (Fig. 1d). This was in large part due to size-selection which yielded an enrichment of reads
longer than 10 Kb.

Shasta: assembling a human genome from nanopore reads in under 6 hours

To assemble the genomes, we developed a new de novo assembly algorithm, Shasta. Shasta was designed to
be orders of magnitude faster and cheaper at assembling a human-scale genome from nanopore reads than
the Canu assembler used in our earlier work [17]. A detailed description of algorithms and computational
techniques used is provided in the Online Methods section. Here we summarize key points:

• During most Shasta assembly phases, reads are stored in a homopolymer-compressed (HPC) form
using Run-Length Encoding (RLE) [23, 24, 25]. In this form, identical consecutive bases are collapsed,
and the base and repeat count are stored. For example, GATTTACCA would be represented as (GATACA,
113121). This representation is insensitive to errors in the length of homopolymer runs, thereby
addressing the dominant error mode for Oxford Nanopore reads [11]. As a result, assembly noise due
to read errors is decreased, and significantly higher identity alignments are facilitated (Fig. 1e).

• A marker representation of reads is also used, in which each read is represented as the sequence of
occurrences of a predetermined, fixed subset of short k-mers (marker representation) in its run-length
representation.

• A modified MinHash [26, 27] scheme is used to find candidate pairs of overlapping reads, using as
MinHash features consecutive occurrences of m markers (default m = 4).

• Optimal alignments in marker representation are computed for all candidate pairs. The computation
of alignments in marker representation is very efficient, particularly as various banded heuristics are
used.

• A Marker Graph is created in which each vertex represents a marker found to be aligned in a
set of several reads. The marker graph is used to assemble sequence after undergoing a series of
simplification steps.

• The assembler runs on a single machine with a large amount of memory (typically 1-2 TB for a
human assembly). All data structures are kept in memory, and no disk I/O takes place except for
initial loading of the reads and final output of assembly results.

To validate Shasta, we compared it against three contemporary assemblers: Wtdbg2 [28], Flye [29] and Canu
[30]. We ran all four assemblers on available read data from two diploid human samples, HG00733 and
HG002, and one haploid human sample, CHM13. HG00733 and HG002 were part of our collection of eleven
samples, and data for CHM13 came from the T2T consortium [31].
Canu consistently produced the most contiguous assemblies, with contig NG50s of 39.0, 31.3, and 85.8 Mb,
for samples HG00733, HG002, and CHM13, respectively (Fig. 2a). Flye was the second most contiguous,
with contig NG50s of 24.2, 24.9, and 34.2 Mb, for the same samples. Shasta was next with contig NG50s of
20.3, 19.3, and 37.8 Mb. Wtdbg2 produced the least contiguous assemblies, with contig NG50s of 14.5, 12.2,
and 13.6 Mb.
Conversely, aligning the samples to GRCh38 and evaluating with QUAST [32], Shasta had between 3.6 to
7.9x fewer misassemblies per assembly than the other assemblers (Supplementary Tables 4 and 5). Breaking
the assemblies at these misassemblies and unaligned regions with respect to GRCh38, we observe much
smaller absolute variation in contiguity (Fig. 2b, avg. NGA50s (Mb): Canu 18.5, Flye 15.2, Shasta 13.7,
Wtdbg2 6.4). These results imply that Shasta trades some contiguity for a smaller overall misassembly rate
vs. Canu and Flye. However, a substantial fraction of the misassemblies identified likely reflect SVs with
respect to GRCh38. To address this we discounted misassemblies within centromeres and known segmental
duplications, which are enriched in SVs, and, in the case of HG002, a set of known SVs [33]; we still observe
between 1.3 and 2.9x fewer misassemblies in Shasta relative to the other assemblers (Fig. 2c).
For HG00733 and CHM13 we examined a library of available bacterial artificial chromosome (BAC) assemblies
(see Online Methods). The BACs were largely targeted at known segmental duplications (473 of 520 BACs lie
within 10 Kb of a known duplication). Examining the subset of BACs for CHM13 and HG00733 that map to
unique regions of GRCh38 (see Online Methods), we find Shasta contiguously assembles 46 of 47 BACs, with
Canu and Flye performing similarly (Supplementary Table 6). In the full set we observe that Canu (401)

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 2: Assembly results for four assemblers and three human samples, before polishing. (a)
NGx plot showing contig length distribution. The intersection of each line with the dashed line is the NG50
for that assembly. (b) NGAx plot showing the distribution of aligned contig lengths. Each horizontal line
represents an aligned segment of the assembly unbroken by a misassembly or unmappable sequence with
respect to GRCh38. The intersection of each line with the dashed line is the aligned NGA50 for that assembly.
(c) Misassembly counts for regions outside of centromeres, segmental duplications and, for HG002, known
SVs. (d) Total generated sequence length vs. total aligned sequence length (against GRCh38). (e) Balanced
base-level error rates for assembled sequences. (f) Average runtime and cost for assemblers (Canu not shown).

5

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

and Flye (280) contigiously assemble a larger subset of these BACs than Shasta (131) and Wtdbg2 (107),
confirming the notion that Shasta is relatively conservative in these duplicated regions (Supplementary Table
7). Examining the fraction of contiguously assembled BACs of those attempted (that is, having a substantial,
unique overlap with only a single a contig in the assembly), we can derive a proxy to the specificity of these
assemblies. In this regard, Canu (0.88), Shasta (0.87) and Flye (0.84) perform similarly, with Wtdbg2 (0.65)
the outlier.

Canu consistently assembled the largest genomes (avg. 2.91 Gb), followed by Flye (avg. 2.83 Gb), Wtdbg2
(avg. 2.81 Gb) and Shasta (avg. 2.80 Gb). We would expect the vast majority of this assembled sequence to
map to another human genome. Discounting unmapped sequence, the differences are smaller: Canu produced
an avg. 2.86 Gb of mapped sequence per assembly, followed by Shasta (avg. 2.79 Gb), Flye (avg. 2.78 Gb)
and Wtdbg2 (avg. 2.76 Gb) (Fig. 2d; see Online Methods). Again, this analysis supports the notion that
Shasta is currently relatively conservative vs. its peers, producing the highest proportion of directly mapped
assembly per sample.

Shasta produced the most base-level accurate assemblies (avg. balanced error rate 1.13% on diploid and
0.63% on haploid), followed by Wtbdg2 (1.31% on diploid and 0.91% on haploid), Canu (1.46% on diploid
and 0.8% on haploid) and Flye (1.84% on diploid and 2.36% on haploid) (Fig. 2e); see Online Methods,
Supplementary Table 8.

Shasta, Wtdbg2 and Flye were run on a commercial cloud, allowing us to reasonably compare their cost and
run time (Fig. 2e; see Online Methods). Shasta took an average of 5.25 hours to complete each assembly
at an average cost of $70 per sample. In contrast, Wtdbg2 took 7.5x longer and cost 3.7x as much, and
Flye took 11.9x longer and cost 6.0x as much. The Canu assemblies were run on a large compute cluster,
consuming up to $19,000 (estimated) of compute and took around 4-5 days per assembly (see Online Methods,
Supplementary Table 9).

Contiguously assembling MHC haplotypes

The Major Histocompatibility Complex (MHC) region is difficult to resolve using short reads due to its
repetitive and highly polymorphic nature [34], but recent efforts to apply long read sequencing to this problem
have shown promise [17, 35]. We analyzed the assemblies of CHM13 and HG00733 to see if they spanned
the region. For the haploid assembly of CHM13 we find MHC is entirely spanned by a single contig in all 4
assemblers’ output, and most closely resembles the GL000251.2 haplogroup among those provided in GRCh38
(Fig. 3a; Supplementary Fig. 1 and Supplementary Table 10). In the diploid assembly of HG00733 two
contigs span the large majority of the MHC for Shasta and Flye, while Canu and Wtdbg2 span the region
with one contig (Fig. 3b; Supplementary Fig. 2). However, we note that the chimeric diploid assembly leads
to sequences that do not closely resemble any haplogroup (see Online Methods).

To attempt to resolve haplotypes of HG00733 we performed trio-binning [36], where we partitioned all the
reads for HG00733 into two sets based on likely maternal or paternal lineage and assembled the haplotypes
(see Online Methods). For all haplotype assemblies the global contiguity worsened significantly (as the
available read data coverage was approximately halved, and further, not all reads could be partitioned),
but the resulting misassembly count decreased (Supplementary Table 11). When using haploid trio-binned
assemblies, the MHC was spanned by a single contig for the maternal haplotype (Fig. 3c, Supplementary Fig.
3, Supplementary Table 12), with high identity to GRCh38 and having the greatest contiguity and identity
with the GL000255.1 haplotype. For the paternal haplotype, low coverage led to discontinuities (Fig. 3d)
breaking the region into three contigs.

Deep neural network based polishing achieves QV30 long-read only polishing accuracy

Accompanying Shasta, we developed a deep neural network based consensus sequence polishing pipeline
designed to improve the base-level quality of the initial assembly. The pipeline consists of two modules:
MarginPolish and HELEN. MarginPolish uses a banded form of the forward-backward algorithm on a pairwise
hidden Markov model (pair-HMM) to generate pairwise alignment statistics from the RLE alignment of
each read to the assembly [37]. From these statistics MarginPolish generates a weighted RLE Partial Order
Alignment (POA) graph [38] that represents potential alternative local assemblies. MarginPolish iteratively
refines the assembly using this RLE POA, and then outputs the final summary graph for consumption by
HELEN. HELEN employs a multi-task recurrent neural network (RNN) [39] that takes the weights of the
MarginPolish RLE POA graph to predict a nucleotide base and run-length for each genomic position. The

6

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 3: Shasta MHC assemblies vs GRCh38. Unpolished Shasta assembly for CHM13 and HG00733,
including HG00733 trio-binned maternal and paternal assemblies. Shaded gray areas are regions in which
coverage (as aligned to GRCh38) drops below 20. Horizontal black lines indicate contig breaks. Blue and
green describe unique alignments (aligning forward and reverse, respectively) and orange describes multiple
alignments.

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

RNN takes advantage of contextual genomic features and associative coupling of the POA weights to the
correct base and run-length to produce a consensus sequence with higher accuracy.
To demonstrate the effectiveness of MarginPolish and HELEN, we compared them with the state-of-the-art
nanopore assembly polishing workflow: four iterations of Racon polishing [40] followed by Medaka [41]. Here
MarginPolish is analogous in function to Racon, both using pair-HMM based methods for alignment and
POA graphs for initial refinement. Similarly, HELEN is analogous to Medaka, in that both use a deep neural
network and both work from summary statistics of reads aligned to the assembly.
Figure 4a and Supplementary Tables 13, 14 and 15 detail error rates for the four methods performed on the
HG00733 and CHM13 Shasta assemblies (see Online Methods) using Pomoxis [42]. For the diploid HG00733
sample MarginPolish and HELEN achieve a balanced error rate of 0.501% (QV 23.00), compared to 0.579%
(QV 22.37) by Racon and Medaka. For both polishing pipelines, a significant fraction of these errors are
likely due to true heterozygous variations. For the haploid CHM13 we restrict comparison to a highly curated
X chromosome sequence provided by the T2T consortium [31]. We achieve a balanced error rate of 0.095%
(QV 30.22), compared to Racon and Medaka’s 0.127% (QV 28.96).
For all assemblies, errors were dominated by indel errors, e.g. substitution errors are 6.26x and 9.67x fewer
than indels in the MarginPolish and HELEN on HG000733 and CHM13 assemblies, respectively. Many
of these errors relate to homopolymer length confusion; Fig. 4b analyzes the homopolymer error rates for
various steps of the polishing workflow for HG00733. Each panel shows a heatmap with the true length of
the homopolymer run on the y-axis and the predicted run length on the x-axis, with the color describing
the likelihood of predicting each run length given the true length. Note that the dispersion of the diagonal
steadily decreases. The vertical streaks at high run lengths in the MarginPolish and HELEN confusion-matrix
are the result of infrequent numerical and encoding artifacts (see Online Methods, Supplementary Fig. 4)
Figure 4c and Supplementary Table 16 show the overall error rate after running MarginPolish and HELEN
on HG00733 assemblies generated by different tools. The consistency in post-polishing error rates is evidence
that the models used are not strongly biased towards Shasta and that they can be usefully employed to polish
assemblies generated by other tools.
Figure 4d and Supplementary Table 17 describe average runtimes and costs for the methods (see Online
Methods). MarginPolish and HELEN cost a combined $108 and took 29 hours of wall-clock time on average,
per sample. In comparison Racon and Medaka cost $693 and took 142 wall-clock hours on average, per
sample.

Long-read assemblies contain nearly all human coding genes

To evaluate the accuracy and completeness of an assembled transcriptome we ran the Comparative Annotation
Toolkit [43], which can annotate a genome assembly using the human GENCODE [44] reference human gene
set (Table 1, Online Methods, Supplementary Tables 18, 19, 20, and 21.).

Table 1: CAT transcriptome analysis of human protein coding genes for HG00733 and CHM13.

Sample Assembler Polisher Genes
Found %

Missing
Genes

Complete
Genes %

HG00733

Canu HELEN 99.741 51 67.038

Flye HELEN 99.405 117 71.768

Wtdbg2 HELEN 97.429 506 66.143

Shasta HELEN 99.228 152 68.069

Shasta Medaka 99.141 169 66.27

CHM13
Shasta HELEN 99.111 175 74.202

Shasta Medaka 99.035 190 73.836

For the HG00733 and CHM13 samples we found that Shasta assemblies polished with MarginPolish and
HELEN were close to representing nearly all human protein coding genes, having, respectively, an identified

8

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 4: Polishing Results. (a) Balanced error rates for the four methods on HG00733 and CHM13. (b)
Row-normalized heatmaps describing the predicted run-lengths (x-axis) given true run lengths (y-axis) for
four steps of the pipeline on HG00733. (c) Error rates for MarginPolish and HELEN on four assemblies. (d)
Average runtime and cost.

9

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

ortholog for 99.23% (152 missing) and 99.11% (175 missing) of these genes. Using the restrictive definition that
a coding gene is complete in the assembly only if it is assembled across its full length, contains no frameshifts,
and retains the original intron/exon structure, we found that 68.07% and 74.20% of genes, respectively, were
complete in the HG00733 and CHM13 assemblies. Polishing the Shasta assemblies alternatively with the
Racon-Medaka pipeline achieved similar but uniformly less complete results.
Comparing the MarginPolish and HELEN polished assemblies for HG00733 generated with Flye, Canu and
Wtdbg2 to the similarly polished Shasta assembly we found that Canu had the fewest missing genes (just
51), but that Flye, followed by Shasta, had the most complete genes. Wtdbg2 was clearly an outlier, with
notably larger numbers of missing genes (506). For comparison we additionally ran BUSCO [45] using the
eukaryote set of orthologs on each assembly, a smaller set of 303 expected single-copy genes (Supplementary
Tables 22 and 23). We find comparable performance between the assemblies, with small differences largely
recapitulating the pattern observed by the larger CAT analysis.

Comparing to a PacBio HiFi Assembly

We compared the CHM13 Shasta assembly polished using MarginPolish and HELEN with the recently released
Canu assembly of CHM13 using PacBio HiFi reads [46]; HiFi reads being based upon circular consensus
sequencing technology that delivers significantly lower error rates. The HiFi assembly has lower NG50 (29.0
Mb vs. 41.0 Mb) than the Shasta assembly (Supplementary Fig. 5). Consistent with our other comparisons
to Canu, the Shasta assembly also contains a much lower misassembly count (1107) than the Canu based HiFi
assembly (8666), a difference which remains after discounting all misassemblies in centromeres and known
segmental duplications (314 vs. 893). The assemblies have an almost equal NGAx (~20.0Mb), but the Shasta
assembly covers a smaller fraction of GRCh38 (95.28% vs. 97.03%) (Supplementary Fig. 6, Supplementary
Table 24). Predictably, the HiFi assembly has ~4.7 fold fewer inserts and ~3.3 fold fewer deletes than the
Shasta assembly when aligned to the highly curated X chromosome assembly from v0.6 T2T consortium [31].
Although the HiFi assembly has less indels, both have comparable mismatches with HiFi assembly having
~1.4 fold fewer mismatches (Supplementary Table 25).

Assembling, polishing and scaffolding 11 human genomes at near chromosome scale

Figure 5: HiRise scaffolding for 11 genomes. (a) NGx plots for each of the 11 genomes, before (dashed)
and after (solid) scaffolding with HiC sequencing reads, GRCh38 minus alternate sequences is shown for
comparison. (b) Dot plot showing alignments between the scaffolded HG00733 Shasta assembly and GRCh38
chromosome scaffolds. Blue indicates forward aligning segments, green indicates reverse, with both indicating
unique alignments.

The median NG50 of the 11 Shasta assemblies is 18.5Mb (Fig. 5a), generally below the level required to
achieve complete chromosomes; to resolve the remaining contig breaks in the assemblies we scaffolded all of
the polished Shasta assemblies with HiC proximity-ligation data using HiRise [47] (see Online Methods). On
average, 891 joins were made per assembly. This increased the scaffold NG50s to near chromosome scale,

10

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

with a median of 129.96 Mb, as shown in Fig. 5a, with additional assembly metrics in Supplementary Table
26. Aligning HG00733 to GRCh38, we find no major rearrangements and all chromosomes are spanned by
one or a few contigs (Fig. 5b), with the exception of chrY, which is not present because HG00733 is female.
Similar results were observed for HG002 (Supplementary Fig. 7).

Discussion

In this paper we demonstrate the sequencing and assembly of eleven diverse human genomes in a time and
cost efficient manner using a combination of nanopore and proximity ligation sequencing.
The PromethION realizes dramatic improvements in yield per flow cell, allowing the sequencing of each
genome with just three flow cells at an average coverage of 63x. This represents a large reduction in associated
manual effort and a dramatic practical improvement in parallelism; a single PromethION allows up to 48 flow
cells to be run concurrently. Here we completed all 2.3 terabases of nanopore data collection in nine days on
one PromethION, running up to 15 flow cells simultaneously (it is now possible to run 48 concurrently). In
terms of contemporary long-read sequencing platforms, this throughput is unmatched.
Due to the length distribution of human transposable elements, we found it better to discard reads shorter
than 10 Kb to prevent multi-mapping. The Circulomics SRE kit reduced the fraction of reads <10 Kb to
around 13%, making the majority usable for assembly. Conversely, the right tail of the read length distribution
is long, yielding an average of 6.5x coverage per genome in 100 Kb+ reads. This represents an enrichment of
around 7 fold relative to our earlier MinION effort [17]. In terms of assembly, the result was an average NG50
of 18.5 Mb for the 11 genomes, ~3x higher than in that initial effort, and comparable with the best achieved
by alternative technologies [12, 48]. We found the addition of HiC sequencing for scaffolding necessary to
achieve chromosome scale, making 891 joins on average per assembly. However, our results are consistent
with previous modelling based on the size and distribution of large repeats in the human genome, which
predicts that an assembly based on 30x coverage of such 100 Kb+ reads would approach the continuity of
complete human chromosomes [17, 31].
Relative to alternate long-read and linked-read sequencing, the read identity of nanopore reads has proven
lower [11, 17]. However, original reports of 66% identity [11] for the original MinION are now historical
footnotes: we observe modal read identity of 92.5%, resulting in QV30 base quality for haploid polished
assembly from nanopore reads alone. The accurate resolution of highly repetitive and recently duplicated
sequence will depend on long-read polishing, because short-reads are generally not uniquely mappable. Further
polishing using complementary data types, including PacBio HiFi reads [48] and 10x Chromium [49], will
likely prove useful in achieving QV40+ assemblies.
The advent of third generation technologies has dramatically lowered the cost of high-contiguity long-read de
novo assembly relative to earlier methods [50]. This cost reduction is still clearly underway. The first MinION
human assembly cost ~$40,000 in flow cells and reagents [17]. After a little over a year, the equivalent cost
per sample here was ~$6,000. At bulk with current list-pricing, this cost would be reduced to ~$3,500 per
genome. It is not unreasonable to expect further yield growth and resulting cost reduction of nanopore and
competing platforms such that we foresee $1,000 total sequencing cost high-contiguity de novo plant and
animal genome assembly being achieved - a milestone that will likely make many ambitious comparative
genomic efforts economic [51, 52].
With sequencing efficiency for long-reads improving, computational considerations are paramount in figuring
overall time, cost and quality. Simply put, large genome de novo assembly will not become ubiquitous
if the requirements are weeks of assembly time on large computational clusters. We present three novel
methods that provide a pipeline for the rapid assembly of long nanopore reads. Shasta can produce a draft
human assembly in around six hours and $70 using widely available commercial cloud nodes. This cost and
turnaround time is much more amenable to rapid prototyping and parameter exploration than even the
fastest competing method (Wtdbg2), which was on average 7.5x slower and 3.7x more expensive. Connected
together, the three tools presented allow a polished assembly to be produced in ~24 hours and for ~$180,
against the fastest comparable combination of Wtdbg2/Racon and Medaka which costs 5.4x more and is 5.3x
slower while producing measurably worse results in terms of misassemblies, contiguity and base-level accuracy.
Substantial further parallelism of polishing, the dominant time component in our current pipeline, is easily
possible, such that we are now working to demonstrate a half-day turn around of our complete pipeline.
With real-time base calling, a DNA-to-de novo assembly could be achieved in less than 96 hours with little
difficulty. Such speed could make these techniques practical for screening human genomes for abnormalities
in difficult-to-sequence regions.

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

All three presented computational methods employ run-length encoding of reads. By operating on
homopolymer-compressed nucleotide sequences, we mitigate effects of the dominant source of error in
nanopore reads [53] and enable the use of different models for addressing alignment and run-length estimation
orthogonally.
Shasta produces a notably more conservative assembly than competing tools, trading greater correctness for
contiguity and total produced sequence. For example, the ratio of total length to aligned length is relatively
constant for all other assemblers, where approximately 1.6% of sequence produced does not align across the
three evaluated samples. In contrast, on average just 0.38% of Shasta’s sequence does not align to GRCh38,
representing a more than 4x reduction in unaligned sequence. Additionally, we note substantially lower
misassembly counts, resulting in much smaller differences between the raw NGx and corrected NGAx values.
Shasta also produces substantially more base-level accurate assemblies than the other competing tools.
MarginPolish and HELEN provide a consistent improvement of base quality over all tested assemblers,
with more accurate results than the current state-of-the-art long read polishing workflow. We note the
marginalization over alignments performed by MarginPolish as a likely source of this improvement, reinforcing
conclusions from previous work [1].
We have assembled and compared haploid, trio-binned and diploid samples. Trio binned samples show great
promise for haplotype assembly, for example contiguously assembling an MHC haplogroup, but the halving of
effective coverage resulted in ultimately less contiguous human assemblies with higher base-error rates than
the related, chimeric diploid assembly. This can potentially be rectified by merging the haplotype assemblies
to produce a pseudo-haplotype or increasing sequencing coverage. Indeed the improvements in contiguity and
base accuracy in CHM13 over the diploid samples illustrate what can be achieved with higher coverage of a
haploid sample. We believe that one of the most promising directions for the assembly of diploid samples is
the integration of phasing into the assembly algorithm itself, as pioneered by others [16, 54, 55]. We anticipate
that the novel tools we’ve described here are suited for this next step: the Shasta framework is well placed
for producing phased assemblies over structural variants, MarginPolish is built off of infrastructure designed
to phase long reads [1], and the HELEN model could be improved to include haplotagged features for the
identification of heterozygous sites.

Acknowledgements

The authors are grateful for support from the following individuals. Dan Turner, David Stoddart, Androo
Markham, and Jonathan Pugh (ONT) provided advice on method development and basecalling. Chris Wright
(ONT) provided advice for Medaka. Daniel Garalde, and Rosemary Dokos (ONT) provided advice on the
PromethION for parallelized DNA sequencing and basecalling.
The authors are grateful to Amazon Web Services (AWS) for hosting the data via their AWS Public Dataset
Program.
AP and SK were supported by the Intramural Research Program of the National Human Genome Research
Institute, National Institutes of Health. This work utilized the computational resources of the NIH HPC
Biowulf cluster (https://hpc.nih.gov).
Sidney Bell and Charlotte Weaver from Chan Zuckerberg Initiative (CZI) provided support on development
and documentation. CZI further supported this effort by funding the usage of Amazon Web Services (AWS)
for the project.
Certain commercial equipment, instruments, or materials are identified to specify adequately experimental
conditions or reported results. Such identification does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it imply that the equipment, instruments, or
materials identified are necessarily the best available for the purpose.
This work was supported, in part, by the National Institutes of Health (award numbers: 5U54HG007990,
5T32HG008345-04, 1U01HL137183, R01HG010053, U01HL137183, and U54HG007990 to BP and DH;
R01HG010329 to SRS and DH), by Oxford Nanopore Research Grant SC20130149 (MA), and the Howard
Hughes Medical Institute (DH).

12

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Online Methods

Sample selection

The goal of sample selection was to select a set of individuals that collectively captured the maximum amount
of weighted allelic diversity [56]. To do this, we created a list of all low-passage lymphoblastoid cell lines
that are part of a trio available from the 1000 Genomes Project collection [57] (We selected trios to allow
future addition of pedigree information, and low-passage line to minimize acquired variation). In some cases,
we considered the union of parental alleles in the trios due to not having genotypes for the offspring. Let a
weighted allele be a variant allele and its frequency in the 1000 Genomes Project Phase 3 VCF. We selected
the first sample from our list that contained the largest sum of frequencies of weighted alleles, reasoning that
this sample should have the largest expected fraction of variant alleles in common with any other randomly
chosen sample. We then removed the variant alleles from this first sample from the set of variant alleles in
consideration and repeated the process to pick the second sample, repeating the process recursively until we
had selected seven samples. This set greedily, heuristically optimizes the maximum sum of weighted allele
frequencies in our chosen sample subset. We also added the three Ashkenazim Trio samples and the Puerto
Rican individual (HG00733). These four samples were added for the purposes of comparison with other
studies that are using them [22].

Cell culture

Lymphoblastoid cultures for each individual were obtained from the Coriell Institute Cell Repository
(coriell.org) and were cultured in RPMI 1640 supplemented with 15% fetal bovine serum (Life Technologies).
The cells underwent a total of six passages (p3+3). After expansion, cells were harvested by pelleting at
300xg for 5 minutes. Cells were resuspended in 10 ml PBS and a cell count was taken using a BiRad TC20
cell counter. Cells were aliquoted into 50 ml conical tubes containing 50 million cells, pelleted as above and
washed with 10 ml PBS before a final pelleting after which the PBS was removed and the samples were flash
frozen on dry ice and stored at -80oC until ready for further processing.

DNA extraction and size-selection

We extracted high-molecular weight (HMW) DNA using the QIAGEN Puregene kit. We followed the standard
protocol with some modifications. Briefly, we lysed the cells by adding 3 ml of Cell Lysis Solution per 10
million cells, followed by incubation at 37oC for up to 1 hour. We performed mild shaking intermediately by
hand, and avoided vortexing. Once clear, we split the lysate into 3 ml aliquots and added 1 ml of Protein
Precipitation Solution to each of the tubes. This was followed by pulse vortexing three times for five seconds
each time. We next spun this at 2000 x g for 10 minutes. We added the supernatant from each tube to
a new tube containing 3 ml of isopropanol, followed by 50x inversion. The HMW DNA precipitated and
formed a dense thread-like jelly. We used a disposable inoculation loop to extract the DNA precipitate. We
then dipped the DNA precipitate, while it was on the loop, into ice-cold 70% ethanol. After this, the DNA
precipitate was added to a new tube containing 50-250 µl 1x TE buffer. The tubes were heated at 50oC for 2
hours and then left at room temperature overnight to allow resuspension of the DNA. The DNA was then
quantified using Qubit and NanoDrop.

We used the Circulomics Short Read Eliminator (SRE) kit to deplete short-fragments from the DNA
preparation. We size-selected 10 µg of DNA using the Circulomics recommended protocol for each round of
size-selection.

Nanopore sequencing

We used the SQK-LSK109 kit and its recommended protocol for making sequencing libraries. We used 1 µg
of input DNA per library. We prepared libraries at a 3x scale since we performed a nuclease flush on every
flow cell, followed by the addition of a fresh library.

We used the standard PromethION scripts for sequencing. At around 24 hours, we performed a nuclease
flush using the ONT recommended protocol. We then re-primed the flow cell, and added a fresh library
corresponding to the same sample. After the first nuclease flush, we restarted the run setting the voltage to
-190 mV. We repeated the nuclease flush after another around 24 hours (i.e. around 48 hours into sequencing),
re-primed the flow cell, added a fresh library, and restarted the run setting the run voltage to -200 mV.

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

We performed basecalling using Guppy v.2.3.5 on the PromethION tower using the GPUs. We used the
MinION DNA flipflop model (dna_r9.4.1_450bps_flipflop.cfg), as recommended by ONT.

Chromatin Crosslinking and Extraction from Human Cell Lines

We thawed the frozen cell pellets and washed them twice with cold PBS before resuspension in the same
buffer. We transferred Aliquots containing five million cells by volume from these suspensions to separate
microcentrifuge tubes before chromatin crosslinking by addition of paraformaldehyde (EMS Cat. No. 15714)
to a final concentration of one percent. We briefly vortexed the samples and allowed them to incubate at
room temperature for fifteen minutes. We pelleted the crosslinked cells and washed them twice with cold
PBS before thoroughly resuspending in lysis buffer (50 mM Tris-HCl, 50 mM NaCl, 1 mM EDTA, 1% SDS)
to extract crosslinked chromatin.

The Hi-C Method

We bound the crosslinked chromatin samples to SPRI beads, washed three times with SPRI wash buffer (10
mM Tris-HCl, 50 mM NaCl, 0.05% Tween-20), and digested by DpnII (20 U, NEB Catalog No. R0543S) for 1
hour at 37oC in an agitating thermal mixer. We washed the bead-bound samples again before incorporation
of Biotin-11-dCTP (ChemCyte Catalog No. CC-6002-1) by DNA Polymerase I, Klenow Fragment (10 U,
NEB Catalog No. M0210L) for thirty minutes at 25oC with shaking. Following another wash, we carried out
blunt-end ligation by T4 DNA Ligase (4000 U, NEB Catalog No. M0202T) with shaking overnight at 16oC.
We reversed the chromatin crosslinks, digested the proteins, eluted the samples by incubation in crosslink
reversal buffer (5 mM CaCl 2 , 50 mM Tris-HCl, 8% SDS) with Proteinase K (30 µg, Qiagen Catalog No.
19133) for fifteen minutes at 55oC followed by forty-five minutes at 68oC.

Sonication and Illumina Library Generation with Biotin Enrichment

After SPRI bead purification of the crosslink-reversed samples, we transferred DNA from each to Covaris®
microTUBE AFA Fiber Snap-Cap tubes (Covaris Cat. No. 520045) and sonicated to an average length of
400± 85 bp using a Covaris® ME220 Focused-Ultrasonicator™. Temperature was held stably at 6oC and
treatment lasted sixty-five seconds per sample with a peak power of fifty watts, ten percent duty factor, and
two-hundred cycles per burst. The average fragment length and distribution of sheared DNA was determined
by capillary electrophoresis using an Agilent® FragmentAnalyzer 5200 and HS NGS Fragment Kit (Agilent
Cat. No. DNF-474-0500). We ran sheared DNA samples twice through the NEBNext® Ultra™ II DNA
Library Prep Kit for Illumina® (Catalog No. E7645S) End Preparation and Adaptor Ligation steps with
custom Y-adaptors to produce library preparation replicates. We purified ligation products via SPRI beads
before Biotin enrichment using Dynabeads® MyOne™ Streptavidin C1 beads (ThermoFisher Catalog No.
65002). We performed indexing PCR on streptavidin beads using KAPA HiFi HotStart ReadyMix (Catalog
No. KK2602) and PCR products were isolated by SPRI bead purification. We quantified the libraries by
Qubit™ 4 fluorometer and FragmentAnalyzer 5200 HS NGS Fragment Kit (Agilent Cat. No. DNF-474-0500)
before pooling for sequencing on an Illumina HiSeq X at Fulgent Genetics.

Analysis methods

Read alignment identities

To generate the identity violin plots (Fig. 1c/e) we aligned all the reads for each sample and flowcell to
GRCh38 using minimap2 [23] with the map-ont preset. Using a custom script get_summary_stats.py in the
repository https://github.com/rlorigro/nanopore_assembly_and_polishing_assessment, we parsed
the alignment for each read and enumerated the number of matched (N=), mismatched (NX), inserted
(NI), and deleted (ND) bases. From this, we calculated alignment identity as N=/(N= + NX + NI +
ND). These identities were aggregated over samples and plotted using the seaborn library with the
script plot_summary_stats.py in the same repository. This method was used to generate both Figure 1c
and Figure 1e. For Figure 1e, we selected reads from HG00733 flowcell1 aligned to GRCh38 chr1. The
“Standard” identities are used from the original reads/alignments. To generate identity data for the “RLE”
portion, we extracted the reads above, run-length encoded the reads and chr1 reference, and followed
the alignment and identity calculation process described above. Sequences were run-length encoded using
a simple script github.com/rlorigro/runlength_analysis/blob/master/runlength_encode_fasta.py)
and aligned with minimap2 using the map-ont preset and –k 19.

14

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Base-level error-rate analysis with Pomoxis

We analyzed the base-level error-rates of the assemblies using the assess_assembly tool of Pomoxis toolkit
developed by Oxford Nanopore Technology https://github.com/nanoporetech/pomoxis. The assess as-
sembly tool is tailored to compute the error rates in a given assembly compared to a truth assembly. It
reports an identity error rate, insertion error rate, deletion error rate, and an overall error rate. The identity
error rate indicates the number of erroneous substitutions, the insertion error rate is the number of incorrect
insertions, and the deletion error rate is the number of deleted bases averaged over the total aligned length of
the assembly to the truth. The overall error rate is the sum of the identity, insertion, and deletion error rates.
For the purpose of simplification, we used the indel error rate, which is the sum of insertion and deletion
error rates.

The assess_assembly script takes an input assembly and a reference assembly to compare against. The
assessment tool chunks the reference assembly to 100 Kb regions and aligns it back to the input assembly
to get a trimmed reference. Next, the input is aligned to the trimmed reference sequence with the same
alignment parameters to get an input assembly to the reference assembly alignment. The total aligned length
is the sum of the lengths of the trimmed reference segments where the input assembly has an alignment.
The total aligned length is used as the denominator while averaging each of the error categories to limit
the assessment in only correctly assembled regions. Then the tool uses stats_from_bam, which counts the
number of mismatch bases, insert bases, and delete bases at each of the aligned segments and reports the
error rate by averaging them over the total aligned length.

The Pomoxis section in Supplementary Notes describe the commands we ran to perform this assessment.

Truth assemblies for base-level error-rate analysis

We used HG002, HG00733, and CHM13 for base-level error-rate assessment of the assembler and the
polisher. These three assemblies have high-quality assemblies publicly available, which are used as the
ground truth for comparison. Two of the samples, HG002 and HG00733, are diploid samples; hence,
we picked one of the two possible haplotypes as the truth. The reported error rate of HG002 and
HG00733 include some errors arising due to the zygosity of the samples. The complete hydatidiform
mole sample CHM13 is a haploid human genome which is used to assess the applicability of the tools
on haploid samples. We have gathered and uploaded all the files we used for assessment in one place:
https://console.cloud.google.com/storage/browser/kishwar-helen/truth_assemblies/.

Table 2: The truth assembly files with download URLs.

Sample name Region File type URL

HG002 Whole genome
fasta HG002_GRCh38_h1.fa

bed HG002_GRCh38.bed

HG00733 Whole genome fasta hg00733_truth_assembly.fa

CHM13
Whole genome fasta CHM13_truth_assembly.fa

Chr-X fasta CHRX_CHM13_truth_assembly.fa

To generate the HG002 truth assembly, we gathered the publicly available Genome-in-a-bottle (GIAB)
high-confidence variant set (VCF) against GRCh38 reference sequence. Then we used bedtools to create
an assembly (FASTA) file from the GRCh38 reference and the high-confidence variant set. We got two files
using this process for each of the haplotypes, and we picked one randomly as the truth. All the diploid
HG002 assembly is compared against this one chosen assembly. GIAB also provides a bed file annotating
high-confidence regions where the called variants are highly precise and sensitive. We used this bed file with
assess_assembly to ensure that we compare the assemblies only in the high confidence regions.

The HG00733 truth is from the publicly available phased PacBio high-quality assembly of this sample [58].
We picked phase0 as the truth assembly and acquired it from NCBI under accession GCA_003634895.1. We
note that the assembly is phased but not haplotyped, such that portions of phase0 will include sequences
from both parental haplotypes and is not suitable for trio-binned analyses. Furthermore, not all regions were

15

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://storage.googleapis.com/kishwar-helen/truth_assemblies/HG002/HG002_GRCh38_h1.fa
https://storage.googleapis.com/kishwar-helen/truth_assemblies/HG002/HG002_GRCh38.bed
https://storage.googleapis.com/kishwar-helen/truth_assemblies/HG00733/hg00733_truth_assembly.fa
https://storage.googleapis.com/kishwar-helen/truth_assemblies/CHM13/CHM13_truth_assembly.fa
https://storage.googleapis.com/kishwar-helen/truth_assemblies/CHM13/CHRX_CHM13_truth_assembly.fa
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

fully phased; regions with variants that are represented as some combination of both haplotypes will result in
lower QV and a less accurate truth.
For CHM13, we used the v0.6 release of CHM13 assembly by the T2T consortium [31]. The reported quality
of this truth assembly in Q-value is QV 39. One of the attributes of this assembly is chromosome X. As
reported by the T2T assembly authors, chromosome X of CHM13 is the most complete (end-to-end) and
high-quality assembly of any human chromosome. We obtained the chromosome X assembly, which is the
highest-quality truth assembly (QV >= 40) we have.

QUAST / BUSCO

To quantify contiguity, we primarily depended on the tool QUAST [32]. QUAST identifies misassemblies as
major rearrangement events in the assembly relative to the reference. For our assemblies, we quantified all
contiguity stats against GRCh38, using autosomes plus chromosomes X and Y only. We report the total
misassemblies given that their relevant “size” descriptor was greater than 1 Kb, as is the default behavior
in QUAST. QUAST provides other contiguity statistics in addition to misassembly count, notably total
length and total aligned length as reported in Figure 2d. To determine total aligned length (and unaligned
length), QUAST performs collinear chaining on each assembled contig to find the best set of non-overlapping
alignments spanning the contig. This process contributes to QUAST’s misassembly determination. We
consider unaligned sequence to be the portions of the assembled contigs which are not part of this best set of
non-overlapping alignments. All statistics are recorded in Supplementary Table 4. For all QUAST analyses,
we used the flags min-identity 80 and fragmented.
QUAST also produces an NGAx plot (similar to an NGx plot) which shows the aligned segment size
distribution of the assembly after accounting for misassemblies and unalignable regions. The intermediate
segment lengths that would allow NGAx plots to be reproduced across multiple samples on the same
axis (as is shown in Figure 2b) are not stored, so we created a GitHub fork of QUAST to store this
data during execution: https://github.com/rlorigro/quast. Finally, the assemblies and the output
of QUAST were parsed to generate figures with an NGx visualization script, ngx_plot.py, found at
github.com/rlorigro/nanopore_assembly_and_polishing_assessment/.
BUSCO [45] is a tool which quantifies the number of Benchmarking Universal Single-Copy Orthologs present
in an assembly. We ran BUSCO via the option within QUAST, comparing against the eukaryota set of
orthologs from OrthoDB v9.

Misassembly assessments

To analyze the QUAST-reported misassemblies for different regions of the genome, we gathered the known
segmental duplication (SD) regions [7], centromeric regions for GRCh38, and known regions in GRCh38
with structural variation for HG002 from GIAB [33]. We used a python script quast_sv_extractor.py
that compares each reported misassembly of QUAST to the SD, SV and centromeric regions and discounts
any misassembly that overlaps with these regions. The quast_sv_extractor.py script can be found at
https://github.com/kishwarshafin/helen/blob/master/modules/python/helper/.
The segmental duplication regions of GRCh38 defined in the ucsc.collapsed.sorted.segdups file can be
downloaded from https://github.com/mvollger/segDupPlots/.
The defined centromeric regions of GRCh38 for all chromosomes are used from the available summary at
https://www.ncbi.nlm.nih.gov/grc/human.
For GIAB HG002, known SVs for GRCh38 are available in NIST_SVs_Integration_v0.6/ under
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/. We used Tier1+2
bed file availabe in the GIAB ftp site.

Trio-binning

We performed trio-binning on two samples HG002 and HG00733 [36]. For HG00733, we obtained the
parental read sample accessions (HG00731, HG00732) from 1000 genome database. Then we counted k-mers
with meryl to create maternal and paternal k-mer sets. Based on manual examination of the k-mer count
histograms to determine an appropriate threshold, we excluded k-mers occurring less than 6 times for maternal
set and 5 times for paternal set. We subtracted the paternal set from the maternal set to get k-mers unique
to the maternal sample and similarly derived unique paternal k-mer set. Then for each read, we counted the
number of occurrences of unique maternal and paternal k-mers and classified the read based on the highest

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

occurrence count. During classification, we avoided normalization by k-mer set size. This resulted in 35.2x
maternal, 37.3x paternal, and 5.6x unclassified for HG00733. For HG002, we used the Illumina data for the
parental samples (HG003, HG004) from GIAB project [22]. We counted k-mers using meryl and derived
maternal paternal sets using the same protocol. We filtered k-mers that occur less than 25 times in both
maternal and paternal sets. The classification resulted in 24x maternal, 23x paternal, and 3.5x unknown.
The commands and data source are detailed in the Supplementary Notes.

Transcript analysis with comparative annotation toolkit

We ran the Comparative Annotation Toolkit [43] to annotate the polished assemblies in order to analyze how
well Shasta assembles transcripts and genes. Each assembly was individually aligned to the GRCh38 reference
assembly using Cactus [59] to create the input alignment to CAT. The GENCODE [60] V30 annotation was
used as the input gene set. CAT was run in the transMap mode only, without Augustus refinement, since the
goal was only to evaluate the quality of the projected transcripts. All transcripts on chromosome Y were
excluded from the analysis since some samples lacked a Y chromosome.

Run-Length Confusion Matrix

To generate run-length confusion matrices from reads and assemblies, we run-length encoded
(RLE) the assembly/read sequences and reference sequences using a purpose-built python script,
measure_runlength_distribution_from_fasta.py. The script requires a reference and sequence file,
and can be found in the GitHub repo https://github.com/rlorigro/runlength_analysis/. The RLE
nucleotides were aligned to the RLE reference nucleotides with minimap2. As RLE sequences cannot have
identical adjacent nucleotides, the number of unique k-mers is diminished with respect to standard sequences.
As minimap2 uses empirically determined sizes for seed k-mers, we used a k-mer size of 19 to approximately
match the frequency of the default size (15) used by the presets for standard sequences. For alignment of
reads and assemblies we used the map-ont and asm20 presets respectively.
By iterating through the alignments, each match position in the cigar string (mismatched nucleotides are
discarded) was used to find a pair of lengths (x, y) such that x is a predicted length and y is the true
(reference) length. For each pair, we updated a matrix which contains the frequency of every possible pairing
of prediction vs truth, from length 1bp to 50bp. Finally, this matrix is normalized by dividing each element
by the sum of the observations for its true run length,

∑50
i=1(xi, y), and plotted as a heatmap. Each value

represents the probability of predicting a length for a given true length.

Runtime and Cost Analysis

Our runtime analysis was generated with multiple methods detailing the amount of time the processes took to
complete. These methods include the unix command time and a home-grown resource tracking script which
can be found in the https://github.com/rlorigro/TaskManager repository. We note that the assembly
and polishing methods have different resource requirements, and do not all fully utilize available CPUs, GPUs,
and memory over the program’s execution. As such, we report runtimes using wall clock time and the number
of CPUs the application was configured to use, but do not convert to CPU hours. Costs reported in the
figures are the product of the runtime and AWS instance price. Because portions of some applications do not
fully utilize CPUs, cost could potentially be reduced by running on a smaller instance which would be fully
utilized, and runtime could be reduced by running on a larger instance which can be fully utilized for some
portion of execution. We particularly note the long runtime of Medaka and found that for most of the total
runtime, only a single CPU was used. Lastly, we note that data transfer times are not reported in runtimes.
Some of the data required or generated exceeds hundreds of gigabytes, which could be potentially significant
in relation to the runtime of the process. Notably, the images generated by MarginPolish and consumed by
HELEN were often greater than 500 GB in total.
All recorded runtimes are reported in the supplement. For Shasta, times were recorded to the tenth of the
hour. All other runtimes were recorded to the minute. All runtimes reported in figures were run on the
Amazon Web Services cloud platform (AWS).
Shasta runtime reported in Fig. 2f was determined by averaging across all 12 samples. Wtdbg2 runtime was
determined by summing runtimes for wtdbg2 and wtpoa-cns and averaging across the HG00733, HG002,
and CHM13 runs. Flye runtime was determined by averaging across the HG00733, HG002, and CHM13
runs. Precise Canu runtimes are not reported, as they were run on the NIH Biowulf cluster. Each run was
restricted to nodes with 28 cores (56 hyperthreads) (2x2680v4 or 2x2695v3 Intel CPUs) and 248GB of RAM

17

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://github.com/rlorigro/runlength_analysis/
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

or 16 cores (32 hyperthreads) (2x2650v2 Intel CPUs) and 121GB of RAM. Full details of the cluster are
available at https://hpc.nih.gov. The runs took between 219 and 223 thousand CPU hours (4-5 wall-clock
days). No single job used more than 80GB of RAM/12 CPUs. We find the r5.4xlarge ($1.008 per hour) to be
the cheapest AWS instance type possible considering this resource usage, which puts estimated cost between
$18,000 and $19,000 per genome.
For MarginPolish, we recorded all runtimes, but used various thread counts that did not always fully utilize
the instance’s CPUs. The runtime reported in the figure was generated by averaging across 8 of the 12
samples, selecting runs that used 70 CPUs (of the 72 available on the instance). These samples this was true
for were GM24385, HG03492, HG01109, HG02055, HG02080, HG01243, HG03098, and CHM13. Runtimes
for read alignments used by MarginPolish were not recorded. Because MarginPolish requires an aligned
BAM, we found it unfair to not report this time in the figure as it is a required step in the workflows for
MarginPolish, Racon, and Medaka. As a proxy for the unrecorded read alignment time used to generate
BAMs for MarginPolish, we added the average alignment time recorded while aligning reads in preparation
for Medaka runs. We note that the alignment for MarginPolish was done by piping output from minimap2
directly into samtools sort, and piping this into samtools view to filter for primary and supplementary
reads. Alignment for Medaka was done using mini_align, which is a wrapper for minimap2 bundled in
Medaka that simultaneously sorts output.
Reported HELEN runs were performed on GCP except for HG03098, but on instances that match the AWS
instance type p2.8xlarge in both CPU count and GPU (NVIDIA Tesla P100). As such, the differences in
runtime between the platforms should be negligible, and we have calculated cost based on the AWS instance
price for consistency. The reported runtime is the sum of time taken by call_consensus.py and stitch.py.
Unannotated runs were performed on UCSC hardware.
Racon runtimes reflect the sum of four series of read alignment and polishing. The time reported in the figure
is the average of the runtime of this process run on the Shasta assembly for HG00733, HG002, and CHM13.
Medaka runtime was determined by averaging across the HG00733, HG002, and CHM13 runs after running
Racon 4× on the Shasta assembly. We again note that this application in particular did not fully utilize
the CPUs for most of the execution, and in the case of HG00733 appeared to hang and was restarted. The
plot includes the average runtime from read alignment using minialign; this is separated in the tables in
the supplementary results. We ran Medaka on an x1.16xlarge instance, which had more memory than was
necessary. When determining cost, we chose to price the run based on the cheapest AWS instance type that
we could have used accounting for configured CPU count and peak memory usage (c5n.18xlarge). This
instance could have supported 8 more concurrent threads, but as the application did not fully utilize the
CPUs we find this to be a fair representation.

Assembly of MHC

Each of the 8 GRCh38 MHC haplotypes were aligned using minimap2 (with preset asm20) to whole genome
assemblies to identify spanning contigs. These contigs were then extracted from the genomic assembly
and used for alignment visualization. For dot plots, Nucmer 4.0 [61] was used to align each assem-
bler’s spanning contigs to the standard chr6:28000000-34000000 MHC region, which includes 500Mb
flanks. Output from this alignment was parsed with Dot [62] which has a web-based GUI for visu-
alization. All defaults were used in both generating the input files and drawing the figures. Cov-
erage plots were generated from reads aligned to chr6, using a script, find_coverage.py, located at
(github.com/rlorigro/nanopore_assembly_and_polishing_assessment/).
The best matching alt haplotype (to Shasta, Canu, and Flye) was chosen as a reference haplotype for
quantitative analysis. Haplotypes with the fewest supplementary alignments across assemblers were top
candidates for QUAST analysis. Candidates with comparable alignments were differentiated by identity. The
highest contiguity/identity MHC haplotype was then analyzed with QUAST using –min-identity 80. For
all MHC analyses regarding Flye, the unpolished output was used.

BAC Analysis

At a high level, the BAC analysis was performed by aligning BACs to each assembly, quantifying their
resolution, and calculating identity statistics on those that were fully resolved.
We obtained 341 BACs for CHM13 [63, 64] and 179 for HG00733 [7] (complete BAC clones of VMRC62), which
had been selected primarily by targeting complex or highly duplicated regions. We performed the following

18

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

analysis on the full set of of BACs (for CHM13 and HG00733), and a subset selected to fall within unique
regions of the genome. To determine this subset, we selected all BACs which are greater than 10 Kb away
from any segmental duplication, resulting in 16 of HG00733 and 31 of CHM13. This subset represents simple
regions of the genome which we would expect all assemblers to resolve.
For the analysis, BACs were aligned to each assembly with the command minimap2 –secondary=no -t
16 -ax asm20 assembly.fasta bac.fasta > assembly.sam and converted to a PAF-like format which
describes aligned regions of the BACs and assemblies. Using this, we calculated two metrics describing
how resolved each BAC was: closed is defined as having 99.5% of the BAC aligned to a single locus in the
assembly; attempted is defined as having an alignment of at least 5 Kb with at least 90% identity to only a
single assembly contig. If multiple such alignments exist to a single contig, it counts as attempted; if multiple
such alignments exist to different contigs, it does not count as attempted. We furthermore calculate median
and mean identities (using alignment identity metric described above) of the closed BACs. The code for this
can be found at https://github.com/skoren/bacValidation

Shasta

The following describes Shasta version 0.1.0 (https://github.com/chanzuckerberg/shasta/releases/
tag/0.1.0) which was used throughout our analysis. All runs were done on an AWS x1.32xlarge instance
(1952 GB memory, 128 virtual processors). The runs used the Shasta recommended options for best
performance (–memoryMode filesystem –memoryBacking 2M). Rather than using the distributed version of
the release, the source code was rebuilt locally for best performance as recommended by Shasta documentation.

Run-length encoding of input reads

Shasta represents input reads using run-length encoding. The sequence of each input read is represented as a
sequence of bases, each with a repeat count that says how many times each of the bases is repeated. Such a
representation has previously been used in biological sequence analysis [23, 24, 25].
For example, the following read
CGATTTAAGTTA

is represented as follows using run-length encoding:
CGATAGTA
11132121

Using run-length encoding makes the assembly process less sensitive to errors in the length of homopolymer
runs, which are the most common type of errors in Oxford Nanopore reads. For example, consider these two
reads:
CGATTTAAGTTA
CGATTAAGGGTTA

Using their raw representation above, these reads can be aligned like this:
CGATTTAAG--TTA
CGATT-AAGGGTTA

Aligning the second read to the first required a deletion and two insertions. But in run-length encoding, the
two reads become:
CGATAGTA
11132121
CGATAGTA
11122321

The sequence portions are now identical and can be aligned trivially and exactly, without any insertions or
deletions:
CGATAGTA
CGATAGTA

The differences between the two reads only appear in the repeat counts:

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://github.com/chanzuckerberg/shasta/releases/tag/0.1.0
https://github.com/chanzuckerberg/shasta/releases/tag/0.1.0
https://en.wikipedia.org/wiki/Run-length_encoding
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

11132121
11122321

* *

The Shasta assembler uses one byte to represent repeat counts, and as a result it only represents repeat
counts between 1 and 255. If a read contains more than 255 consecutive bases, it is discarded on input. In
the data we have analyzed so far such reads are extremely rare.

Some properties of base sequences in run-length encoding
• In the sequence portion of the run-length encoding, consecutive bases are always distinct. If they

were not, the second one would be removed from the run-length encoded sequence, while increasing
the repeat count for the first one.

• With ordinary base sequences, the number of distinct k-mers of length k is 4k. But with run-length
base sequences, the number of distinct k-mers of length k is 4× 3k−1. This is a consequence of the
previous bullet.

• The run-length sequence is generally shorter than the raw sequence, and cannot be longer. For a
long random sequence, the number of bases in the run-length representation is 3/4 of the number of
bases in the raw representation.

Markers

Even with run-length encoding, error in input reads are still frequent. To further reduce sensitivity to errors,
and also to speed up some of the computational steps in the assembly process, the Shasta assembler also uses
a read representation based on markers. Markers are occurrences in reads of a pre-determined subset of short
k-mers. By default, Shasta uses for this purpose k-mers with k = 10 in run-length encoding, corresponding
to an average approximately 13 bases in raw read representation.

Just for the purposes of illustration, consider a description using markers of length 3 in run-length encoding.
There is a total 4× 32 = 36 distinct such markers. We arbitrarily choose the following fixed subset of the 36,
and we assign an id to each of the kmers in the subset as follows:

TGC 0

GCA 1

GAC 2

CGC 3

Consider now the following portion of a read in run-length representation (here, the repeat counts are
irrelevant and so they are omitted):

CGACACGTATGCGCACGCTGCGCTCTGCAGC
GAC TGC CGC TGC

CGC TGC GCA
GCA CGC

Occurrences of the k-mers defined in the table above are shown and define the markers in this read. Note
that markers can overlap. Using the marker ids defined in the table above, we can summarize the sequence of
this read portion as follows:

2 0 3 1 3 0 3 0 1

This is the marker representation of the read portion above. It just includes the sequence of markers occurring
in the read, not their positions.

Note that the marker representation loses information, as it is not possible to reconstruct the complete initial
sequence from the marker representation. This also means that the marker representation is insensitive to
errors in the sequence portions that don’t belong to any markers.

The Shasta assembler uses a random choice of the k-mers to be used as markers. The length of the markers k
is controlled by assembly parameter Kmers.k with a default value of 10. Each k-mer is randomly choosen
to be used as a marker with probability determined by assembly parameter Kmers.probability with a

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

default value of 0.1. With these default values, the total number of distinct markers is approximately
0.1× 4× 39 ≈ 7900.
The only constraint used in selecting k-mers to be used as markers is that if a k-mer is a marker, its reverse
complement should also be a marker. This makes it easy to construct the marker representation of the reverse
complement of a read from the marker representation of the original read. It also ensures strand symmetry in
some of the computational steps.
It is possible that the random selection of markers is not optimal, and that it may be best to select the
markers based on their frequency in the input reads or other criteria. These possibilities have not yet been
investigated.
Fig. 6 shows the run-length representation of a portion of a read and its markers, as displayed by the Shasta
http server.

Figure 6: Markers aligned to a run length encoded read.

Marker alignments

The marker representation of a read is a sequence in an alphabet consisting of the marker ids. This sequence
is much shorter than the original sequence of the read, but uses a much larger alphabet. For example,
with default Shasta assembly parameters, the marker representation is 10 times shorter than the run-length
encoded read sequence, or about 13 times shorter than the raw read sequence. Its alphabet has around 8000
symbols, many more than the 4 symbols that the original read sequence uses.
Because the marker representation of a read is a sequence, we can compute an alignment of two reads directly
in marker representation. Computing an alignment in this way has two important advantages:

• The shorter sequences and larger alphabet make the alignment much faster to compute.
• The alignment is insensitive to read errors in the portions that are not covered by any marker.

For these reasons, the marker representation is orders of magnitude more efficient than the raw base
representation when computing read alignments. Fig. 7 shows an example alignment matrix.

Computing optimal alignments in marker representation
To compute the (likely) optimal alignment (example highlighted in green in Fig. 7), the Shasta assembler
uses a simple alignment algorithm on the marker representations of the two reads to be aligned. It effectively
constructs an optimal path in the alignment matrix, but using some ‘banding’ heuristics to speed up the
computation:

• The maximum number of markers that an alignment can skip on either read is limited to a maximum,
under control of assembly parameter Align.maxSkip (default value 30 markers, corresponding to
around 400 bases when all other Shasta parameters are at their default). This reflects the fact that
Oxford Nanopore reads can often have long stretches in error. In the alignment matrix shown in Fig.
7, there is a skip of about 20 markers (2 light grey squares) following the first 10 aligned markers
(green dots) on the top left.

• The maximum number of markers that an alignment can skip at the beginning or end of a read
is limited to a maximum, under control of assembly parameter Align.maxTrim (default value 30
markers, corresponding to around 400 bases when all other Shasta parameters are at their default).
This reflects the fact that Oxford Nanopore reads often have an initial or final portion that is not
usable. These first two heuristics are equivalent to computing a reduced band of the alignment
matrix.

• To avoid alignment artifacts, marker k-mers that are too frequent in either of the two reads
being aligned are not used in the alignment computation. For this purpose, the Shasta assembler

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 7: A marker alignment represented as a dot-plot. Elements that are identical between the two
sequences are displayed in green or red - the ones in green are the ones that are part of the optimal alignment
computed by the Shasta assembler. Because of the much larger alphabet, matrix elements that are identical
between the sequences but are not part of the optimal alignment are infrequent. Each alignment matrix
element here corresponds on average to a 13× 13 block in the alignment matrix in raw base sequence.

uses a criterion based on absolute number of occurrences of marker k-mers in the two reads,
although a relative criterion (occurrences per Kb) may be more appropriate. The current absolute
frequency threshold is under control of assembly parameter Align.maxMarkerFrequency (default 10
occurrences).

Using these techniques and with the default assembly parameters, the time to compute an optimal alignment
is ∼ 10−3 − 10−2 seconds in the Shasta implementation as of release 0.1.0 (April 2019). A typical human
assembly needs to compute 108 read alignments which results in a total compute time ∼ 105 − 106 seconds,
or ∼ 103 − 104 seconds of elapsed time (∼1-3 hours) on a machine with 128 virtual processors. This is one
of the most computationally expensive portions of a Shasta assembly. Some additional optimizations are
possible in the code that implement this computation, and may be implemented in future releases.

Finding overlapping reads

Even though computing read alignments in marker representation is fast, it still is not feasible to compute
alignments among all possible pairs of reads. For a human size genome with ∼ 106 − 107 reads, the number
of pairs to consider would be ∼ 1012 − 1014, and even at 10−3 seconds per alignment the compute time would
be ∼ 109 − 1011 seconds, or ∼ 107 − 109 seconds elapsed time (∼ 102 − 104 days) when using 128 virtual
processors.
Therefore some means of narrowing down substantially the number of pairs to be considered is essential. The
Shasta assembler uses for this purpose a slightly modified MinHash [26, 27] scheme based on the marker
representation of reads.
In overview, the MinHash algorithm takes as input a set of items each characterized by a set of features. Its
goal is to find pairs of the input items that have a high Jaccard similarity index - that is, pairs of items that
have many features in common. The algorithm proceeds by iterations. At each iteration, a new hash table is
created and a hash function that operates on the feature set is selected. For each item, the hash function
of each of its features is evaluated, and the minimum hash function value found is used to select the hash
table bucket that each item is stored in. It can be proven that the probability of two items ending up in the
same bucket equals the Jaccard similarity index of the two items - that is, items in the same bucket are more
likely to be highly similar than items in different buckets. The algorithm then adds to the pairs of potentially
similar items all pairs of items that are in the same bucket.
When all iterations are complete, the probability that a pair of items was found at least once is an increasing
function of the Jaccard similarity of the two items. In other words, the pairs found are enriched for pairs that
have high similarity. One can now consider all the pairs found (hopefully a much smaller set than all possible

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://en.wikipedia.org/wiki/Jaccard_index
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

pairs) and compute the Jaccard similarity index for each, then keep only the pairs for which the index is
sufficiently high. The algorithm does not guarantee that all pairs with high similarity will be found - only
that the probability of finding all pairs is an increasing function of their similarity.

The algorithm is used by Shasta with items being oriented reads (a read in either original or reverse comple-
mented orientation) and features being consecutive occurrences of m markers in the marker representation of
the oriented read. For example, consider an oriented read with the following marker representation:

18,45,71,3,15,6,21

If m is selected equal to 4 (the Shasta default, controlled by assembly parameter MinHash.m), the oriented
read is assigned the following features:

(18,45,71,3)
(45,71,3,15)
(71,3,15,6)
(3,15,6,21)

From the picture above of an alignment matrix in marker representation, we see that streaks of 4 or more
common consecutive markers are relatively common. We have to keep in mind that, with Shasta default
parameters, 4 consecutive markers span an average 40 bases in run-length encoding or about 52 bases in
the original raw base representation. At a typical error rate around 10%, such a portion of a read would
contain on average 5 errors. Yet, the marker representation in run-length space is sufficiently robust that
these common “features” are relatively common despite the high error rate. This indicates that we can expect
the MinHash algorithm to be effective in finding pairs of overlapping reads.

However, the MinHash algorithm has a feature that is undesirable for our purposes: namely, that the algorithm
is good at finding read pairs with high Jaccard similarity index. For two sets X and Y , the Jaccard similarity
index is defined as the ratio:

J = |X ∩ Y |
|X ∪ Y |

Because the read length distribution of Oxford Nanopore reads is very wide, it is very common to have pairs
of reads with very different lengths. Consider now two reads with lengths nx and ny, with nx < ny, that
overlap exactly over the entire length nx. The Jaccard similarity is in this case given by nx/ny < 1. This
means that, if one of the reads in a pair is much shorter than the other one, their Jaccard similarity will be
low even in the best case of exact overlap. As a result, the unmodified MinHash algorithm will not do a good
job at finding overlapping pairs of reads with very different length.

For this reason, the Shasta assembler uses a small modification to the MinHash algorithm: instead of just
using the minimum hash for each oriented read for each iteration, it keeps all hashes below a given threshold
(this is not the same as keeping a fixed number of the lowest hashes for each read). Each oriented read can
be stored in multiple buckets, one for each low hash encountered. The average number of low hashes on a
read is proportional to its length, and therefore this change has the effect of eliminating the bias against
pairs in which one read is much shorter than the other. The probability of finding a given pair is no longer
driver by the Jaccard similarity. The modified algorithm is referred to as LowHash in the Shasta source code.
Note that it is effectively equivalent to an indexing approach in which we index all features with low hash.

The LowHash algorithm is controlled by the following assembly parameters:

• MinHash.m (default 4): the number of consecutive markers that define a feature.
• MinHash.hashFraction (default 0.01): The fraction of hash values that count as “low”.
• MinHash.minHashIterationCount (default 10): The number of iterations.
• MinHash.maxBucketSize (default 10): The maximum number of items for a bucket to be considered.

Buckets with more than this number of items are ignored. The goal of this parameter is to mitigate
the effect of common repeats, which can result in buckets containing large numbers of unrelated
oriented reads.

• MinHash.minFrequency (default 2): the number of times a pair of oriented reads has to be found to
be considered and stored as a possible pair of overlapping reads.

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Initial assembly steps

Initial steps of a Shasta assembly proceed as follows. If the assembly is setup for best performance
(--memoryMode filesystem --memoryBacking 2M if using the Shasta executable), all data structures are
stored in memory, and no disk activity takes place except for initial loading of the input reads, storing of
assembly results, and storing a small number of small files with useful summary information.

• Input reads are read from Fasta files and converted to run-length representation.
• K-mers to be used as markers are randomly selected.
• Occurrences of those marker k-mers in all oriented reads are found.
• The LowHash algorithm finds candidate pairs of overlapping oriented reads.
• A marker alignment is computed for each candidate pair of oriented reads. If the marker alignment

contains a minimum number of aligned markers, the pair is stored as an aligned pair. The minimum
number of aligned markers is controlled by assembly parameter Align.minAlignedMarkerCount.

Read graph

Using the methods covered so far, an assembly has created a list of pairs of oriented reads, each pair having a
plausible marker alignment. How to use this type of information for assembly is a classical problem with a
standard solution (Myers, 2005), the string graph.

However, the prescriptions in the Myers paper cannot be directly used here, the main reason being that the
process used to find pairs of overlapping reads is probabilistic and does not guarantee that all overlapping
pairs will be found. Direct application of the Myers approach in this context results in unnecessary breakages
in continuity.

The approach currently used in the Shasta assembler is very simple, and can likely be improved. In the
current simple approach, the Shasta assembler creates un undirected graph, the Read Graph, in which each
vertex represents an oriented read (that is, a read in either original orientation or reverse complemented), and
an undirected edge between two vertices is created if we have found an alignment between the corresponding
oriented reads.

However, the read graph as constructed in this way suffers from high connectivity in repeat regions. Therefore,
the Shasta assembler only keeps a k-Nearest-Neighbor subset of the edges. That is, for each vertex (oriented
read) we only keep the k edges with the best alignments (greatest number of aligned markers). The number
of edges kept for each vertex is controlled by assembly parameter ReadGraph.maxAlignmentCount, with a
default value of 6. Note that, despite the k-Nearest-Neighbor subset, it remains possible for a vertex to have
degree more than k.

Note that each read contributes two vertices to the read graph, one in its original orientation, and one in
reverse complemented orientation. Therefore the read graph contains two strands, each strand at full coverage.
This makes it easy to investigate and potentially detect erroneous strand jumps that would be much less
obvious if using approaches with one vertex per read.

Figure 8: An example of a portion of the read graph, as displayed by the Shasta http server.

An example of one strand is shown in Fig. 8. Even though the graph is undirected, edges that correspond to
overlap alignments are drawn with an arrow that points from the prefix oriented read to the suffix one, to
represent the direction of overlap. Edges that correspond to containment alignments are drawn in red and
without an arrow. Vertices are drawn with area proportional to the length of the corresponding reads.

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

The linear structure of the read graph successfully reflects the linear arrangement of the input reads and
their origin on the genome being assembled.

However, deviations from the linear structure can occur in the presence of long repeats (Fig. 9), typically for
high similarity segment duplications.

Figure 9: An example of a portion of the read graph showing obviously incorrect connections

The current Shasta implementation does not attempt to remove the obviously incorrect connections. This
results in unnecessary breaks in assembly contiguity. Despite this, Shasta assembly contiguity is adequate
and comparable to what other, less performant long read assemblers achieve. It is hoped that future Shasta
releases will do a better job at handling these situations.

Marker graph

Consider a read whose marker representation is:

a b c d e

We can represent this read as a directed graph that the describes the sequence in which its markers appear
(Fig. 10).

Figure 10: A marker graph representing a single read.

This is not very useful but illustrates the simplest form of a marker graph as used in the Shasta assembler.
The marker graph is a directed graph in which each vertex represents a marker and each edge represents the
transition between consecutive markers. We can associate sequence with each vertex and edge of the marker
graph:

• Each vertex is associated with the sequence of the corresponding marker.
• If the markers of the source and target vertex of an edge do not overlap, the edge is associated with

the sequence intervening between the two markers.
• If the markers of the source and target vertex of an edge do overlap, the edge is associated with the

overlapping portion of the marker sequences.

Consider now a second read with the following marker representation, which differs from the previous one
just by replacing marker c with x:

a b x d e

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 11: An illustration of marker graph construction for two sequences.

The marker graph for the two reads is Fig 11(A).

In the optimal alignment of the two reads, markers a, b, d, e are aligned. We can redraw the marker
graph grouping together vertices that correspond to aligned markers as in Fig 11(B).

Finally, we can merge aligned vertices to obtain a marker graph describing the two aligned reads, shown in
Fig 11(C).

Here, by construction each vertex still has a unique sequence associated with it - the common sequence of the
markers that were merged (however the corresponding repeat counts can be different for each contributing
read). An edge, on the other hand, can have different sequences associated with it, one corresponding to each
of the contributing reads. In this example, edges a->b and d->e have two contributing reads, which can each
have distinct sequence between the two markers.

We call coverage of a vertex or edge the number of reads “contributing” to it. In this example, vertices a,
b, d, e have coverage 2 and vertices c, x have coverage 1. Edges a->b and d->e have coverage 2, and the
remaining edges have coverage 1.

The construction of the marker graph was illustrated above for two reads, but the Shasta assembler constructs
a global marker graph which takes into account all oriented reads:

• The process starts with a distinct vertex for each marker of each oriented read. Note that at this
stage the marker graph is large (∼ 2× 1010 vertices for a human assembly using default assembly
parameters).

• For each marker alignment corresponding to an edge of the read graph, we merge vertices corresponding
to aligned markers.

• Of the resulting merged vertices, we remove those whose coverage in too low or two high, indicating
that the contributing reads or some of the alignments involved are probably in error. This is controlled
by assembly parameters MarkerGraph.minCoverage (default 10) and MarkerGraph.maxCoverage
(default 100), which specify the minimum and maximum coverage for a vertex to be kept.

• Edges are created. An edge v0->v1 is created if there is at least a read contributing to both v0 and
v1 and for which all markers intervening between v0 and v1 belong to vertices that were removed.

Note that this does not mean that all vertices with the same marker sequence are merged - two vertices
are only merged if they have the same marker sequence, and if there are at least two reads for which the
corresponding markers are aligned.

Given the large number of initial vertices involved, this computation is not trivial. To allow efficient
computation in parallel on many threads a lock-free implementation of the disjoint data set data structure [65],

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

is used for merging vertices. Some code changes were necessary to permit large numbers of vertices, as the initial
implementation by Wenzel Jakob only allowed for 32-bit vertex ids (https://github.com/wjakob/dset).

Assembly graph

The Shasta assembly process also uses a compact representation of the marker graph, called the assembly
graph, in which each linear sequence of edges is replaced by a single edge (Fig. 12).

Figure 12: (A) A marker graph with linear sequence of edges colored. (B) The corresponding assembly
graph. Colors were chosen to indicate the correspondence to marker graph edges.

The length of an edge of the assembly graph is defined as the number of marker graph edges that it corresponds
to. For each edge of the assembly graph, an average coverage is also computed, by averaging the coverage of
the marker graph edges it corresponds to.

Using the marker graph to assemble sequence

The marker graph is a partial description of the multiple sequence alignment between reads and can be used
to assemble consensus sequence. One simple way to do that is to only keep the “dominant” path in the graph,
and then traverse that path from vertex to edge to vertex, assembling run-length encoded sequence as follows:

1. On a vertex, all reads have the same sequence, by construction: the marker sequence associated with
the vertex. There is trivial consensus among all the reads contributing to a vertex, and the marker
sequence can be used directly as the contribution of the vertex to assembled sequence.

2. For edges, there are two possible situations plus a hybrid case:
• 2.1. If the adjacent markers overlap, in most cases all contributing reads have the same number

of overlapping bases between the two markers, and we are again in a situation of trivial consensus,
where all reads contribute the same sequence, which also agrees with the sequence of adjacent
vertices. In cases where not all reads are in agreement on the number of overlapping bases, only
reads with the most frequent number of overlapping bases are taken into account.

• 2.2. If the adjacent markers don’t overlap, then each read can have a different sequence between
the two markers. In this situation, we compute a multiple sequence alignment of the sequences
and a consensus using the spoa library [38] (https://github.com/rvaser/spoa). The multiple
sequence alignment is computed constrained at both ends, because all reads contributing to the
edge have, by construction, identical markers at both sides.

• 2.3. A hybrid situation occasionally arises, in which some reads have the two markers overlapping,
and some do not. In this case we count reads of the two kinds and discard the reads of the
minority kind, then revert to one of the two cases 2.1 or 2.2 above.

This is the process used for sequence assembly by the current Shasta implementation. It requires a process to
select and define dominant paths, which is described in the next section. It is algorithmically simple, but its
main shortcoming is that it does not use for assembly reads that contribute to the abundant side branches.
This means that coverage is lost, and therefore the sequence of assembled accuracy is not as good as it could
be if all available coverage was used. Means to eliminate this shortcoming and use information from the side
branches of the marker graph could be a subject of future work on the Shasta assembler.
The process described above works with run-length encoded sequence and therefore assembles run-length
encoded sequence. The final step to create raw assembled sequence is to compute the most likely repeat
count for each sequence position in run-length encoding. After some experimentation, this is currently done
by choosing as the most likely repeat count the one that appears the most frequently in the reads that
contributed to each assembled position.

27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

A simple Bayesian model for repeat counts resulted in a modest improvement in the quality of assembled
sequence. But the model appears to sensitive to calibration errors, and therefore it is not used by default in
Shasta assemblies. However, it is used by MarginPolish, as described below.

Selecting assembly paths in Shasta

The sequence assembly procedure described in the previous section can be used to assemble sequence for any
path in the marker graph. This section describes the selection of paths for assembly in the current Shasta
implementation. This is done by a series of steps that “remove” edges (but not vertices) from the marker
graph until the marker graph consists mainly of linear sections which can be used as the assembly paths. For
speed, edges are not actually removed but just marked as removed using a set of flag bits allocated for this
purpose in each edge. However, the description below will use the loose term “remove” to indicate that an
edge was flagged as removed.
This process consists of the following three steps, described in more detail in the following sections:

• Approximate transitive reduction of the marker graph.
• Pruning of short side branches (leaves).
• Removal of bubbles and super-bubbles.

The last step, removal of bubbles and superbubbles, is consistent with Shasta’s current assembly goal which
is to compute a mostly monoploid assembly, at least on short scales.

Approximate transitive reduction of the marker graph
The goal of this step is to eliminate the side branches in the marker graph, which are the result of errors.
Despite the fact that the number of side branches is substantially reduced thanks to the use of run-length
encoding, side branches are still abundant. This step uses an approximate transitive reduction of the marker
graph which only considers reachability up to a maximum distance, controlled by assembly parameter
MarkerGraph.maxDistance (default 30 marker graph edges). Using a maximum distance makes sure that
the process remains computationally affordable, and also has the advantage of not removing long-range edges
in the marker graph, which could be significant.
In detail, the process works as follows. In this description, the edge being considered for removal is the edge
v0→v1 with source vertex v0 and target vertex v1. The first two steps are not really part of the transitive
reduction but are performed by the same code for convenience.

• All edges with coverage less than or equal to MarkerGraph.lowCoverageThreshold are uncondition-
ally removed. The default value for this assembly parameter is 0, so this step does nothing when
using default parameters.

• All edges with coverage 1 and for which the only supporting read has a large marker skip are uncondi-
tionally removed. The marker skip of an edge, for a given read, is defined as the distance (in markers)
between the v0 marker for that read and the v1 marker for the same read. Most marker skips are small,
and a large skip is indicative of an artifact. Keeping those edges could result in assembly errors. The
marker skip threshold is controlled by assembly parameter MarkerGraph.edgeMarkerSkipThreshold
(default 100 markers).

• Edges with coverage greater than MarkerGraph.lowCoverageThreshold (default 0) and less than
MarkerGraph.highCoverageThreshold (default 256), and that were not previously removed, are
processed in order of increasing coverage. Note that with the default values of these parameters all
edges are processed, because edge coverage is stored using one byte and therefore can never be more
than 255 (it is saturated at 255). For each edge v0→v1, a Breadth-First Search (BFS) in the marker
graph is performed starting at source vertex v0 and with a limit of MarkerGraph.maxDistance
(default 30) edges distance from vertex v0. The BFS is constrained to not use edge v0→v1. If the BFS
reaches v1, indicating that an alternative path from v0 to v1 exists, edge v0→v1 is removed. Note
that the BFS does not use edges that have already been removed, and so the process is guaranteed
not to affect reachability. Processing edges in order of increasing coverage makes sure that low
coverage edges the most likely to be removed.

The transitive reduction step is intrinsically sequential and so it is currently performed in sequential code for
simplicity. It could be in principle be parallelized, but that would require sophisticated locking of marker
graph edges to make sure independent threads don’t step on each other, possibly reducing reachability.
However, even with sequential code, this step is not computationally expensive, taking typically only a small
fraction of total assembly time.

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://en.wikipedia.org/wiki/Breadth-first_search
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

When the transitive reduction step is complete, the marker graph consists mostly of linear sections composed
of vertices with in-degree and out-degree one, with occasional side branches and bubbles or superbubbles,
which are handled in the next two phases described below.

Pruning of short side branches (leaves)

At this stage, a few iterations of pruning are done by simply removing, at each iteration, edge v0→v1 if v0
has in-degree 0 (that is, is a backward-pointing leaf) or v1 has out-degree 0 (that is, is a forward-pointing
leaf). The net effect is that all side branches of length (number of edges) at most equal to the number
of iterations are removed. This leaves the leaf vertex isolated, which causes no problems. The number of
iterations is controlled by assembly parameter MarkerGraph.pruneIterationCount (default 6).

Removal of bubbles and superbubbles

The marker graph now consists of mostly linear section with occasional bubbles or superbubbles [66]. Most
of the bubbles and superbubbles are caused by errors, but some of those are due to heterozygous loci in the
genome being assembled. Bubbles and superbubbles of the latter type could be used for separating haplotypes
(phasing) - a possibility that will be addressed in future Shasta releases. However, the goal of the current
Shasta implementation is to create a monoploid assembly at all scales but the very long ones. Accordingly,
bubbles and superbubbles at short scales are treated as errors, and the goal of the bubble/superbubble
removal step is to keep the most significant path in each bubble or superbubble.

The Fig. 13 shows typical examples of a bubble and superbubble in the marker graph.

Figure 13: (A) A simple bubble. (B) A superbubble.

The bubble/superbubble removal process is iterative. Early iterations work on short scales, and late iterations
fork on longer scales. Each iteration uses a length threshold that controls the maximum number of marker
graph edges for features to be considered for removal. The value of the threshold for each iteration is specified
using assembly parameter MarkerGraph.simplifyMaxLength, which consists of a comma-separated string
of integer numbers, each specifying the threshold for one iteration in the process. The default value is
10,100,1000, which means that three iterations of this process are performed. The first iteration uses a
threshold of 10 marker graph edges, and the second and third iterations use length thresholds of 100 and
1000 marker graph edges, respectively. The last and largest of the threshold values used determines the size
of the smallest bubble or superbubble that will survive the process. The default 1000 markers is equivalent to
roughly 13 Kb. To suppress more bubble/superbubbles, increase the threshold for the last iterarion. To see
more bubbles/superbubbles, decrease the length threshold for the last iteration, or remove the last iteration
entirely.

The goal of the increasing threshold values is to work on small features at first, and on larger features in
the later iterations. The choice of MarkerGraph.simplifyMaxLength could be application dependent. The

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://arxiv.org/abs/1307.7925
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

default value is a reasonable compromise useful if one desires a mostly monoploid assembly with just some
large heterozygous features.
Each iteration consists of two steps. The first removes bubbles and the second removes superbubbles. Only
bubbles/superbubbles consisting of features shorter than the threshold for the current iteration are considered:

1. Bubble removal
• An assembly graph corresponding to the current marker graph is created.
• Bubbles are located in which the length of all branches (number of marker graph edges) is no

more than the length threshold at the current iteration. In the assembly graph, a bubble appears
as a set of parallel edges (edges with the same source and target).

• In each bubble, only the assembly graph edge with the highest average coverage is kept. Marker
graph edges corresponding to all other assembly graph edges in the bubble are flagged as removed.

2. Superbubble removal:
• An assembly graph corresponding to the current marker graph is created.
• Connected components of the assembly graph are computed, but only considering edges below

the current length threshold. This way, each connected component corresponds to a “cluster” of
“short” assembly graph edges.

• For each cluster, entries in the cluster are located. These are vertices that have in-edges from a
vertex outside the cluster. Similarly, out-edges are located (vertices that have out-edges outside
the cluster).

• For each entry/exit pair, the shortest path is computed. However, in this case the “length” of
an assembly graph edge is defined as the inverse of its average coverage - that is, the inverse of
average coverage for all the contributing marker graph edges.

• Edges on each shortest path are marked as edges to be kept.
• All other edges internal to the cluster are removed.

When all iterations of bubble/superbubble removal are complete, the assembler creates a final version of the
assembly graph. Each edge of the assembly graph corresponds to a path in the marker graph, for which
sequence can be assembled using the method described above. Note, however, that the marker graph and the
assembly graph have been constructed to contain both strands. Special care is taken during all transformation
steps to make sure that the marker graph (and therefore the assembly graph) remain symmetric with respect
to strand swaps. Therefore, the majority of assembly graph edges come in reverse complemented pairs, of
which we assemble only one. It is however possible but rare for an assembly graph to be its own reverse
complement.

High performance computing techniques employed by Shasta
The Shasta assembler is designed to run on a single machine with an amount of memory sufficient to hold all
of its data structures (1-2 TB for a human assembly, depending on coverage). All data structures are memory
mapped and can be set up to remain available after assembly completes. Note that using such a large memory
machine does not substantially increase the cost per CPU cycle. For example, on Amazon AWS the cost per
virtual processor hour for large memory instances is no more than twice the cost for laptop-sized instances.
There are various advantages to running assemblies in this way:

• Running on a single machine simplifies the logistics of running an assembly, versus for example
running on a cluster of smaller machines with shared storage.

• No disk input/output takes place during assembly, except for loading the reads in memory and
writing out assembly results plus a few small files containing summary information. This eliminates
performance bottlenecks commonly caused by disk I/O.

• Having all data structures in memory makes it easier and more efficient to exploit parallelism, even
at very low granularity.

• Algorithm development is easier, as all data are immediately accessible without the need to read
files from disk. For example, it is possible to easily rerun a specific portion of an assembly for
experimentation and debugging without any wait time for data structures to be read from disk.

• When the assembler data structures are set up to remain in memory after the assembler completes,
it is possible to use the Python API or the Shasta http server to inspect and analyze an assembly
and its data structures (for example, display a portion of the read graph, marker graph, or assembly
graph).

• For optimal performance, assembler data structures can be mapped to Linux 2 MB pages (“huge
pages”). This makes it faster for the operating system to allocate and manage the memory, and

30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

InspectingResults.html
https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

improves TLB efficiency. Using huge pages mapped on the hugetlbfs filesystem (Shasta executable
options --memoryMode filesystem --memoryBacking 2M) can result in a significant speed up (20-
30%) for large assemblies. However it requires root privilege via sudo.

To optimize performance in this setting, the Shasta assembler uses various techniques:

• In most parallel steps, the division of work among threads is not set up in advance but decided
dynamically (“Dynamic load balancing”). As a thread finishes a piece of work assigned to it, it grabs
another chunk of work to do. The process of assigning work items to threads is lock-free (that is, it
uses atomic memory primitives rather than mutexes or other synchronization methods provided by
the operating system).

• Most large memory allocations are done via mmap and can optionally be mapped to Linux 2 MB
pages backed by the Linux hugetlbfs. This memory is persistent until the next reboot and is
resident (non-pageable). As a result, assembler data structures can be kept in memory and reaccessed
repeatedly at very low cost. This facilitates algorithm development (e. g. it allows repeatedly testing
a single assembly phase without having to rerun the entire assembly each time or having to wait for
data to load) and postprocessing (inspecting assembly data structures after the assembly is complete).
The Shasta http server and Python API take advantage of this capability.

• The Shasta code includes a C++ class for conveniently handling these large memory-mapped regions
as C++ containers with familiar semantics (class shasta::MemoryMapped::Vector).

• In situations where a large number of small vectors are required, a two-pass process is used (class
shasta::MemoryMapped::VectorOfVectors). In the first pass, one computes the length of each of
the vectors. A single large area is then allocated to hold all of the vectors contiguously, together
with another area to hold indexes pointing to the beginning of each of the short vectors. In a second
pass, the vectors are then filled. Both passes can be performed in parallel and are entirely lock-free.
This process eliminates memory allocation overhead that would be incurred if each of the vectors
were to be allocated individually.

Thanks to these techniques, Shasta achieves close to 100% CPU utilization during its parallel phases, even
when using large numbers of threads. However, a number of sequential phases remain, which typically result
in average CPU utilization during a large assembly around 70%. Some of these sequential phases can be
parallelized, which would result in increased average CPU utilization and improved assembly performance.

MarginPolish

Throughout we used MarginPolish (https://github.com/ucsc-nanopore-cgl/MarginPolish) version 1.0.0.

MarginPolish is an assembly refinement tool designed to sum over (marginalize) read to assembly alignment
uncertainty. It takes as input a genome assembly and set of aligned reads in BAM format.

It outputs a refined version of the input genome assembly after attempting to correct base-level errors in
terms of substitutions and indels (insertions and deletions). It can also output a summary representation of
the assembly and read alignments as a weighted partial order alignment graph (POA), which is used by the
HELEN neural network based polisher described below.

It was designed and is optimized to work with noisy long ONT reads, although parameterization for other,
similar read types is easily possible. It does not yet consider signal-level information from ONT reads.
It is also currently a haploid polisher, in that it does not attempt to recognize or represent heterozygous
polymorphisms or phasing relationships. For haploid genome assemblies of a diploid genome it will therefore
fail to capture half of all heterozygous polymorphisms.

Algorithm Overview

MarginPolish works in overview as follows:

1. Reads and the input assembly are converted to their run-length encoding (RLE) (see Shasta description
above for description and rationale).

2. A restricted, weighted Partial Order Alignment [38] (POA) graph is constructed representing the
RLE input assembly and potential edits to it in terms of substitutions and indels.

3. Within identified regions of the POA containing likely assembly errors:

31

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

• A set of alternative sequences representing combinations of edits are enumerated by locally
traversing the POA within the region.

• The likelihood of the existing and each alternative sequence is evaluated given the aligned reads.

• If an alternative sequence with higher likelihood than the current reference exists then the
assembly at the location is updated with this higher likelihood sequence.

4. Optionally, the program loops back to step 2 to repeat the refinement process (by default it loops
back once).

5. The modified RLE assembly is expanded by estimating the repeat count of each base given the reads
using a simple Bayesian model. The resulting final, polished assembly is output. In addition, a
representation of the weighted POA can be output.

Innovations
Compared to existing tools MarginPolish is most similar to Racon [40], in that they are comparable in speed,
both principally use small-parameter HMM like models and both do not currently use signal information.
Compared to Racon MarginPolish has some key innovations that we have found to improve polishing accuracy:

• MarginPolish, as with our earlier tool in the Margin series [1], uses the forward-backward and forward
algorithms for pair hidden Markov models (HMMs) to sum over all possible pairwise alignments
between pairs of sequences instead of the single most probable alignment (Viterbi). Considering all
alignments allows more information to be extracted per read.

• The MarginPolish POA construction does not have a read-order dependence. Earlier algorithms
for constructing POA graphs have a well known explicit read order dependence that can result in
undesirable topologies.

• MarginPolish works in run-length encoded space, which results in considerably less alignment
uncertainty and correspondingly improved performance.

• MarginPolish, similarly to Nanopolish [67], evaluates the likelihood of each alternative sequence
introduced into the assembly. This improves performance relative to a faster but less accurate
algorithm that traces back a consensus sequence through the POA graph.

• MarginPolish employs a simple chunking scheme to break up the polishing of the assembly into
overlapping pieces. This results in low memory usage per core and simple parallelism.

Below steps 2, 3 and 5 of the MarginPolish algorithm are described in detail. In addition, the parallelization
scheme is described.

Partial Order Alignment Graph Construction
To create the POA we start with the existing assembled sequence s = s1, s2, . . . sn and for each read
r = r1, r2, . . . , rm in the set of reads R use the Forward-Backward algorithm with a standard 3-state, affine-
gap pair-HMM to derive posterior alignment probabilities using the implementation described in [59]. The
parameters for this model are specified in the polish.hmm subtree of the JSON formatted parameters file,
including polish.hmm.transitions, and polish.hmm.emissions. Current defaults were tuned via EM [11]
of R9.4 ONT reads from and aligned to a bacterial reference; we have observed the parameters for this HMM
seem robust to small changes in base-caller versions. The result of running the Forward-backward algorithm
is three sets of posterior probabilities:

• Firstly match probabilities: the set of posterior match probabilities, each the probability P (ri � sj)
that a read base ri is aligned to a base sj in s.

• Secondly insertion probabilities: the set of posterior insertion probabilities, each the probability
P (ri � −j) that a read base ri is inserted between two bases sj and sj+1 in s, or, if j = 0, inserted
before the start of s, or, if j = n, after the end of s.

• Thirdly deletion probabilities, the set of posterior deletion probabilities, each the probability P (sj�−ri)
that a base sj in s is deleted between two read bases ri and ri+1. (Note, because a read is generally
an incomplete observation of s we consider the probability that a base in s is deleted before the first
position or after the last position of a read as 0).

32

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

As most probabilities in these three sets are very small and yet to store and compute all the probabilities
would require evaluating comparatively large forward and backward alignment matrices we restrict the set of
probabilities heuristically as follows:

• We use a banded forward-backward algorithm, as originally described here [68]. To do this we use
the original alignment of the read to s as in the input BAM file. Given that s is generally much
longer than each read this allows computation of each forward-backward invocation in time linearly
proportional to the length of each read, at the cost of restricting the probability computation to a
sub-portion of the overall matrix, albeit one that contains the vast majority of the probability mass.

• We only store posterior probabilities above a threshold
(polish.pairwiseAlignmentParameters.threshold, by default 0.01), treating smaller probabilities
as equivalent as zero.

The result is that these three sets of probabilities are a very sparse subset of the complete sets.
To estimate the posterior probability of a multi-base insertion of a read substring ri, ri+1, . . . rk at a given
location j in s involves repeated summation over terms in the forward and backward matrices. Instead to
approximate this probability we heuristically use:

P (ri, ri+1, . . . rk � −j) = arg min
l∈[i,k]

P (rl � −j)

the minimum probability of any base in the multi-base insertion being individually inserted at the location in
s as a proxy, a probability that is an upper-bound on the actual probability.
Similarly we estimate the posterior probability of a deletion involving more than one contiguous base s at a
given location in a read using analogous logic. As we store a sparse subset of the single-base insertion and
deletion probabilities and given these probability approximations it is easy to calculate all the multi-base
indel probabilities with value greater than t by linear traversal of the single-based insertion and deletion
probabilities after sorting them, respectively, by their read and s coordinates. The result of such calculation
is expanded sets of insertion and deletion probabilities that include multi-base probabilities.
To build the POA we start from s, which we call the backbone. The backbone is a graph where each base sj

in s corresponds to a node, there are special source and sink nodes (which do not have a base label), and the
directed edges connect the nodes for successive bases sj , sj+1 in s, from the source node to the node for s1,
and, similarly, from the node for sn to the sink node.
Each non-source/sink node in the backbone has a separate weight for each possible base x ∈ {A,C,G, T}.
This weight:

w(j, x) =
∑
r∈R

∑
i

1x(ri)P (ri � sj)

where 1x(ri) is an indicator function that is 1 if ri = x and otherwise 0, corresponds to the sum of match
probabilities of read elements of base x being aligned to sj . This weight has a probabilistic interpretation:
it is the total number of expected observations of the base x in the reads aligned to sj , summing over all
possible pairwise alignments of the reads to s. It can be fractional because of the inherent uncertainty of
these alignments, e.g. we may predict only a 50% probability of observing such a base in a read.
We add deletion edges, which connect nodes in the backbone. Indexing the nodes in the backbone from 0 (the
source) to the source n+ 1 (the sink), a deletion edge between positions j and k in the backbone corresponds
to the deletion of bases j, j + 1, . . . k − 1 in s. Each deletion edge has a weight equal to the sum of deletion
probabilities for deletion events that delete the corresponding base(s) in s, summing over all possible deletion
locations in all reads. Deletions with no weight are not included. Again, this weight has a probabilistic
interpretation: it is the expected number of times we see the deletion in the reads, and again it may be
fractional.
We represent insertions as nodes labelled with an insertion sequence. Each insertion node has a single
incoming edge from a backbone node, and a single outgoing edge to the next backbone node in the backbone
sequence. Each insertion is labeled with a weight equal to the sum of probabilities of events that insert the
given insertion sequence between the corresponding bases in s. The resulting POA is a restricted form of a
weighted, directed acyclic graph (Fig. 14(A) shows an example).

33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Figure 14: A) An example POA, assuming approximately 30x read coverage. The backbone is shown in red.
Each non-source/sink node has a vector of weights, one for each possible base. Deletion edges are shown in
teal, they also each have a weight. Finally insertion nodes are shown in brown, each also has a weight. (B)
A pruned POA, removing deletions and insertions that have less than a threshold weight and highlighting
plausible bases in bold. There are six plausible nucleotide sequences represented by paths through the POA
and selections of plausible base labels: G;AT;A;T;A;C:A, G;AT;A;T;A;C:G, G;A;T;A;C:A, G;A;T;A;C:G,
G;A;C:A, G;A;C:G. To avoid the combinatorial explosion of such enumeration we identify subgraphs (C)
and locally enumerate the possible subsequences in these regions independently (dotted rectangles identify
subgraphs selected). In each subgraph there is a source and sink node that does not overlap any proposed
edit.

Frequently either an insertion or deletion can be made between different successive bases in s resulting in
the same edited sequence. To ensure that such equivalent events are not represented multiple times in the
POA, and to ensure we sum their weights correctly, we ‘left shift’ indels to their maximum extent. When
shifting an indel results in multiple equivalent deletion edges or insertions we remove the duplicate elements,
updating the weight of the residual element to include the sum of the weights of the removed elements. For
example, the insertion of ‘AT’ in Fig. 14 is shifted left to its maximal extent, and could include the merger of
an equivalent ‘AT’ insertion starting two backbone nodes to the right.

Local Haplotype Proposal

After constructing the POA we use it to sample alternative assemblies. We first prune the POA to mark indels
and base substitutions with weight below a threshold, which are generally the result of sequencing errors
(Fig. 14(B)). Currently this threshold (polish.candidateVariantWeight=0.18, established empirically) is
normalized as a fraction of the estimated coverage at the site, which is calculated in a running window around
each node in the backbone of 100 bases. Consequently if fewer than 18% of the reads are expected to include
the change then the edit is pruned from consideration.

To further avoid a combinatorial explosion we sample alternative assemblies locally. We identify subgraphs of
s containing indels and substitutions to s then in each subgraph, defined by a start and end backbone vertex,
we enumerate all possible paths between the start and end vertex and all plausible base substitutions from
the backbone sequence. The rationale for heuristically doing this locally is that two subgraphs separated
by one or more anchor backbone sites with no plausible edits are conditionally independent of each other

34

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

given the corresponding interstitial anchoring substring of s and the substrings of the reads aligning to it.
Currently, any backbone site more than polish.columnAnchorTrim=5 nodes (equivalent to bases) in the
backbone from a node overlapping a plausible edit (either substitution or indel) is considered an anchor.
This heuristic allows for some exploration of alignment uncertainty around a potential edit. Given the set of
anchors computation proceeds by identifying successive pairs of anchors separated by subgraphs containing
the potential edits, with the two anchors considered the source and sink vertex.

A Simple Bayesian Model for Run-length Decoding

0 2 4 6 8 10

Observed Distribution (X)

Model
P(X|y) for y=1 to y=8

p(y=1|X) = 0.0000

p(y=7|X) = 0.0000

p(y=2|X) = 0.0000

p(y=3|X) = 0.0000

p(y=5|X) = 0.9685

p(y=6|X) = 0.0001

p(y=4|X) = 0.0314

p(y=8|X) = 0.0000

Calculate
log likelihood

for each y

Normalized likelihood

0 2 4 6 8 10

Run length (bp)

Run length (bp)

P
ro

b
a
b
ili

ty

Fr
e
q
u
e
n
cy

Figure 15: Visual representation of run length inference. This diagram shows how a consensus run
length is inferred for a set of aligned lengths (X) that pertain to a single position. The lengths are factored
and then iterated over, and log likelihood is calculated for every possible true length up to a predefined limit.
Note that in this example, the most frequent observation (4bp) is not the most likely true length (5bp) given
the model.

Run-length encoding allows for separate modelling of length and nucleotide error profiles. In particular, length
predictions are notoriously error prone in nanopore basecalling. Since homopolymers produce continuous
signals, and DNA translocates at a variable rate through the pore, the basecaller often fails to infer the true
number of bases given a single sample. For this reason, a Bayesian model is used for error correction in the
length domain, given a distribution of repeated samples at a locus.
To model the error profile, a suitable reference sequence is selected as the truth set. Reads and reference
are run-length encoded and aligned by their nucleotides. The alignment is used to generate a mapping
of observed lengths to their true length (y, x) where y = true and x = observed for each position in the
alignment. Observations from alignment are tracked using a matrix of predefined size (ymax = 50, xmax = 50)
in which each coordinate contains the corresponding count for (y, x). Finally the matrix is normalized along
one axis to generate a probability distribution of P (X|yj) for j in [1, ymax]. This process is performed for
each of the 4 bases.
With enough observations, the model can be used to find the most probable true run length given a vector of
observed lengths X. This is done using a simple log likelihood calculation over the observations xi for all
possible true lengths yj in Y , assuming the length observations to be independent and identically distributed.
The length yj corresponding to the greatest likelihood P (X|yj , Base) is chosen as the consensus length for
each alignment position (Fig. 15).

Training

To generate a model, we ran MarginPolish with reads from a specific basecaller version aligned to a reference
(GRCh38) and specified the –outputRepeatCounts flag. This option produces a TSV for each chunk describing
all the observed repeat counts aligned to each backbone node in the POA. These files are consumed by a script
in the https://github.com/rlorigro/runlength_analysis repository, which generates a RLE consensus
sequence, aligns to the reference, and performs the described process to produce the model.
The allParams.np.human.guppy-ff-235.json model used for most of the analysis was generated from
HG00733 reads basecalled with Guppy Flipflop v2.3.5 aligned to GRCh38, with chromosomes 1, 2, 3, 4, 5, 6,

35

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

and 12 selected. The model allParams.np.human.guppy-ff-233.json was generated from Guppy Flipflop
v2.3.3 data and chromosomes 1-10 were used. This model was also used for the CHM13 analysis, as the
run-length error profile is very similar between v2.3.3 and v2.3.1 (v2.3.5 has a drastically different error
profile, as is shown below in Fig. 18).

Parallelization and Computational Considerations
To parallelize MarginPolish we break the assembly up into chunks of size polish.chunkSize=1000 bases,
with an overlap of polish.chunkBoundary=50 bases. We then run the MarginPolish algorithm on each
chunk independently and in parallel, stitching together the resulting chunks after finding an optimal pairwise
alignment (using the default hmm described earlier) of the overlaps that we use to remove the duplication. We
can further parallelize the algorithm across machines or processes using a provided Toil script CITE:PMID:
28398314.
Memory usage scales with thread count, read depth, and chunk size. For this reason, we downsample reads
in a chunk to polish.maxDepth=50× coverage by counting total nucleotides in the chunk Nc and discarding
reads with likelihood 1− (chunkSize + 2 ∗ chunkBoundary) ∗ maxDepth/Nc. With these parameters, we find
that 2GB of memory per thread is sufficient to run MarginPolish on genome-scale assemblies. Across 13
whole-genome runs, we averaged roughly 350 CPU hours per gigabase of assembled sequence.

HELEN: Homopolymer Encoded Long-read Error-corrector for Nanopore

HELEN is a deep neural network based haploid consensus sequence polisher. HELEN employs a multi-task
recurrent neural network (RNN) [39] that takes the weights of the partial order alignment (POA) graph of
MarginPolish to predict a base and a run-length for each genomic position. MarginPolish constructs the POA
graph by performing multiple possible alignments of a single read that makes the weights associative to the
correct underlying base and a run-length. The RNN employed in HELEN takes advantage of the transitive
relationship of the genomic sequence and associative coupling of the POA weights to the correct base and
run-length to produce a consensus sequence with higher accuracy.
The error-correction with HELEN is done in three steps. First, we generate tensor-like images of genomic
segments with MarginPolish that encodes POA graph weights for each genomic position. Then we use a
trained RNN model to produce predicted bases and run-lengths for each of the generated images. Finally, we
stitch the chunked sequences to get a contiguous polished sequence.

Image Generation

MarginPolish produces an image-like summary of the final POA state for use by HELEN. At a high level, the
image summarizes the weighted alignment likelihoods of all reads divided into nucleotide, orientation, and
run-length.
The positions of the POA nodes are recorded using three coordinates: the position in the backbone sequence
of the POA, the position in the insert sequences between backbone nodes, and the index of the run-length
block. All backbone positions have an insert coordinate of 0. Each backbone and insert coordinate includes
one or more run-length coordinate.
When encoding a run-length, we divide all read observations into blocks from 0 to 10 inclusive (this length is
configurable). For cases where no observations exceed the maximum run-length, a single run-length image
can describe the POA node. When an observed run-length exceeds the length of the block, the run-length is
encoded as that block’s maximum (10), and the remaining run-length is encoded in successive blocks. For a
run-length that terminates in a block, its weight is contributed to the run-length 0 column in all successive
blocks. This means that the records for all run-length blocks of a given backbone and insert position have
the same total weight. As an example, consider three read positions aligned to a node with run-lengths of 8,
10, and 12. These require two run-length blocks to describe: the first block includes one 8 and two 10s, and
the second includes two 0s and one 2.
The information described at each position (backbone, insert, and run-length) is encoded in 92 features: each
nucleotide {A, C, T, G} and run-length {0, 1, .., 10}, plus a gap weight (for deletions in read alignments).
The weights for each of these 45 observations are separated into forward and reverse strand for a total of
90 features. The weights for each of these features are normalized over the total weight for the record and
accompanied by an additional data point describing the total weight of the record. This normalization column

36

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

(i)
Assembly sequence: GGAAAAAAAACATTTTAAAA
True sequence:         GGAAAAAAAA - - TTTTAAAA

Assembly sequence in run-length: G A A C A T A
2 5 3 1 1 4 4

Truth sequence in run-length: G A A - - T A
2 5 3 0 0 4 4

(ii)
Assembly sequence: ATGAAA - - CTTG
True sequence:         ATGAAAGGCTTG

Assembly sequence in run-length: A T G A C T G
1 1 1 3 1 2 1

Truth sequence in run-length: A T G A G C T G
1 1 1 3 2 1 2 1

a.

b.

(i)

(ii)

Figure 16: MarginPolish Images A graphical representation of images from two labeled regions selected to
demonstrate: the encoding of a single POA node into two run-length blocks (i), a true deletion (i), and a
true insert (ii). The y-axis shows truth labels for nucleotides and run-lengths, the x-axis describes features in
the images, and colors show associated weights.

for the record is an approximation of the read depth aligned to that node. Insert nodes are annotated with
a binary feature (for a final total of 92); weights for an insert node’s alignments are normalized over total
weight at the backbone node it is rooted at (not the weight of the insert node itself) and gap alignment
weights are not applied to them.

Labeling nodes for training requires a truth sequence aligned to the assembly reference. This provides a
genome-scale location for the true sequence and allows the its length to help in the resolution of segmental
duplications or repetitive regions. When a region of the assembly is analyzed with MarginPolish, the truth
sequences aligned to that region are extracted. If there is not a single truth sequence which approximately
matches the length of the consensus for this region, we treat it as an uncertain region and no training images
are produced. Having identified a suitable truth sequence, it is aligned to the final consensus sequence in
non-run-length space with Smith-Waterman. Both sequences and the alignment are then run-length encoded,
and true labels are matched with locations in the images. All data between the first and last matched nodes
are used in the final training images (leading and trailing inserts or deletes are discarded). For our training,
we aligned the truth sequences with minimap2 using the asm20 preset and filtered the alignments to include
only primary and supplementary alignments (no secondary alignments).

37

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Fig. 16 shows a graphical representation of the images. On the y-axis we display true nucleotide labels (with
the dash representing no alignment / gap) and true run-length. On the x-axis the features used as input to
HELEN are displayed: first the normalization column (the total weight at the backbone position), second the
insert column (the binary feature encoding whether the image is for a backbone or insert node), forty-eight
columns describing the weights associated with read observations (stratified by nucleotide, run-length, strand),
and two columns describing weights for gaps in read alignments (stratified by strand). In this example, we
have reduced the maximum run-length per block from 10 to 5 for demonstrative purposes.
We selected these two images to highlight three features of the model: the way multiple run-length blocks are
used to encode observations for a single node, and the relevant features around a true gap and a true insert
that enable HELEN to correct these errors.
To illustrate multiple run length blocks, we highlight two locations on on image (i). The first are the nodes
labeled (A,5) and (A,3). This is the labeling for a true (A,8) sequence separated into two blocks. See that the
bulk of the weight is on the (A,5) features on the first block, with most of that distributed across the (A,1-3)
features on the second. Second, observe the nodes on (i) labeled (T,4) and (T,0). Here we show the true
labeling of a (T,4) sequence where there are some read observations extending into a second run-length block.
To show a features of a true gap, note on (i) the non-insert nodes labeled (-,0). We know that MarginPolish
predicted a single cytosine nucleotide (as it is a backbone node and the (C,1) nodes have the bulk of the
weight. Here, HELEN is able to use the low overall weight (the lighter region in the normalization column)
at this location as evidence of fewer supporting read alignments and can correct the call.
The position labeled (G,2) on (ii) details a true insertion. It is not detected by MarginPolish (as all insert
nodes are not included in the final consensus sequence). Read support is present for the insert, less than the
backbone nodes in this image but more than the other insert nodes. HELEN can identify this sequence and
correct it.

Bidirectional gated 
recurrent unit

Linear 
layer

Input sequence

window 1 window 2

Bidirectional gated 
recurrent unit

Linear 
layer

Bidirectional gated 
recurrent unit

Linear 
layer

Bidirectional gated 
recurrent unit

Linear 
layer

sliding window

Hidden state

En
co

d
er

D
ec

o
d

er

Base 
predictions

Run-length 
predictions

Base 
predictions

Run-length 
predictions

Multi-task learning with hard parameter sharing

Hidden state

Figure 17: The sequence-to-sequence model implemented in Helen.

The model

We use a sequence transduction model for consensus polishing. The model structure consists of two single-layer
gated recurrent neural units (GRU) for encoding and decoding on top of two linear transformation layers.

38

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

The two linear transformation layers independently predict a base and a run-length for each position in the
input sequence. Each unit of the GRU can be described using the four functions it calculates:

rt = Sigmoid(Wirxt +Whrh(t−1))

ut = Sigmoid(Wiuxt +Whuh(t−1))

nt = tanh(Winxt + rt ∗ (Whnh(t−1)))

ht = (1− ut) ∗ nt + ut ∗ h(t−1)

(1)

For each genomic position t, we calculate the current state ht from the new state nt and the update value ut

applied to the output state of previous genomic position h(t−1). The update function ut decides how much
past information to propagate to the next genomic position. It multiplies the input xt with the weight vector
Wiu and multiplies the hidden state of the previous genomic position h(t−1). The weight vectors decide
how much from the previous state to propagate to the next state. The reset function rt decides how much
information to dissolve from the previous state. Using a different weight vector, the rt function decides how
much information to dissolve from the past. The new memory state nt is calculated by multiplying the input
xt with the weight vector Win and applying a Hadamard multiplication ∗ between the reset function value
and a weighted state of the previous hidden state h(t−1). The new state captures the associative relationship
between the input weights and true prediction. In this setup, we can see that rt and ut can decide to hold
memory from distant locations while nt captures the associative nature of the weights to the prediction,
helping the model to decide how to propagate genomic information in the sequence. The output of each
genomic position ht can be then fed to the next genomic position as a reference to the previously decoded
genomic position. The final two layers apply linear transformation functions:

Bt = ht ∗WT

Rt = ht ∗WT
(2)

The two linear transformation functions independently calculate a base prediction Bt and a run-length
prediction Rt from the hidden state output of that genomic position ht. The model operates in hard
parameter sharing mode where the model learns to perform two tasks in equation 2 using the same set of
underlying parameters from equation 1. The ability of the model to reduce the error rate of the assemblies
from multiple samples with multiple assemblers shows the generalizability and robustness we achieve with
this method.

Sliding window mechanism

One of the challenges of this setup is the sequence length. From the functions of recurrent units in equation 1,
we see that each state is updated based on the previous state and associated weight. Due to the noisy nature
of the data, if the sequence length is too long, the back-propagation becomes difficult over noisy regions. On
the other hand, a small sequence length would make the program very slow. We balance the run-time and
accuracy by using a sliding window approach.
During the sliding-window, we chunk the sequence of thousand bases to multiple overlapping windows of
length 100. Starting from the leftmost window, we perform prediction on sequence pileups of the window and
transmit the hidden state of the current window to the next window and slide the window by 50 bases to the
right. For each window, we collect all the predicted values and add it to a global sequence inference counter
that can keep track of predicted probabilities of base and run-length at each position. Lastly, we aggregate
the probabilities from the global inference counter to generate a sequence. This setup allows us to utilize the
minibatch feature of the popular neural network libraries allowing inference on a batch of inputs instead of
performing inference one at a time.

Training the model

HELEN is trained with a gradient descent method. We use Adaptive Moment Estimation (Adam) method to
compute gradients for each of the parameters in the model based on a target loss function. Adam uses both
decaying squared gradients and the decaying average of gradients, making it suitable to use with recurrent
neural networks[39]. Adam performs gradient optimization by adapting the parameters to set in a way that
minimizes the value of the loss function.

39

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

We perform optimization through back-propagation per window of the input sequence. From equation
2, we see that we get two vectors B = [B1, B2, B3...Bn] and R = [R1, R2, R3...Rn] containing base and
run-length predictions for each window of size n. From the labeled data we get two more such vectors
TB = [TB1, TB2, TB3, ...TBn] and TR = [TR1, TR2, TR3, ...TRn] containing the true base and true rle values of
each position in the window. From these loss function the loss L is calculated:

LB(B, TB) = −B[TB ] + log
(∑

j exp(B[j])
)

LR(R, TR) = weight[TR]
(
−R[TR] + log

(∑
j exp(R[j])

))
L = LB + LR

(3)

In equation 3, LB calculates the base prediction loss and LR calculates the rle prediction loss. The rle class
distribution is heavily biased toward lower run-length values, so, we apply class-wise weights depending on the
observation of per class to make the learning process balanced between classes. The optimizer then updates
the parameters or weights W of the model from equation 1 and equation 2 in a way that minimizes the value
of the loss function. We can see that the loss function is a summation of the two independent loss functions
but the underlying weights from the recurrent neural network belongs to the same set of elements in the
model. In this setting, the model optimizes to learn both task simultaneously by updating the same set of
weights.

Sequence stitching

To parallelize the polishing pipeline, MarginPolish chunks the genome into smaller segments while generating
images. Each image segment encodes a thousand nucleotide bases, and two adjacent chunks have 50 nucleotide
bases overlap between them. During the inference step, we save all run-length and base predictions of the
images, including their start and end genomic positions.

For stitching, we load all the image predictions and sort them based on the genomic start position of the
image chunk and stitch them in parallel processes. For example, if there are n predictions from n images
of a contig and we have t available threads, we divide n prediction chunks into t buckets each containing
approximately n/t predicted sequences. Then we start t processes in parallel where each process stitches all
the sequences assigned to it and returns a longer sequence. For stitching two adjacent sequences, we take the
overlapping sequences between the two sequence and perform a pairwise Smith-Waterman alignment. From
the alignment, we pick an anchor position where both sequences agree the most and create one sequence.
After all the processes finish stitching the buckets, we get t longer sequences generated by each process.
Finally, we iteratively stitch the t sequences using the same process and get one contiguous sequence for the
contig.

Generating trained models

In supplementary tables 13, 16 and 15 we report several models for HELEN. The models are trained
on different sets of data with varying Guppy base-caller versions. We discuss three trained models
r941_flip235_v001.pkl, r941_flip233_v001.pkl, and r941_flip231_v001.pkl to use with HELEN for
different versions of the ONT Guppy base-callers. Due to the difference in the error profile of different versions
of the Guppy base-caller, we trained three different models.

Table 3: Description of trained models for HELEN.

Model Name Base caller version Training sample Training region Testing region

r941_flip235_v001.pkl Guppy 2.3.5 HG002 Chr1-19, Chr21-22 Chr20

r941_flip233_v001.pkl Guppy 2.3.3 HG002 Chr1-19, Chr21-22 Chr20

r941_flip231_v001.pkl Guppy 2.3.1 CHM13 Chr1-6 Chr20

The r941_flip235_v001.pkl is trained on HG002 base called with Guppy 2.3.5. The model is trained on
the high confidence regions of all autosomes and tested on Chr20. The training script trained the model for 80

40

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

1 5 10 15 20 25 30 35 40 45
Predicted length

1

5

10

15

20

25

30

35

40

45

Tr
ue

 le
ng

th

Guppy 2.3.3

1 5 10 15 20 25 30 35 40 45
Predicted length

1

5

10

15

20

25

30

35

40

45

Guppy 2.3.5

0.0

0.2

0.4

0.6

0.8

Probability of prediction

Figure 18: Run-length confusion in different versions of Guppy base caller

hours on 10 epochs, which generated 10 trained models. We picked the model that has the best performance
on Chr20 as the final model.

The CHM13 data from T2T consortium [31] were base called with Guppy 2.3.1. The error profile of Guppy
2.3.1 is significantly different than Guppy 2.3.5. Figure 18 shows the difference in underlying error profile of
HG00733 sample for two different versions of Guppy. We trained r941_flip233_v001.pkl Model on HG002
Guppy 2.3.3 data. Although the error profile of Guppy 2.3.1 and Guppy 2.3.3 are similar, the reported base
qualities are different. So, we trained another model r941_flip231_v001.pkl on Chr1-6 of CHM13 to see
further improvement in the consensus quality of CHM13.

Implementation notes

We have implemented HELEN using python and C++ programming language. We use PyTorch [69] deep
neural network library for the model implementation. We also use the Striped-Smith Waterman algorithm
implementation to use during stitching and Pybind11 [70] as a bridge between C++ and python methods.
The image data is saved using HDF5 file format. The implementation is publicly available via GitHub
(https://github.com/kishwarshafin/helen).

References

[1] Jana Ebler, Marina Haukness, Trevor Pesout, Tobias Marschall, and Benedict Paten. Haplotype-aware
diplotyping from noisy long reads. Genome biology, 20(1):116, 2019.

[2] Justin M Zook, Jennifer McDaniel, Nathan D Olson, Justin Wagner, Hemang Parikh, Haynes Heaton,
Sean A Irvine, Len Trigg, Rebecca Truty, Cory Y McLean, et al. An open resource for accurately
benchmarking small variant and reference calls. Nature biotechnology, 37(5):561, 2019.

[3] Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst, Alexander Ku,
Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T Afshar, et al. A universal snp and small-indel
variant caller using deep neural networks. Nature biotechnology, 36(10):983, 2018.

[4] Keith R Bradnam, Joseph N Fass, Anton Alexandrov, Paul Baranay, Michael Bechner, Inanç Birol,
Sébastien Boisvert, Jarrod A Chapman, Guillaume Chapuis, Rayan Chikhi, et al. Assemblathon 2:
evaluating de novo methods of genome assembly in three vertebrate species. GigaScience, 2(1):10, 2013.

[5] Can Alkan, Bradley P Coe, and Evan E Eichler. Genome structural variation discovery and genotyping.
Nature Reviews Genetics, 12(5):363, 2011.

[6] Shunichi Kosugi, Yukihide Momozawa, Xiaoxi Liu, Chikashi Terao, Michiaki Kubo, and Yoichiro
Kamatani. Comprehensive evaluation of structural variation detection algorithms for whole genome
sequencing. Genome biology, 20(1):117, 2019.

41

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

[7] Mark JP Chaisson, Ashley D Sanders, Xuefang Zhao, Ankit Malhotra, David Porubsky, Tobias Rausch,
Eugene J Gardner, Oscar L Rodriguez, Li Guo, Ryan L Collins, et al. Multi-platform discovery of
haplotype-resolved structural variation in human genomes. Nature communications, 10, 2019.

[8] Jon-Matthew Belton, Rachel Patton McCord, Johan Harmen Gibcus, Natalia Naumova, Ye Zhan,
and Job Dekker. Hi–c: a comprehensive technique to capture the conformation of genomes. Methods,
58(3):268–276, 2012.

[9] Ester Falconer and Peter M Lansdorp. Strand-seq: a unifying tool for studies of chromosome segregation.
In Seminars in cell & developmental biology, volume 24, pages 643–652. Elsevier, 2013.

[10] Neil I Weisenfeld, Vijay Kumar, Preyas Shah, Deanna M Church, and David B Jaffe. Direct determination
of diploid genome sequences. Genome research, 27(5):757–767, 2017.

[11] Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten, and Mark Akeson. Improved
data analysis for the minion nanopore sequencer. Nature methods, 12(4):351, 2015.

[12] John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso, David Rank,
Primo Baybayan, Brad Bettman, et al. Real-time dna sequencing from single polymerase molecules.
Science, 323(5910):133–138, 2009.

[13] John Huddleston, Mark JP Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra Hoekzema, David
Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N Kronenberg, Laura Vives, et al. Discovery
and genotyping of structural variation from long-read haploid genome sequence data. Genome research,
27(5):677–685, 2017.

[14] Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad, Arndt von Haeseler,
and Michael C Schatz. Accurate detection of complex structural variations using single-molecule
sequencing. Nat Methods, 15(6):461–468, 2018.

[15] Murray Patterson, Tobias Marschall, Nadia Pisanti, Leo Van Iersel, Leen Stougie, Gunnar W Klau, and
Alexander Schönhuth. Whatshap: weighted haplotype assembly for future-generation sequencing reads.
Journal of Computational Biology, 22(6):498–509, 2015.

[16] Chen-Shan Chin, Paul Peluso, Fritz J Sedlazeck, Maria Nattestad, Gregory T Concepcion, Alicia Clum,
Christopher Dunn, Ronan O’Malley, Rosa Figueroa-Balderas, Abraham Morales-Cruz, et al. Phased
diploid genome assembly with single-molecule real-time sequencing. Nature methods, 13(12):1050, 2016.

[17] Miten Jain, Sergey Koren, Karen H Miga, Josh Quick, Arthur C Rand, Thomas A Sasani, John R Tyson,
Andrew D Beggs, Alexander T Dilthey, Ian T Fiddes, et al. Nanopore sequencing and assembly of a
human genome with ultra-long reads. Nature biotechnology, 36(4):338, 2018.

[18] Evan E Eichler, Royden A Clark, and Xinwei She. An assessment of the sequence gaps: unfinished
business in a finished human genome. Nature Reviews Genetics, 5(5):345, 2004.

[19] Ian T Fiddes, Gerrald A Lodewijk, Meghan Mooring, Colleen M Bosworth, Adam D Ewing, Gary L
Mantalas, Adam M Novak, Anouk van den Bout, Alex Bishara, Jimi L Rosenkrantz, et al. Human-specific
notch2nl genes affect notch signaling and cortical neurogenesis. Cell, 173(6):1356–1369, 2018.

[20] Miten Jain, Hugh E Olsen, Daniel J Turner, David Stoddart, Kira V Bulazel, Benedict Paten, David
Haussler, Huntington F Willard, Mark Akeson, and Karen H Miga. Linear assembly of a human
centromere on the y chromosome. Nature biotechnology, 36(4):321, 2018.

[21] 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human
genomes. Nature, 491(7422):56, 2012.

[22] Justin M Zook, David Catoe, Jennifer McDaniel, Lindsay Vang, Noah Spies, Arend Sidow, Ziming Weng,
Yuling Liu, Christopher E Mason, Noah Alexander, et al. Extensive sequencing of seven human genomes
to characterize benchmark reference materials. Scientific data, 3:160025, 2016.

[23] Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100,
2018.

[24] Jue Ruan. SmartDenovo, https://github.com/ruanjue/smartdenovo.
[25] Jason R Miller, Arthur L Delcher, Sergey Koren, Eli Venter, Brian P Walenz, Anushka Brownley, Justin

Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton. Aggressive assembly of pyrosequencing reads
with mates. Bioinformatics, 24(24):2818–2824, 2008.

42

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

[26] Andrei Z Broder. On the resemblance and containment of documents. In Proceedings. Compression and
Complexity of SEQUENCES 1997 (Cat. No. 97TB100171), pages 21–29. IEEE, 1997.

[27] Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P Drake, Jane M Landolin, and Adam M
Phillippy. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing.
Nature biotechnology, 33(6):623, 2015.

[28] Jue Ruan and Heng Li. Fast and accurate long-read assembly with wtdbg2. BioRxiv, page 530972, 2019.
[29] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner. Assembly of long, error-prone reads

using repeat graphs. Nature biotechnology, 37(5):540, 2019.
[30] Sergey Koren, Brian P Walenz, Konstantin Berlin, Jason R Miller, Nicholas H Bergman, and Adam M

Phillippy. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat
separation. Genome research, 27(5):722–736, 2017.

[31] Ultra-long reads for chm13 genome assembly, https://github.com/nanopore-wgs-consortium/chm13.
[32] Alla Mikheenko, Andrey Prjibelski, Vladislav Saveliev, Dmitry Antipov, and Alexey Gurevich. Versatile

genome assembly evaluation with quast-lg. Bioinformatics, 34(13):i142–i150, 2018.
[33] Justin M Zook, Nancy F Hansen, Nathan D Olson, Lesley M Chapman, James C Mullikin, Chunlin

Xiao, Stephen Sherry, Sergey Koren, Adam M Phillippy, Paul C Boutros, et al. A robust benchmark for
germline structural variant detection. BioRxiv, page 664623, 2019.

[34] D. Y. Brandt, V. R. Aguiar, B. D. Bitarello, K. Nunes, J. Goudet, and D. Meyer. Mapping Bias
Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I
Data. G3 (Bethesda), 5(5):931–941, Mar 2015.

[35] T. R. Turner, J. D. Hayhurst, D. R. Hayward, W. P. Bultitude, D. J. Barker, J. Robinson, J. A. Madrigal,
N. P. Mayor, and S. G. E. Marsh. Single molecule real-time DNA sequencing of HLA genes at ultra-high
resolution from 126 International HLA and Immunogenetics Workshop cell lines. HLA, 91(2):88–101, 02
2018.

[36] Sergey Koren, Arang Rhie, Brian P Walenz, Alexander T Dilthey, Derek M Bickhart, Sarah B Kingan,
Stefan Hiendleder, John L Williams, Timothy PL Smith, and Adam M Phillippy. De novo assembly of
haplotype-resolved genomes with trio binning. Nature biotechnology, 36(12):1174, 2018.

[37] Richard Durbin, Sean R Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge university press, 1998.

[38] Christopher Lee, Catherine Grasso, and Mark F Sharlow. Multiple sequence alignment using partial
order graphs. Bioinformatics, 18(3):452–464, 2002.

[39] Larry Medsker and Lakhmi C Jain. Recurrent neural networks: design and applications. CRC press,
1999.

[40] Robert Vaser, Ivan Sović, Niranjan Nagarajan, and Mile Šikić. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome research, 27(5):737–746, 2017.

[41] Medaka, https://github.com/nanoporetech/medaka.
[42] Pomoxis, https://github.com/nanoporetech/pomoxis.
[43] Ian T. Fiddes, Joel Armstrong, Mark Diekhans, Stefanie Nachtweide, Zev N. Kronenberg, Jason G.

Underwood, David Gordon, Dent Earl, Thomas Keane, and Evan E. et al. Eichler. Comparative
annotation toolkit (cat)—simultaneous clade and personal genome annotation. Genome Research,
28(7):1029–1038, 2018.

[44] Adam Frankish, Mark Diekhans, Anne-Maud Ferreira, Rory Johnson, Irwin Jungreis, Jane Loveland,
Jonathan M Mudge, Cristina Sisu, James Wright, Joel Armstrong, et al. Gencode reference annotation
for the human and mouse genomes. Nucleic acids research, 47(D1):D766–D773, 2018.

[45] Felipe A. Simão, Robert M. Waterhouse, Panagiotis Ioannidis, Evgenia V. Kriventseva, and Evgeny M.
Zdobnov. Busco: assessing genome assembly and annotation completeness with single-copy orthologs.
Bioinformatics, 31(19):3210–3212, 2015.

[46] Mitchell R. Vollger, Glennis A. Logsdon, Peter A. Audano, Arvis Sulovari, David Porubsky, Paul Peluso,
Gregory T. Concepcion, Katherine M. Munson, Carl Baker, Ashley D. Sanders, Diana C.J. Spierings,

43

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

Peter M. Lansdorp, Michael W. Hunkapiller, and Evan E. Eichler. Improved assembly and variant
detection of a haploid human genome using single-molecule, high-fidelity long reads. bioRxiv, 2019.

[47] Nicholas H Putnam, Brendan L O’Connell, Jonathan C Stites, Brandon J Rice, Marco Blanchette, Robert
Calef, Christopher J Troll, Andrew Fields, Paul D Hartley, Charles W Sugnet, et al. Chromosome-scale
shotgun assembly using an in vitro method for long-range linkage. Genome research, 26(3):342–350,
2016.

[48] Aaron MWenger, Paul Peluso, William J Rowell, Pi-Chuan Chang, Richard J Hall, Gregory T Concepcion,
Jana Ebler, Arkarachai Fungtammasan, Alexey Kolesnikov, Nathan D Olson, et al. Highly-accurate
long-read sequencing improves variant detection and assembly of a human genome. bioRxiv, page 519025,
2019.

[49] Zhanshan Sam Ma, Lianwei Li, Chengxi Ye, Minsheng Peng, and Ya-Ping Zhang. Hybrid assembly of
ultra-long nanopore reads augmented with 10x-genomics contigs: Demonstrated with a human genome.
Genomics, 2018.

[50] Hayan Lee, James Gurtowski, Shinjae Yoo, Maria Nattestad, Shoshana Marcus, Sara Goodwin, W Richard
McCombie, and Michael Schatz. Third-generation sequencing and the future of genomics. BioRxiv, page
048603, 2016.

[51] Genome 10K Community of Scientists. Genome 10k: a proposal to obtain whole-genome sequence for 10
000 vertebrate species. Journal of Heredity, 100(6):659–674, 2009.

[52] Harris A Lewin, Gene E Robinson, W John Kress, William J Baker, Jonathan Coddington, Keith A
Crandall, Richard Durbin, Scott V Edwards, Félix Forest, M Thomas P Gilbert, et al. Earth biogenome
project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences,
115(17):4325–4333, 2018.

[53] Franka J Rang, Wigard P Kloosterman, and Jeroen de Ridder. From squiggle to basepair: computational
approaches for improving nanopore sequencing read accuracy. Genome biology, 19(1):90, 2018.

[54] Shilpa Garg, Mikko Rautiainen, Adam M Novak, Erik Garrison, Richard Durbin, and Tobias Marschall.
A graph-based approach to diploid genome assembly. Bioinformatics, 34(13):i105–i114, 2018.

[55] Samuel Levy, Granger Sutton, Pauline C Ng, Lars Feuk, Aaron L Halpern, Brian P Walenz, Nelson
Axelrod, Jiaqi Huang, Ewen F Kirkness, Gennady Denisov, et al. The diploid genome sequence of an
individual human. PLoS biology, 5(10):e254, 2007.

[56] Fritz J Sedlazeck, Zachary Lemmon, Sebastian Soyk, William J Salerno, Zachary Lippman, and Michael C
Schatz. Svcollector: Optimized sample selection for validating and long-read resequencing of structural
variants. BioRxiv, page 342386, 2018.

[57] 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature,
526(7571):68, 2015.

[58] Data release: Highest-quality, most contiguous individual human genome assembly to date.
[59] B. Paten, D. Earl, N. Nguyen, M. Diekhans, D. Zerbino, and D. Haussler. Cactus: Algorithms for

genome multiple sequence alignment. Genome Research, 21(9):1512–1528, 2011.
[60] J. Harrow, A. Frankish, J. M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L. Aken, D. Barrell,

A. Zadissa, and S. et al. Searle. Gencode: The reference human genome annotation for the encode
project. Genome Research, 22(9):1760–1774, 2012.

[61] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway, Corina Antonescu,
and Steven L Salzberg. Versatile and open software for comparing large genomes. Genome biology,
5(2):R12, 2004.

[62] Maria Nattestad and Calvin Bao. GitHub - dnanexus/dot: Dot: An interactive dot plot viewer for
comparative genomics.

[63] Zev N Kronenberg, Ian T Fiddes, David Gordon, Shwetha Murali, Stuart Cantsilieris, Olivia S Meyerson,
Jason G Underwood, Bradley J Nelson, Mark JP Chaisson, Max L Dougherty, et al. High-resolution
comparative analysis of great ape genomes. Science, 360(6393):eaar6343, 2018.

[64] Mitchell R Vollger, Glennis A Logsdon, Peter A Audano, Arvis Sulovari, David Porubsky, Paul Peluso,
Gregory T Concepcion, Katherine M Munson, Carl Baker, Ashley D Sanders, et al. Improved assembly

44

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/


A preprint - July 25, 2019

and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. BioRxiv,
page 635037, 2019.

[65] Richard J Anderson and Heather Woll. Wait-free parallel algorithms for the union-find problem. In
STOC, volume 91, pages 370–380. Citeseer, 1991.

[66] Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Detecting superbubbles in assembly graphs. In
International Workshop on Algorithms in Bioinformatics, pages 338–348. Springer, 2013.

[67] Nicholas J Loman, Joshua Quick, and Jared T Simpson. A complete bacterial genome assembled de
novo using only nanopore sequencing data. Nature methods, 12(8):733, 2015.

[68] Benedict Paten, Javier Herrero, Kathryn Beal, and Ewan Birney. Sequence progressive alignment, a
framework for practical large-scale probabilistic consistency alignment. Bioinformatics, 25(3):295–301,
2008.

[69] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in PyTorch. In NIPS
Autodiff Workshop, 2017.

[70] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11—seamless operability between c++
11 and python, 2016.

45

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 26, 2019. ; https://doi.org/10.1101/715722doi: bioRxiv preprint 

https://doi.org/10.1101/715722
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Nanopore sequencing eleven human genomes in nine days
	Shasta: assembling a human genome from nanopore reads in under 6 hours
	Contiguously assembling MHC haplotypes
	Deep neural network based polishing achieves QV30 long-read only polishing accuracy
	Long-read assemblies contain nearly all human coding genes
	Comparing to a PacBio HiFi Assembly
	Assembling, polishing and scaffolding 11 human genomes at near chromosome scale

	Discussion
	Acknowledgements
	Online Methods
	Sample selection
	Cell culture
	DNA extraction and size-selection
	Nanopore sequencing
	Chromatin Crosslinking and Extraction from Human Cell Lines
	The Hi-C Method
	Sonication and Illumina Library Generation with Biotin Enrichment

	Analysis methods
	Read alignment identities
	Base-level error-rate analysis with Pomoxis
	Truth assemblies for base-level error-rate analysis
	QUAST / BUSCO
	Misassembly assessments
	Trio-binning
	Transcript analysis with comparative annotation toolkit 
	Run-Length Confusion Matrix
	Runtime and Cost Analysis
	Assembly of MHC
	BAC Analysis


	Shasta
	Run-length encoding of input reads
	Markers
	Marker alignments
	Finding overlapping reads
	Initial assembly steps
	Read graph
	Marker graph
	Assembly graph 
	Using the marker graph to assemble sequence
	Selecting assembly paths in Shasta


	MarginPolish
	Training

	HELEN: Homopolymer Encoded Long-read Error-corrector for Nanopore
	Image Generation
	The model
	Sliding window mechanism
	Training the model
	Sequence stitching
	Generating trained models
	Implementation notes


