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Abstract 30 

      Multi-voxel pattern analysis (MVPA) has been successfully applied to neuroimaging 31 
data due to its larger sensitivity compared to univariate traditional techniques. Searchlight 32 
is the most widely employed approach to assign functional value to different regions of 33 
the brain. However, its performance depends on the size of the sphere, which can 34 
overestimate the region of activation when a large sphere size is employed 35 

      In the current study, we examined the validity of two different alternatives to 36 
Searchlight: an atlas-based local averaging method (ABLA, Schrouff et al., 2013a) and a 37 
Multi-Kernel Learning (MKL, Rakotomamonjy et al., 2008) approach, in a scenario 38 
where the goal is to find the informative brain regions that support certain mental 39 
operations. These methods employ weights to measure the informativeness of a brain 40 
region and highly reduce the large computational cost that Searchlight entails. We 41 
evaluated their performance in two different scenarios where the differential BOLD 42 
activation between experimental conditions was large vs. small, and employed nine 43 
different atlases to assess the influence of diverse brain parcellations. 44 

      Results show that both methods were able to localize informative regions when 45 
differences between conditions were large, demonstrating a large sensitivity and stability 46 
in the identification of regions across atlases. Moreover, the sign of the weights reported 47 
by these methods provided the directionality of univariate approaches. However, when 48 
differences were small, only ABLA localized informative regions. Thus, our results show 49 
that atlas-based methods are useful alternatives to Searchlight, but that the nature of the 50 
classification to perform should be taken into account when choosing the specific method 51 
to implement. 52 

Keywords: Multi-voxel pattern analysis, Multiple-Kernel Learning, Searchlight, Atlas-53 
based local averaging, fMRI, permutation testing. 54 
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1 Introduction 64 

     The use of machine learning in neuroscience has increased exponentially in the last 65 
years, which has brought significant advances in the field (Poldrack and Farah, 2015). 66 
Hebart and Baker (2017) highlighted the existence of two independent frameworks in 67 
multivariate decoding with different aims: prediction vs. interpretation. Several clinical 68 
studies have employed a prediction approach, providing tools for computer-aided 69 
diagnosis of different neurological disorders, such as Alzheimer’s (Arco et al., 2015), 70 
Parkinson’s (Choi et al., 2017), epilepsy (Del Gaizo et al., 2017) or brain computer 71 
interfaces in quadriplegic patients (Blankertz et al., 2007; Nurse et al., 2015). Here, 72 
obtaining the maximum decoding performance is the main aim, whereas the source of 73 
information is not of core interest. In the interpretation context, on the other hand, 74 
machine learning is used to study the brain regions involved in different cognitive 75 
operations (Haxby et al., 2014), and here the main goal is not prediction itself. In this 76 
scenario, Multi-voxel pattern analysis (MVPA) provides larger sensitivity than classic 77 
univariate approaches (Haynes and Rees, 2006; Norman et al., 2006), as it localizes 78 
information based on the distribution of spatial patterns. Finding the most adequate 79 
analysis methods for specific contexts is of vital importance, and thus in the current 80 
investigation we compared the sensitivity of several atlas-based approaches in two 81 
different contexts to evaluate their usefulness in the field of Cognitive Neuroscience.  82 

     From the interpretation perspective, classification is simplest when performed in a 83 
region of interest (ROI) based on a priori knowledge. Here, the accuracy of the algorithm 84 
depends on how well the regional hypothesis fits the observed data. Haxby et al. (2001) 85 
demonstrated that the representations of faces and objects were differentially distributed 86 
in the ventral temporal cortex, whereas Haynes and Rees (2005) showed that MVPA is 87 
able to uncover the orientation-selective processing in the primary visual cortex (V1). 88 
Other studies detected distributed patterns of activity in the visual cortex (Cox and Savoy, 89 
2003; Kamitani and Tong, 2005), whereas Poldrack (2007) highlighted the Type I error 90 
reduction when a statistical test is applied to each ROI. However, when there is not a 91 
straightforward hypothesis regarding the regions involved in specific computations, one 92 
possibility is to explore the whole brain (Mourão-Miranda et al., 2005; Balci et al., 2008; 93 
De Martino et al., 2008). The main drawback of whole-brain analyses is related to the 94 
curse of dimensionality: in fMRI studies, there are usually many more features (e.g. 95 
voxels) than samples (e.g. images or volumes). This complicates the definition of a 96 
mathematical function that separates the activation patterns related to the different 97 
experimental conditions under study (Fort and Lambert-Lacroix, 2005).  98 

     One of the most appealing approaches for the identification of informative cognitive 99 
regions is the Searchlight technique (Kriegeskorte et al., 2006), a method that offers 100 
results potentially easier to interpret due to its high spatial precision. Searchlight produces 101 
maps of accuracies from small spherical regions centered on each voxel of the brain. For 102 
each sphere, a classification analysis is performed, and the decoding performance is 103 
assigned to the central voxel. Many studies have successfully used this technique (e.g. 104 
Chen et al., 2017; Cichy et al., 2016; Coutanche et al., 2011; González-García et al., 2017; 105 
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Loose et al., 2017; Qiao et al., 2017). However, it also has some disadvantages and 106 
limitations to consider. Searchlight performance depends on the size of the sphere; it 107 
usually overestimates the region of activation when a large sphere size is employed (Etzel 108 
et al., 2013; Arco et al. 2016), even when the size of informative regions stays fixed. 109 
Another drawback is that the accuracy of the classification within a certain sphere is 110 
associated with the central voxel, obviating the possibility that only a few voxels of the 111 
sphere truly contain information. Another problem is its high computational cost. Each 112 
Searchlight analysis entails a massive number of classifications, increasing the 113 
computational time compared to other simpler approaches. This time cost increases 114 
exponentially when different parameters values are evaluated (grid search) and also when 115 
permutation tests are used to evaluate the statistical significance. 116 

     There are other alternatives based on atlases that do not suffer from this large 117 
computational cost. Multiple Kernel Learning (MKL, Lanckriet et al., 2004) uses a priori 118 
templates of brain organization to guide the decision of the classifier. Specifically, this 119 
approach extracts information from brain parcellations provided by an atlas to maximize 120 
the performance of the classification algorithm. There are different performance measures 121 
depending on the context evaluated, from accuracy in a prediction scenario to sensitivity 122 
associated to the detection of informative brain regions in an identification context. A 123 
crucial aspect of MKL is its two-level hierarchical model. The regions used for 124 
classification have an associated weight, which indicates their contribution to the model 125 
and indexes the informativeness of the region. Voxels within each region also have a 126 
weight value. Previous studies have used this method in the context of neuroimaging, e.g. 127 
discrimination between Parkinson’s neurological disorders (Adeli et al., 2017; Filippone 128 
et al., 2013) or identification of attention deficit hyperactivity disorder (ADHD) patients 129 
(Dai et al., 2017; Qureshi et al., 2017), and localization of informative regions (Schrouff 130 
et al., 2018). MKL leads to a sparse solution, which means that only a subset of regions 131 
is selected to contribute to the decision function. However, this decreases its ability to 132 
detect informative regions. Schrouff et al. (2013a) proposed another decoding-based 133 
method based on local averages of the weights from each region defined in an atlas. This 134 
is known as Atlas-based local averaging (ABLA). First, a whole-brain classification is 135 
performed, leading to a weight map summarizing the contribution of each voxel. Then, 136 
the weights defined in each region of the atlas are averaged and normalized by the size of 137 
the region, which yields a score of the informativeness of each region. Hence, this 138 
approach builds only one classification model since the summary of the weights is done 139 
a posteriori. The classification model refers to the mathematical function (i.e. a 140 
hyperplane) obtained from the training procedure that separates unseen data belonging to 141 
the two different classes. These classes correspond to the activation patterns associated 142 
with the experimental conditions compared (see Section 2.3). Unlike ABLA, MKL 143 
combines the different regions of the atlas as part of the learning process: using a different 144 
atlas will result in a different classification model, with the subsequent increase in 145 
computational cost compared with ABLA. 146 
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     Previous research has mostly employed atlas-based methods in prediction contexts, 147 
where the main aim is to obtain the largest accuracy possible (Arco et al., 2015; Del Gaizo 148 
et al., 2017; Illan et al., 2014). However, in interpretation contexts, employing a 149 
predefined atlas is not frequent. In this study, we evaluated the performance of different 150 
atlas-based approaches in an fMRI experiment, in two contexts with differential changes 151 
in BOLD activation. To do so, we modified the MKL and ABLA methods to better fit the 152 
requirements of an interpretation context. The standard MKL method is based on L1-153 
regularization, a process that enforces sparsity. This means that part of the kernels 154 
(regions of the atlas) is automatically discarded for the model computation, which can be 155 
suboptimal when the main aim is to localize informative regions. For this reason, we 156 
included an L2-version of MKL (Yu et al., 2010), which avoids sparsity by allowing all 157 
regions of the corresponding atlas to contribute to the model. We compared the results 158 
obtained by MKL and ABLA methods to those obtained by Searchlight, as this approach 159 
is mainstream in current neuroimaging research. Our goal was to test alternative methods 160 
to Searchlight that overcome the limitations of this approach (dependence of the sphere 161 
size and high computational cost) while providing additional details about how 162 
information is organized in the brain. In our study, we employed nine different atlases to 163 
examine how different brain parcellations influenced the identification of informative 164 
regions of MKL and ABLA. For a contrast with large differences in the BOLD activation, 165 
we expected overlap between the significant regions obtained by all the approaches. 166 
However, this overlap would decrease for the contrast testing more subtle differences in 167 
BOLD activation. In this case, we hypothesized that the specific organization of the brain 168 
proposed by each atlas would highly affect the identification of significant regions. 169 

2 Material 170 

2.1 Participants 171 

     Twenty-four students from the University of Granada (M = 21.08, SD = 2.92, 12 men) 172 
took part in the experiment and received an economic remuneration (20-25 euros, 173 
depending on performance). All of them were right-handed with normal to corrected-to-174 
normal vision, no history of neurological disorders, and signed a consent form approved 175 
by the local Ethics Committee. The sample size was chosen according to previous studies 176 
that focused on a very similar paradigm (see Gaertig et al., 2012; Chang and Sanfey, 2013 177 
and Grecucci et al., 2013). 178 

2.2 Image acquisition    179 

     fMRI data were acquired using a 3T Siemens Trio scanner at the Mind, Brain and 180 
Behavior Research Center (CIMCYC) in Granada (Spain). Functional images were 181 
obtained with a T2*-weighted echo planar imaging (EPI) sequence, with a TR of 2000 182 
ms. Thirty-two descendent slices with a thickness of 3.5 mm (20% gap) were obtained 183 
(TE = 30 ms, flip angle = 80°, voxel size of 3.5x3.5x3.5 mm3). The sequence was divided 184 
in 8 runs, consisting of 166 volumes each. After the functional sessions, a structural image 185 
of each participant with a high-resolution T1-weighted sequence (TR = 1900 ms; TE = 186 
2.52 ms; flip angle = 9°, voxel size of 1 mm3) was acquired. 187 
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     We used SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12) to preprocess 188 
and analyse the neuroimaging data. The first 3 volumes were discarded to allow for 189 
saturation of the signal. Then we used slice timing correction to account for differences 190 
in slice acquisitions. Images were realigned and unwarped to correct for head motion. 191 
Afterwards, T1 images were coregistered with the realigned functional images.  192 

2.3 Design 193 

      Participants played the role of the responder in a modified Ultimatum Game (for 194 
theoretical background, which is not the focus of the present study, see Gaertig et al., 195 
2012), deciding whether to accept or reject monetary offers made by different partners. 196 
If they accepted the offer, both parts earned their respective splits, whereas if they rejected 197 
it, neither of them earned money from that exchange. Offers consisted in splits of 10 198 
Euros, which could be fair (5/5, 4/6) or unfair (3/7, 2/8, 1/9). The number on the left was 199 
always the amount of money given to the participant, and the one on the right was the one 200 
proposed by the partners for themselves.   201 

     Personal information about the partners was included as adjectives with different 202 
valence (16: half positive and half negative). For a third of the trials, the description were 203 
positive and another third negative, while the rest consisted on neutral trials with a text 204 
indicating absence of information ("no test"). Thus, the task contained two events in each 205 
trial, first a word (positive, negative or neutral in valence) and second two numbers (a 206 
monetary offer), to which participants had to respond. They performed a total of 192 207 
trials, arranged in 8 runs (24 trials per run), in a counterbalanced order across participants. 208 
Each trial started with the word for 1000 ms, followed by a jittered interval lasting 5500 209 
ms on average (4-7 s, +/0.25). Then, the numbers appeared for 500 ms followed by a 210 
second jittered interval (5500 ms on average, 4-7 s, +/0.25). Thus, participants read an 211 
adjective with a certain valence, and then they used this information to prepare to respond 212 
to the offer (second event). Thus, there is a preparatory process that leads to sustained 213 
activity along time. Because of this, the first event (words), was modelled as the duration 214 
of the word and the variable jittered interval, yielding a global duration ranging from 5 to 215 
8 seconds. On the other hand, the second event was modelled as an impulse function 216 
(Dirac delta), i.e. with zero duration, as explained in Henson (2005), because this second 217 
event captures a different process. Once participants make a decision (accept the offer or 218 
not), the process ends. A large body of literature shows that preparatory processes extend 219 
in time (e.g. Bode and Haynes, 2009; González-García et al., 2017,2016; Sakai, 2008) 220 
whereas responding to a brief target does not (see the temporal duration of the potentials 221 
in Moser et al., 2014). This has been also measured by other neuroimaging methods, such 222 
as for example the Event-Related Potential CNV (Contingent Negative Variation, Di 223 
Russo et al., 2017).  224 

     To test the reliability of the different approaches (sensitivity and overlap of the 225 
significant regions with those obtained by Searchlight), we focused on two different 226 
classification analyses. First, we aimed at discriminating between the observed pattern 227 
associated with accepting vs. rejecting offers (from now on, decision classification). The 228 
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hand used to respond was counterbalanced across participants, which means that odd 229 
subjects used the right/left hand to accept/reject an offer, whereas in even subjects the 230 
order was the opposite. Second, we focused on distinguishing the positive vs. negative 231 
valence of the words (e.g. Lindquist et al., 2015; from now on, valence classification) that 232 
were equated in number of letters, frequency of use and arousal (Gaertig et al., 2012). 233 
Extensive previous research shows that motor responses associated with accepting vs. 234 
rejecting offers lead to large neural differences in motor cortex (e.g. Gabay et al., 2014; 235 
Scenario 1) whereas positive vs. negative information leads to very subtle activation 236 
differences (e.g. Lindquist et al., 2015, Scenario 2). We employed a Least-Squares 237 
Separate (LSS) model to obtain an accurate estimation of the BOLD activation (Turner 238 
et al., 2012). This method is based on iteratively fitting a new GLM (General Linear 239 
Model, Friston et al., 1995) for each event of every trial of the experiment. The GLM is 240 
employed to compute the contribution of each experimental condition defined in the 241 
design matrix to the hemodynamic signal measured by the scanner. Thus, each model 242 
computed by LSS has two predicted BOLD time courses: one for the target event and a 243 
nuisance parameter estimate that represents the activation for the rest of the events of the 244 
same run. Previous studies have shown that this is the best approach for isolating the 245 
activation in contexts like this experiment (Abdulrahman and Henson, 2016; Arco et al., 246 
2018), where overlap and collinearity among regressors are large. 247 

2.4 Atlases 248 

     In this study, we used 9 atlases to assess the reliability of the informative regions 249 
obtained by the three atlas-based classification methods. They differ in three main 250 
aspects: the information that they use to cluster the brain regions (anatomical, functional 251 
or multimodal), the number of resulting regions (from 12 to 400) and the algorithms that 252 
implement the parcellation (a wide spectrum, from the k-means clustering to Bayesian 253 
models). 254 

2.4.1 BASC Cambridge 255 

     This atlas was computed from group brain parcellations generated by the BASC 256 
(Bootstrap Analysis of Stable Clusters) method, an algorithm based on k-means clustering 257 
to identify brain networks with coherent activity in resting-state fMRI (Bellec et al., 258 
2010). These networks were generated from the Cambridge sample from the 1000 259 
Functional Connectome Project (Liu et al., 2009). Based on this framework, different 260 
atlases were built depending on the number of networks defined (Urchs et al., 2015). In 261 
this study, we used four versions with 12, 20, 36 and 64 regions. 262 

2.4.2 AICHA 263 

     This atlas covers the whole cerebrum and is based on resting-state fMRI data acquired 264 
in 281 individuals (Joliot et al., 2015), and also relies on k-means clustering. One 265 
interesting feature is that it accounts for homotopy, relying on the assumption that a 266 
region in one hemisphere has a homologue in the other hemisphere. This leads to 192 267 
homotopic region pairs (122 gyral, 50 sulcal and 20 gray nuclei). 268 
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2.4.3 Brainnetome 269 

     Fan et al (2016) introduced an atlas based on connectivity using in vivo diffusion MRI 270 
(dMRI) and fMRI data acquired in 40 subjects. It divides the human brain into 210 271 
cortical and 36 subcortical regions, providing detailed information based on both 272 
anatomical and functional connectivity. The number of regions was computed with a 273 
cross-validation procedure to maximize consistency across subjects (Fan et al., 2014; Liu 274 
et al., 2013). All functional data, connections and brain parcellations are freely available 275 
at http://atlas.brainnetome.org. 276 

2.4.4 Yeo2011 277 

     This atlas used a clustering algorithm to parcellate the cerebral cortex into networks 278 
of functionally coupled regions, employing fMRI data from 1000 subjects. The method 279 
employed assumes that each vertex of the cortex belongs to a single network (see Yeo et 280 
al., 2011). There are two versions available depending on the number of networks 281 
considered (7 or 17). We employed the latter for the subsequent analysis as it offers a 282 
more detailed parcellation of the brain. This atlas is preinstalled in Lead-dbs toolbox 283 
(http://www.lead-dbs.org). 284 

2.4.5 Harvard-Oxford 285 

     Clustering in this atlas was performed with the automatic algorithm presented in 286 
Desikan et al. (2006), which subdivides structural magnetic resonance data of the human 287 
cerebral cortex into gyral based regions of interest (ROI). Its validity was evaluated by 288 
computing correlation coefficients and mean distances between these results and 289 
manually identified cortical ROIs. Forty-eight cortical regions were obtained from data 290 
of 37 subjects. The resulting atlas is freely distributed with FSL 291 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). 292 

2.4.6 Schaefer 293 

     This atlas adds novel parcellations and a larger precision to the brain networks 294 
published in Yeo et al. (2011) by using a local gradient approach to detect abrupt 295 
transitions in functional connectivity patterns (Schaefer et al., 2017). These transitions 296 
are likely to reflect cortical areal boundaries defined by histology or visuotopic fMRI. 297 
The resulting parcellations were generated from resting-state fMRI based on 1489 298 
participants (see original paper for further details). There are several versions of this atlas 299 
depending on the number of regions the brain is divided into (400, 600, 800 or 1000), but 300 
we selected the first one to maintain reasonable speed on computation analyses. 301 

 302 

3 Methods 303 
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     In this study, we considered four different algorithms based on linear classifiers. First, 304 
the atlas-based local averaging method (ABLA) presented in Schrouff et al. (2013a). 305 
Second, an L1-MKL version of the algorithm introduced in Rakotomamonjy et al. (2008) 306 
and implemented in the PRoNTo toolbox (Schrouff et al., 2013b). Third, a modification 307 
of the L1-MKL to use an L2-norm instead of an L1 (from now on, L2-MKL) to avoid the 308 
sparsity that L1 leads to and the subsequent decrease in detecting informative regions (Yu 309 
et al., 2010). Finally, we used a Searchlight approach as a common contrast reference. 310 

3.1 Atlas-based local averaging (ABLA) 311 

     This method is used after performing a whole-brain analysis in which all voxels of the 312 
brain are used as input to the classification algorithm. A linear classifier leads to a weight 313 
map where each value corresponds to the contribution of each voxel to the decision 314 
function. ABLA computes a normalization of the average weight for each region of an 315 
atlas that summarizes the importance of this region in a certain classification context. 316 
From a mathematical perspective, it is possible to specify a linear SVM (Bennett and 317 
Blue, 1998; Burges, 1998; Gaonkar et al., 2015) classification rule 𝑓 by a pair of (𝒘, 𝒙), 318 
from equation: 319 

                                 𝑓(𝒙') = 〈𝒘, 𝒙'〉 + 𝑏                                             (1) 320 

where 𝒘 is the weight vector, 𝒙' is the feature vector and 𝑏 is the error term. Thus, a point 321 
𝑥 is classified as positive if 𝑓(𝑥) > 0 or negative if 𝑓(𝑥) < 0. The decision function is 322 
based on a linear rule that maximizes the geometrical margin between the two classes, 323 
which is obtained by solving the optimisation problem described in Boser et al. (1992): 324 

1
2
‖𝒘‖2 + 𝐶 ∑ 𝜉'	'      subject to   𝑦'(〈𝒘, 𝒙'〉 + 𝑏) ≥ 1 − 𝜉'      ∀'𝜉' ≥ 0   ∀'     (2) 325 

The solution to the optimization problem can be written as: 326 

                                           𝒘 = ∑ 𝑦𝒊𝛼𝒊𝒙𝒊𝒏
𝒊@𝟏                                           (3) 327 

after applying the Lagrangian multipliers. Substituting the value of 𝒘 in Equation 1, it is 328 
possible to rewrite the decision function in its dual form as 329 

                                              𝑓(𝒙') = ∑ 𝛼𝒊𝐾(𝒙, 𝒙') + 𝑏𝒏
𝒊@𝟏                                       (4) 330 

where 𝛼' and 𝑏 represent the coefficients to be learned from the examples and 𝐾(𝒙, 𝒙') 331 
is the kernel function characterizing the similarity between samples 𝒙 and 𝒙'. 332 

Once the classification model was obtained, we extracted the weight maps that guided 333 
the decision of the classifier. Then, we computed the normalized weight for each region 334 
in the atlas as the average of the absolute value of the weights contained in each region, 335 
as explained in Schrouff et al. (2013a). Equation 5 summarizes mathematically this 336 
computation: 337 
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                                                         𝑁𝑊EFG =
∑ |IJ|J∈LMN

OLMN
                                            (5) 338 

with 𝑣 representing the index of a voxel in the weight map, 𝑊Q  its weight and 𝑚EFG , the 339 
number of voxels in region ROI. Thus, the normalized weight (𝑁𝑊EFG) is a score that 340 
represents the amount of information contained in a specific brain region. A large value 341 
means that the voxels contained in the ROI have had a large contribution to the 342 
classification model.  343 

3.2 Multiple Kernel Learning 344 

     Despite both ABLA and MKL rely on the brain organization provided by an atlas, 345 
they differ in the moment they use it. ABLA computes first a model from a whole-brain 346 
analysis, and then it uses the corresponding brain organization a posteriori. Instead, MKL 347 
combines the information from the different brain regions of an atlas to build the 348 
classification model, which means that brain parcellation is used a priori. Specifically, 349 
MKL combines different kernels and optimizes their contribution to the model to obtain 350 
the highest performance. As a result, this approach offers information at two levels: 351 
regions and each voxel within them. Mathematically, the decision function is computed 352 
as a linear combination of all these basis kernels as stated in Lanckriet et al. (2004): 353 

                        𝐾(𝒙, 𝒙S) = ∑ 𝑑O𝐾O(𝒙,𝒙S)U
O@1     with   𝑑O ≥ 0,∑ 𝑑O = 1U

O@1          (6) 354 

where 𝑀 is the total number of kernels. 355 

     The decision function of the MKL problem is very similar to SVM (Equation 1) but 356 
adding the sum of the different kernels from the corresponding atlas:  357 

                                                 𝑓(𝒙') = ∑O〈𝒘O, 𝒙'〉 + 𝑏                                            (7) 358 

     The MKL version considered in this study is based on the primal formulation of an 359 
SVM problem presented in Rakotomamonjy et al. (2008), where a solution is obtained 360 
by solving the following optimization problem: 361 

minimize    1
2
∑ 1

WX
‖𝒘O‖2O + 𝐶 ∑ 𝜉''    subject to 362 

				𝑦'(∑ 𝒘O, 𝒙' + 𝑏O ) ≥ 1 − 𝜉'			∀𝑖𝜉' ≥ 0		∀𝑖 ∑ 𝑑O = 1, 𝑑O ≥ 0	O ∀𝑚           (8) 363 

where 𝑖 indexes the samples, 𝐶 corresponds to the soft-margin parameter, ∑ 𝜉''  is an 364 
upper-bound on the number of training errors, 𝑏 is the bias term and 𝑑O is the contribution 365 
to the decision function of each region (see Rakotomamonjy et al., 2008 for a detailed 366 
explanation). 367 

This MKL variation optimizes, in a simultaneous manner, the contribution to the decision 368 
function of every voxel within a region and the contribution of the region as a whole, in 369 
a two-level hierarchical model. In addition, the L1-norm (Tibshirani, 1996) constraint on 370 
𝑑O enforces sparsity on some kernels. This means that several regions are automatically 371 
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discarded during the learning process since a null-weight is assigned to them. Thus, from 372 
the total number of regions, only a subset of them is selected to build the classification 373 
function. This sparsity can be very interesting in prediction contexts (Arco et al., 2015; 374 
Khedher et al., 2017; Plant et al., 2010), but it can also potentiate the instability of the 375 
selected regions and decrease the sensitivity in interpretation scenarios (Baldassarre et 376 
al., 2017). For this reason, we applied a different version of MKL based on L2-norm 377 
instead of L1. In this case, sparsity is avoided, which means that all regions defined by 378 
the atlas are used to build the model. Similarly to Equation (8), the solution to the 379 
optimization problem is given by: 380 

        minimize    1
2
∑ 1

WX
‖𝒘O‖2O + Z

2
∑ 𝜉'2'    subject to       381 

				𝑦'(∑ 𝒘O, 𝒙' + 𝑏O ) ≥ 1 − 𝜉'			∀𝑖𝜉' ≥ 0		∀𝑖 ∑ 𝑑O = 1, 𝑑O ≥ 0	O ∀𝑚           (9) 382 

     In both versions of the MKL, we applied two preprocessing steps before classification: 383 
first, we applied a mean-centering to all kernels from each region of the atlas, a very 384 
common step in machine learning. This operation relies on subtracting the voxel-wise 385 
mean for each voxel across samples, which is computed on the training data to maintain 386 
the independence between the training and test subsets. Then, we normalized the kernel 387 
dividing each sample by its norm. Regions from which kernels are computed usually have 388 
different sizes, and larger regions would have a larger contribution to the model simply 389 
because of their larger size. This operation guarantees that all regions have an equal 390 
chance regardless of their sizes. 391 

3.3 Searchlight 392 

     This method was introduced by Kriegeskorte et al. (2006) to identify the location of 393 
brain regions that contain information about a given classification. It defines a sphere 394 
with a certain radius so that only the voxels inside this sphere are used to build the 395 
classification model. Performance is associated with the central voxel of the sphere. This 396 
procedure is repeated for all voxels in the brain, yielding a map of accuracies. Its main 397 
drawback is its local-multivariate nature: it extracts patterns of information from a 398 
reduced number of voxels, and this number is much smaller than the one obtained when 399 
the brain is evaluated as a whole (see Etzel et al., 2013 for additional considerations of 400 
this method). 401 

     In each sphere, we employed a support vector machine (SVM) classifier with a linear 402 
kernel due to its simplicity and the high performance reported by previous studies (Misaki 403 
et al., 2010; Pereira et al., 2009). A mathematical description of the SVM algorithm is 404 
provided in Section 3.1. We used a 12-mm radius sphere to strike a balance between 405 
sensitivity and spatial precision: smaller sizes may not detect some informative voxels 406 
whereas larger values can boost false-positives rates (Arco et al., 2016; Chen et al., 2011).  407 

3.4 Performance and statistical significance 408 
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      We performed a nested cross-validation to train the model and optimize the hyper-409 
parameters of the classifier (soft-margin parameter, C), both in ABLA and in L1-MKL 410 
and L2-MKL. In these situations, the C hyperparameter range was [10-5:105]. Regarding 411 
Searchlight, we used a standard soft-margin parameter of C=1 for each SVM classifier 412 
due to the high performance that it provides, as shown in previous studies (e.g. Chanel et 413 
al., 2016; Dosenbach et al., 2010; Fan et al., 2008). The dataset comprised an fMRI 414 
experiment divided into 8 independent runs. To maintain the independence between 415 
training and testing, we used a leave-one-run-out cross-validation for the external loop 416 
(all methods) and the internal loop (MKL and SVM). This means that in the Searchlight 417 
approach, 7 runs were employed to train the classifier, using the remaining one for testing. 418 
In MKL and SVM, six runs were used for training, the seventh for validation and the last 419 
one for testing. We computed the balanced accuracy within participants to evaluate the 420 
performance of the model. For a binary classification, the balance accuracy is computed 421 
as the average of the accuracy obtained in the images belonging to each experimental 422 
condition individually, which increases the robustness of the performance evaluated when 423 
there is a different number of images of each class (Brodersen et al., 2010, 2011). 424 

     Statistical significance was assessed with the method proposed by Stelzer et al. (2013), 425 
with a slight difference when the procedure was applied to Searchlight or the atlas-based 426 
approaches. Unlike Searchlight, Atlas-based methods perform a whole-brain 427 
classification, obtaining a single global accuracy. The spatial information about the 428 
amount of information in each voxel is reflected on weights. Hence, whereas in 429 
Searchlight the significance was computed from accuracy maps, in the other methods 430 
weight maps were used instead (see also e.g. Haufe et al., 2014; Schrouff et al., 2018). 431 
First, the labels of the images were randomly shuffled. Then, the corresponding 432 
classification method (ABLA, MKL or Searchlight) was applied. This procedure was 433 
repeated 100 times in a within-subject classification, resulting in 100 permuted 434 
accuracy/weight maps per participant (accuracy for Searchlight and weight for the rest). 435 
A map from each individual was randomly picked following a Monte Carlo resampling 436 
with replacement (Forman et al., 1995), averaging the permuted maps and obtaining a 437 
permuted group map. This procedure was carried out 50000 times to build an empirical 438 
chance distribution. A voxel/region was considered significant if no more than 50 samples 439 
of the empirical distribution had a larger value than the one obtained without shuffling 440 
the labels, which corresponds to a cluster-defining primary-threshold of p=0.001 441 
(50/50000). Once the image was thresholded, an empirical distribution of the cluster sizes 442 
of the 50000 permuted maps was built to compute the required family-wise error rate at 443 
the cluster level. After associating a p-value to each cluster, a Familywise Error (FWE) 444 
correction was applied (p=0.05) on all-cluster p-values to correct for multiple 445 
comparisons at the cluster level. 446 

3.5 Comparison of different atlases 447 

     Following the procedure proposed by Schrouff et al. (2013a), we computed the 448 
Pearson correlation between the overlapping voxels of the weight maps obtained by the 449 
different atlases. Since ABLA organizes the weights a posteriori in regions from a whole-450 
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brain classification, it is only possible to compute this correlation for L1-MKL and L2-451 
MKL. To do so, we calculated the overlap between the significant voxels obtained by 452 
each atlas, yielding a value ranging from 0 to 1. We employed permutation tests to assess 453 
the significance of the correlation coefficients using a similar framework as described in 454 
Section 3.4.  455 

4 Results 456 

     In this section, we report the results obtained by the three approaches evaluated in this 457 
study: Atlas-based local averaging (ABLA), and the two versions of Multiple Kernel 458 
Learning (L1-MKL and L2-MKL). In all cases, we only took into account results derived 459 
from above-chance accuracies that were statistically significant. Thus, we compared the 460 
weight maps of these three atlas methods that were above chance with the statistically 461 
significant accuracies map obtained by Searchlight in terms of overlap. This allows to 462 
evaluate the ability of the classification method to identify significantly informative 463 
regions regardless of the quality of the brain parcellation. Thus, the maximum overlap is 464 
determined by the overlap of the informative regions marked by Searchlight and those 465 
contained in the atlas. Moreover, for L1 and L2-MKL we show the stability of the selected 466 
regions across atlases by computing a correlation between their overlapping and 467 
statistically significant weight maps, using permutation tests to assess the significance of 468 
these correlations. We did not compute this correlation for the ABLA method because 469 
weights are exactly the same for all atlases. Additionally, we include the results obtained 470 
by these methods in two classification contexts (decision and valence) that lead to large 471 
or subtle BOLD pattern differences between the conditions contrasted, to test the 472 
generalizability of the results of the different approaches.    473 

4.1 Influence of the classification methods 474 

     We first focus on comparing the results obtained by ABLA, L1-MKL and L2-MKL in 475 
the decision classification. Table 1 summarizes these results in terms of accuracy and 476 
overlap between the significant regions identified by each method and those obtained by 477 
Searchlight (SL). The accuracies discussed in this section correspond to the ones obtained 478 
in the maximum overlap scenario, which does not mean that these accuracies were the 479 
absolute maximum itself. We further discuss the implications of this finding in Section 5. 480 
The first approach, ABLA, yielded a maximum overlap of 70.58%, and a corresponding 481 
accuracy of 81.51%. L1-MKL led to the same maximum overlap value, 70.58%, but a 482 
higher corresponding accuracy compared to ABLA: 85.02%. On the other hand, L2-MKL 483 
obtained a maximum overlap of 77.93%, whereas the accuracy was 70.65% after 484 
employing this approach. 485 

     In the context of the valence classification, the ABLA method obtained a maximum 486 
overlap of 41.49%, with a corresponding accuracy of 51.77%. We assessed the 487 
significance of the accuracy by employing the non-parametric method described in 488 
Section 3.4. This last value is considerably lower than the one obtained in the decision 489 
classification and it likely reflects the subtle differences in the BOLD activation patterns 490 
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associated with the valence of words. A complete interpretation of low classification 491 
accuracies in this kind of contexts is provided in Section 5.1. We observed that after 492 
applying the L1-MKL method, only one of the nine atlases employed led to a significant 493 
region that overlapped with Searchlight. However, the small size of this region (only 494 
0.14% of the significant voxels obtained by L1-MKL overlapped with Searchlight results) 495 
highlights the inadequacy of L1-MKL to identify significant regions in a context like this. 496 
With reference to L2-MKL, the maximum overlap slightly increased (3.81%), with a 497 
corresponding accuracy of 49.14% (see Table 2). Since the value of the overlap is similar 498 
to the one obtained by L1-MKL, conclusions can also be applied to L2-MKL.  499 

4.2 Influence of the atlases 500 

     In the first context (decision classification), ABLA marked as informative similar 501 
regions regardless of the atlas employed (see Figure 1). Although most of atlases led to 502 
the same results, we found a variability in terms of overlap among the different atlases 503 
(see Table 1). Specifically, the largest overlap score with Searchlight was obtained by the 504 
Harvard-Oxford atlas (70.58%), whereas the minimum value was derived from the 505 
Camb36 division of the brain (21.36%). With reference to overlap, we included the 506 
number of regions defined in the atlas and those that were marked as significant (las two 507 
columns in Table 1). For example, when ABLA was applied in combination with the 508 
Cambridge12 atlas, only 1 significant region was identified. This means that, 1/12 of the 509 
regions contained in the atlas was marked as informative in the decision context. Besides, 510 
61.69% of the significant voxels obtained by ABLA overlapped with the significant 511 
voxels identified by the Searchlight, and thus ABLA missed 38.31% of the voxels 512 
identified by the Searchlight.  513 

     When applying L1-MKL in the decision classification, the largest overlap value was 514 
obtained by the same atlas as with ABLA: the Harvard-Oxford, with a 70.58%. However, 515 
the minimum overlap corresponded to the Schaefer atlas (14.5%). It seems that his 516 
method is more affected than ABLA by the different brain parcellations. As Figure 1 517 
shows, the distribution of the significant regions is similar across atlases, but in this case, 518 
sensitivity is lower than ABLA for most atlases (see Table 1 for quantitative results). For 519 
the last classification method used, L2-MKL, the parcellation derived from the Camb64 520 
atlas yielded the largest accuracy and minimum overlap score (74.74% and 21.36%, 521 
respectively). This finding highlights that maximum overlap and accuracy is not usually 522 
simultaneously obtained. The largest overlap was obtained with the Harvard-Oxford atlas 523 
(77.93%), same as when L1-MKL was used (see Figure 1 and Table 1).  524 

     Regarding the valence contrast, results were highly affected by the atlas used. We 525 
found a large consistency in the significant regions obtained by ABLA and Searchlight 526 
when the Cambridge12 atlas was employed. Moreover, the brain parcellations provided 527 
by AICHA and Harvard-Oxford also identified informative regions similar to those 528 
obtained by Searchlight (see Figure 2 and Table 2). Most importantly, these regions 529 
contained areas that have been reported by previous research (e.g. ventromedial prefrontal 530 
cortex, vmPFC, Lindquist et al., 2015), which supports the reliability of the results.  531 
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     Unlike ABLA, the two methods based on MKL hardly detected reliable information 532 
regardless of the atlas. With reference to L1-MKL, each brain parcellation led to a 533 
completely different distribution of the informative voxels. However, none of the nine 534 
atlases that we employed yielded an accuracy above chance levels, so that the subsequent 535 
model did not provide useful information about where the information regions were 536 
located. Results were very similar for L2-MKL. Models derived from some atlases 537 
surpassed the chance level, but they were not able to identify the regions that contained 538 
information (see Figure 2 and Table 2).  539 

4.3 Stability of the weights across atlases 540 

     We compared the weight maps across the different atlases for L1-MKL and L2-MKL, 541 
in the two classification contexts. In the decision classification, the correlation values 542 
obtained by the first 6 atlases (Camb12, Camb20, Camb36, Camb64, AICHA and 543 
Yeo2011) ranged from 0.882 to 0.975 when the L1-MKL was used. The weight maps 544 
derived from the Harvard-Oxford atlas also yielded a large similarity to these 6 atlases, 545 
but this correlation decreased when the Brainnetome atlas was employed. By contrast, 546 
the Schaefer atlas led to very different weights compared to any of the other atlases. These 547 
results suggest that, for this contrast, the decision function derived from L1-MKL is based 548 
on the same voxels. Moreover, the contribution of these voxels to the classifier decision 549 
is stable for all brain parcellations proposed by each atlas (see Table 3). 550 

     L2-MKL yielded similar weight maps regardless of the atlases used (see Table 4). 551 
Only maps provided by Yeo2011 and Brainnetome are slightly less similar to those 552 
obtained by the four atlases, whereas both show a large correlation with the others. This 553 
highlights the robustness of L2-MKL in the identification of informative regions. 554 
Moreover, this finding shows the low influence that the brain parcellation has in the 555 
results, which validates the use of these atlas-based methods even without a priori 556 
hypothesis about the brain organization in a specific process. 557 

     For the valence classification, in contrast, the localization of the informative regions 558 
was so variable that results derived from most atlases did not overlap. For this reason, we 559 
could only compute the correlation between AICHA, Harvard-Oxford and Brainnetome 560 
for L1-MKL, which yielded a maximum overlap of 0.428 (see Table 5). Results obtained 561 
by L2-MKL also showed a reduced overlap between the weight maps and we could only 562 
correlate the significant results of AICHA, Yeo2011 and Schaefer. In this case, the 563 
maximum correlation was obtained by Yeo2011 and Schaefer, yielding a value of 0.99 564 
(see Table 6). Nevertheless, this value was obtained from a small region since the spatial 565 
distribution of the significant results provided by these two atlases were considerably 566 
different.  567 

4.4 Directionality of the weights 568 

      In the decision classification, we evaluated not only the localization of the informative 569 
weights but their sign. Due to the nature of the contrast (odd participants used their right 570 
hand to accept an offer, whereas even participants employed their left hand), it was 571 
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expected that weights were organized according to their sign in a specific hemisphere for 572 
each group of participants. Figure 3 shows the distribution of the significant voxels 573 
depending on the sign of their weights for the ABLA method, comparing them with 574 
results obtained by univariate analysis. It is remarkable that participants who accepted the 575 
offer with the right hand and rejected it with the left hand (odd group) show a cluster of 576 
positive weights in the left hemisphere and a cluster of negative weights in the right 577 
hemisphere. On the other hand, these results are shifted when results from even 578 
participants were evaluated: the right hemisphere contains weights associated with 579 
accepting an offer, whereas the left hemisphere shows the negative weights. These results 580 
are consistent with those obtained by univariate analysis. Results for both MKL methods 581 
are very similar to the ones obtained by ABLA. For those participants that accepted the 582 
offer by employing their right hand, the weights in the right hemisphere are positive, 583 
whereas the same hemisphere in the group of people that used their left hand to accept 584 
the offer contains negative weights (see Figure 3). 585 

5 Discussion 586 

     In this study, we evaluated atlas-based methods, alternative to Searchlight, to localize 587 
the informative regions involved in cognitive functions. We extracted the weight maps 588 
from three atlas-based classification approaches (ABLA, L1-MKL and L2-MKL) and 589 
evaluated the statistical significance of each region. We used these methods in two 590 
different contexts. In the first one, where the two classes generated large differences in 591 
the observed pattern, L2-regularization resulted the best option for interpretation 592 
purposes. Moreover, atlas-based approaches showed a large stability in the informative 593 
regions found regardless of the atlas employed, which highlights the adequacy of these 594 
methods. In contrast, when the differences in the BOLD patterns associated with each 595 
class were subtle, only the ABLA approach showed certain stability in the informative 596 
regions across the atlases. In what follows we discuss the implications for choice of 597 
classification methods, atlases, and the role of the weights. 598 

5.1 Influence of the classification methods 599 

     Our results indicate that maximum accuracy and overlap do not usually concur, 600 
especially when only subtle differences exist between the patterns. In the decision 601 
classification, we found differences across the methods in terms of overlap and accuracy. 602 
We can separate the different approaches in two groups: on the one hand, ABLA and L2-603 
MKL; on the other, L1-MKL. They differ in the way regularization is performed: while 604 
ABLA and L2-MKL use an L2-norm regularization, L1-MKL employs an L1. The 605 
dimensionality reduction provided by the L1-norm can be helpful from the prediction 606 
standpoint given the larger accuracies obtained. However, our results show that the model 607 
with the largest overlap is not usually the most accurate, which is consistent with previous 608 
studies (e.g. Sona et al., 2007). Our results stress the need of clearly separating the use of 609 
multivariate decoding for prediction and for interpretation (Hebart and Baker, 2017), and 610 
highlight the importance of selecting the methods that best fit the desired aim. 611 
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     In the valence classification, we found larger differences across the methods in terms 612 
of overlap and accuracy. ABLA was the approach that obtained the largest overlap with 613 
Searchlight results, whereas L1-MKL and L2-MKL hardly detected significant regions. 614 
The key of this finding is the classification problem itself. Isolating regions with a 615 
differential involvement in valence processing is a difficult endeavor, as shown by recent 616 
metanalytic approaches (Lindquist et al., 2015). Moreover, previous research has shown 617 
that decoding accuracies in the prefrontal cortex (PFC) are much lower than in other 618 
regions like the visual cortex (e.g. see Figure 1 in Bhandari et al., 2018), similar to the 619 
accuracy obtained by ABLA in the valence classification. 620 

     The values of the classifier’s accuracy are influenced by how information is 621 
represented in the brain and the sensitivity of the neuroimaging technique employed. As 622 
an example, single-unit recordings have demonstrated that although face identity is 623 
represented in underlying neuronal populations as measured by electrophysiological 624 
single-unit recordings, this information cannot be retrieved from fMRI data, due to the 625 
lower spatial resolution of the neuroimaging method (Dubois et al., 2015). Accuracies 626 
can be theoretically relevant once they are statistically significant above-chance levels, 627 
regardless of their value (Hebart and Baker., 2017; Bhandari et al., 2018). We employed 628 
a very stringent significance threshold (p<0.001) and an FWE correction was applied to 629 
the resulting p-values to address the multiple comparisons problem. Thus, although some 630 
accuracies have low values, only those that are statistically significant (i.e. consistent 631 
above-chance across participants) are included as informative. 632 

     Our results show that ABLA provides a larger overlap than the MKL methods in the 633 
two classification problems, especially in the valence one. This discrepancy must be due 634 
to the different framework of ABLA. MKL approaches use the regions of the atlas to 635 
build the model during the learning process. This means that the atlas should properly 636 
delimitate the different regions involved in the context under study. Otherwise, the 637 
resulting model would be suboptimal. Instead, ABLA builds the classification model 638 
from a whole-brain parcellation, incorporating the brain organization afterwards. For this 639 
reason, ABLA leads to a better performance in conditions of subtle or small differences 640 
between the experimental conditions. However, MKL methods would be more sensitive 641 
when the atlas leads to a realistic approximation of the brain subdivisions.  642 

     It is worth mentioning that regions that Searchlight marked as informative in the two 643 
classification contexts are conceptually logic and replicate previous results in the 644 
literature (Gabay et al., 2014; Kuzmanovic et al., 2018; Lindquist et al., 2015). This 645 
means that Searchlight results are accurate enough to be used as a reference of how 646 
informative regions are spatially distributed. Thus, computing the overlap between the 647 
atlas-based classification approaches and Searchlight is an optimal way of evaluating the 648 
ability of the first methods to identify informative brain regions. 649 

5.2 Influence of the atlases 650 
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     Results show that the specific brain parcellation of each atlas impacts the spatial 651 
accuracy of the different methods only when differences in the observed pattern are small. 652 
In the decision classification, our results evidence that informative regions can be 653 
identified even when the brain parcellations provided by the atlases do not perfectly 654 
delimitate the regions involved in the cognitive function under study. However, in 655 
contexts like the valence classification, these atlases are not accurate enough to guarantee 656 
the identification of the sources of information. This is probably related to the size and 657 
the specific shape of the region involved in a certain cognitive function, such as the 658 
vmPFC associated with the valence classification. The only region that ABLA marked as 659 
significant in the Camb12 parcellation is the one that contains the vmPFC, which has a 660 
massive size in this atlas. Since atlas-based methods consider each region as a whole, a 661 
large number of voxels are marked as significant only because they are in the same region 662 
as the ones that are really informative. Here, the parcellation proposed by the atlas is a 663 
good match to the spatial organization of a structure such as the vmPFC, leading to a 664 
higher sensitivity and spatial accuracy.  665 

     The number of subdivisions of the atlases also influenced the performance of the 666 
algorithms employed. In the decision classification, the optimum value in terms of 667 
overlap was obtained by the 36 regions that the Camb36 atlas is divided into. Using an 668 
atlas with few subdivisions means that it is more likely to find an informative region. 669 
Instead, a large number of parcellations means that the classifier has to be much subtler 670 
in the identification of informative regions. The parcellations derived from Schaeffer add 671 
larger precision and subdivisions to the brain networks published by the Yeo2011 atlas. 672 
However, results show a better performance in terms of sensitivity when the simplest one 673 
was used. This strongly indicates that using atlases that contain large regions is similar to 674 
employing large Searchlight spheres where only a few voxels within are informative 675 
(Etzel et al., 2013). This increases the probability of marking as significant voxels that 676 
are not, increasing the false-positives rate. 677 

5.3 Stability of the weights across atlases 678 

     We have found a large correlation between the significant weight maps obtained by 679 
different atlases in the decision classification. For the L1-MKL approach, all atlases 680 
except Schaefer led to large correlation values. Hence, the weights associated with each 681 
model were very similar, which highlights the stability of the classification methods. 682 
Interestingly, we found the largest correlations in the weight maps obtained by the four 683 
Cambridge atlases, which are derived from the same clustering algorithm (BASC). This 684 
supports the idea that the mathematical framework employed to delimitate the different 685 
brain regions in an atlas can influence the success of the subsequent analyses. On the 686 
other hand, the poor performance of L1-MKL when the Schaefer atlas was used can be 687 
due to the conjunction of a sparse method and an atlas with a large number of regions. It 688 
is important to note that our results do not invalidate the use of ambitious atlases aiming 689 
at obtaining a detailed parcellation of each cortical region. However, if these parcellations 690 
do not match how information is represented in the brain, sparse solutions are not 691 
recommended. Unlike L1-MKL, L2-MKL obtained a large correlation score between 692 
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each pair of atlases (Table 4):  the weight maps that guide the classification are essentially 693 
the same regardless of the atlas used. This evidences that it is possible to employ this 694 
approach even without a clear hypothesis about the brain organization in a specific 695 
context. 696 

     Nevertheless, these conclusions are only valid when there are large differences in the 697 
observed pattern associated with the two classes to distinguish from. Our findings in the 698 
valence classification differ substantially from those obtained in the decision 699 
classification. L1-MKL results (summarized in Table 5) show that we could hardly 700 
compute the correlation between two pairs of atlases: the first one, AICHA and Harvard-701 
Oxford; the second, AICHA and BN. In addition, none of the significant results provided 702 
by these atlases share any voxel with the Searchlight results, which illustrates that weight 703 
maps are similar from a mathematical perspective, but make a null contribution to the 704 
neuroscience standpoint. Results obtained by L2-MKL are summarized in Table 6 and 705 
conclusions derived from them are essentially the same than L1-MKL. We could only 706 
compute the correlation between two pairs of atlases: Schaefer-AICHA and Schaefer-707 
Yeo2011. From these three atlases, Schaefer is the one that leads to some overlap with 708 
the Searchlight approach: 3.81%. However, none of these significant voxels are shared 709 
by AICHA and Yeo2011. This reflects that the two versions of MKL are not able to 710 
identify small informative regions in contexts where differences in the observed patterns 711 
are minimum. According to these results, investigators should use ABLA when their 712 
paradigm produces a small difference in BOLD activation patterns. However, the 713 
performance of the MKL approaches could increase if the brain parcellations derived 714 
from an atlas adapts to the concrete pattern of activations obtained in a particular task. 715 
This could be done by employing methods based on machine learning to cluster the 716 
different brain regions from individual fMRI data of each subject (Gordon et al., 2017; 717 
Schaefer et al., 2018; Wang et al., 2015), which could boost the spatial precision in the 718 
brain parcellations. Thus, it is likely that L2-MKL could obtain similar or even better 719 
results than ABLA in this scenario, but future studies should assess this. 720 

5.4 Directionality of the weights 721 

     One of the main advantages of using weights instead of accuracy is the directionality 722 
that they provide. The term directionality is related to univariate analysis, which localize 723 
the regions where the activation associated with an experimental condition is larger than 724 
the activation associated with another condition. We have evaluated the sign of the weight 725 
of each voxel within the significant regions for the three atlas-based methods for the 726 
decision classification. The three approaches obtained a map in which weights were 727 
organized according to their sign. For odd participants, regions associated with the 728 
acceptance of an offer (use of the right hand) were localized in the left hemisphere, with 729 
a positive sign. On the other hand, regions that contained information when the offer was 730 
rejected (left hand) were found in the right hemisphere, with a negative weight. More 731 
importantly, the informative regions for even participants shifted: positive weights were 732 
found in the right hemisphere, whereas weights with a negative sign were found in the 733 
left hemisphere.  734 
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     The large similarity between these results and those obtained by the univariate 735 
approach (see Figure 3) is remarkable. Regions with a larger activation when participants 736 
accept/reject an offer match the sign of the weights of the different multivariate methods. 737 
However, atlas-based approaches use normalized data, which eliminates the differences 738 
in the global activation levels associated to each condition. Thus, these methods identify 739 
areas that show a different spatial distribution of the information, while the univariate 740 
approach purely relies on differences in the activation level.  741 

Another difference between multivariate and univariate methods is the different 742 
sensitivity that they offer. We employed a classification context where differences at the 743 
cluster level could also be picked up by univariate methods to highlight one of the main 744 
advantages of atlas-based approaches. Similarly to Searchlight, these techniques are able 745 
to extract information from fine-grained differential activation patterns, which results in 746 
a boost in sensitivity compared to univariate analysis. Figure 3 reveals the differences in 747 
sensitivity between multivariate and univariate methods in the decision context, whereas 748 
differences between these two approaches in the valence classification can be found in 749 
previous studies (see Figure 10 in Arco et al., 2018 and Figure 1 in Lindquist et al., 2015). 750 
Thus, employing weights provides the sensitivity of multivariate approaches and the 751 
directionality of univariate ones. This is quite useful from a Cognitive Neuroscience point 752 
of view, as it allows not only to detect the brain regions that contain information about a 753 
specific cognitive process, but also to identify how this information is distributed.  754 

6 Conclusions 755 

     In this study, we compared three different atlas-based approaches to Searchlight to 756 
assess their ability to identify informative brain regions for cognitive contrasts that 757 
generate either large or small differences in BOLD activation patterns. We have shown 758 
for the first time that these methods can be used as an alternative to Searchlight since they 759 
localize informative regions when there are large differences between the observed 760 
patterns associated with the two classes to distinguish from. In this case, results are 761 
consistent across atlases, which manifests that these approaches can be used even without 762 
a prior hypothesis about the concrete pattern of activations expected. Moreover, the use 763 
of weight maps provides additional relevant information by combining the sensitivity of 764 
decoding analyses and the directionality of univariate approaches. This is extremely 765 
interesting in interpretation scenarios, where the main goal is to localize informative 766 
regions and to identify how information is distributed. However, results in terms of 767 
sensitivity change drastically when the differential observed pattern is much lower. 768 
Methods based on MKL are highly affected by the discrepancy of the shape of brain 769 
regions containing information and the one proposed by the atlases. On the other hand, 770 
ABLA is the only approach that identifies informative regions in accordance with 771 
previous research, which means that it is the most trusted method when subtle differences 772 
are evaluated. Our results pave the way for finding a method that leads to a large spatial 773 
accuracy in the identification of subtle changes of the observed patterns. Future studies 774 
are needed to evaluate the performance of these methods when the brain parcellations are 775 
specifically computed for each participant, which may substantially improve the 776 
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neuroanatomical functional precision and the subsequent identification of informative 777 
regions.  778 
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Table 1: Summary of the results obtained by the different methods and atlases in the 801 
decision classification. The accuracy obtained by the Searchlight approach (computed as 802 
the average accuracy of the significant voxels) is 58.79%. 803 
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Method Atlas Accuracy 
(%) 

Significant 
voxels 

SL voxels 
defined in 

atlas 

Overlap 
with SL 

(%) 

Regions 
defined in 
the atlas 

Significant 
regions 

ABLA 
L1-MKL 

L2-MKL 

Camb12 
Camb12 

Camb12 

81.51 
86.2 

72.43 

4704 
4704 

2654 

4302 
4302 

4302 

61.69 
61.69 

61.69 

12 
12 

12 

1 
1 

1 

ABLA 

L1-MKL 
L2-MKL 

Camb20 

Camb20 
Camb20 

81.51 

85.02 
65.21 

3692 

3692 
2598 

4302 

4302 
4302 

58 

58 
58 

20 

20 
20 

1 

1 
1 

ABLA 

L1-MKL 
L2-MKL 

Camb36 

Camb36 
Camb36 

81.51 

89.37 
74.74 

982 

982 
1000 

4302 

4302 
4302 

21.36 

21.36 
21.36 

36 

36 
36 

1 

1 
1 

ABLA 

L1-MKL 

L2-MKL 

Camb64 

Camb64 

Camb64 

81.51 

84.62 

70.31 

3740 

982 

7613 

4302 

4302 

4302 

63.34 

21.36 

21.36 

64 

64 

64 

1 

1 

1 

ABLA 

L1-MKL 

L2-MKL 

AICHA 

AICHA 

AICHA 

81.51 

86.76 

69.53 

1802 

636 

2867 

3291 

3291 

3291 

48 

19.23 

60.13 

192 

192 

192 

5 

1 

11 

ABLA 
L1-MKL 

L2-MKL 

Yeo2011 
Yeo2011 

Yeo2011 

81.51 
87.34 

71.35 

2731 
2731 

2731 

3137 
3137 

3137 

56.39 
56.07 

56.39 

17 
17 

17 

1 
1 

1 

ABLA 
L1-MKL 

L2-MKL 

Harvard-Oxford 
Harvard-Oxford 

Harvard-Oxford 

81.51 
85.02 

70.65 

4609 
4609 

6531 

3389 
3389 

3389 

70.58 
70.58 

77.93 

48 
48 

48 

2 
2 

5 

ABLA 
L1-MKL 

L2-MKL 

Brainnetome 
Brainnetome 

Brainnetome 

81.51 
78.77 

66.53 

2051 
904 

1129 

3057 
3057 

3057 

47 
21.56 

28.39 

246 
246 

246 

9 
4 

5 

ABLA 

L1-MKL 
L2-MKL 

Schaefer 

Schaefer 
Schaefer 

81.51 

77.84 
71.61 

1558 

465 
1926 

3137 

3137 
3137 

42.9 

14.5 
51.35 

400 

400 
400 

23 

6 
28 

 804 

 805 

 806 

Table 2: Summary of the results obtained by the different methods and atlases in the 807 
valence classification. The accuracy obtained by the Searchlight approach (computed as 808 
the average accuracy of the significant voxels) is 53.74%. 809 
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Method Atlas Accuracy 
(%) 

Significant 
voxels 

SL voxels 
defined in 

atlas 

Overlap 
with SL 

(%) 

Regions 
defined in 
the atlas 

Significant 
regions 

ABLA 

L1-MKL 

L2-MKL 

Camb12 

Camb12 

Camb12 

51.77 

48.44 

50.71 

2095 

0 

0 

911 

911 

911 

41.49 

0 

0 

12 

12 

12 

1 

0 

0 

ABLA 

L1-MKL 

L2-MKL 

Camb20 

Camb20 

Camb20 

51.77 

48.18 

50.74 

0 

0 

0 

911 

911 

911 

0 

0 

0 

20 

20 

20 

0 

0 

0 

ABLA 

L1-MKL 

L2-MKL 

Camb36 

Camb36 

Camb36 

51.77 

49.74 

49.22 

0 

0 

406 

911 

911 

911 

0 

0 

0 

36 

36 

36 

0 

0 

1 

ABLA 

L1-MKL 

L2-MKL 

Camb64 

Camb64 

Camb64 

51.77 

46.88 

51.75 

341 

549 

0 

911 

911 

911 

7.14 

0 

0 

64 

64 

64 

1 

1 

0 

ABLA 

L1-MKL 

L2-MKL 

AICHA 

AICHA 

AICHA 

51.77 

47.1 

52.83 

663 

780 

35 

729 

729 

729 

20.58 

0 

0 

192 

192 

192 

5 

5 

1 

ABLA 

L1-MKL 

L2-MKL 

Yeo2011 

Yeo2011 

Yeo2011 

51.77 

46.15 

50.97 

0 

0 

1010 

709 

709 

709 

0 

0 

1.7 

17 

17 

17 

0 

0 

1 

ABLA 

L1-MKL 

L2-MKL 

Harvard-Oxford 

Harvard-Oxford 

Harvard-Oxford 

51.77 

47.18 

48.33 

439 

145 

0 

715 

715 

715 

21.4 

0 

0 

48 

48 

48 

1 

1 

0 

ABLA 

L1-MKL 

L2-MKL 

Brainnetome 

Brainnetome 

Brainnetome  

51.77 

43.34 

51.19 

438 

349 

137 

738 

738 

738 

7.99 

0 

0 

246 

246 

246 

3 

3 

1 

ABLA 

L1-MKL 

L2-MKL 

Schaefer 

Schaefer 

Schaefer 

51.77 

46.24 

49.14 

61 

123 

302 

708 

708 

708 

4.8 

0.14 

3.81 

400 

400 

400 

1 

2 

6 

 810 

 811 

Table 3: Correlation between the significant weight maps across the different atlases after 812 
applying the L1-MKL method in the decision classification. 813 
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L1-Multi Kernel Learning 

Atlas Camb 
12 

Camb 
20 

Camb 
36 

Camb 
64 

AICHA Yeo2011 Harvard-
Oxford 

Brainnetome Schaefer 

Camb12 1 0.974 0.906 0.936 0.889 0.937 0.539 0.383 0.144 

Camb20 0.974 1 0.908 0.951 0.934 0.947 0.564 0.552 0.125 

Camb36 0.906 0.908 1 0.975 0.933 0.911 0.497 0.568 0.1 

Camb64 0.936 0.951 0.975 1 0.963 0.933 0.542 0.573 0.081 

AICHA 0.889 0.934 0.933 0.963 1 0.882 0.61 0.549 0.088 

Yeo2011 0.937 0.947 0.911 0.933 0.882 1 0.566 0.528 0.193 

Harvard-
Oxford 

0.539 0.564 0.497 0.542 0.61 0.566 1 0.172 0.051 

Brainnetome 0.383 0.552 0.568 0.573 0.549 0.528 0.172 1 0.109 

Schaefer 0.144 0.125 0.1 0.081 0.088 0.193 0.051 0.109 1 

 814 

 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

Table 4: Correlation between the different atlases after applying the L2-MKL method in 828 
the decision classification.  829 
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L2-Multi Kernel Learning 

Atlas Camb 
12 

Camb 
20 

Camb 
36 

Camb 
64 

AICHA Yeo2011 Harvard-
Oxford 

Brainnetome Schaefer 

Camb12 1 0.927 0.94 0.926 0.845 0.768 0.837 0.72 0.829 

Camb20 0.927 1 0.958 0.973 0.776 0.71 0.795 0.64 0.762 

Camb36 0.94 0.958 1 0.981 0.795 0.721 0.789 0.663 0.776 

Camb64 0.926 0.973 0.981 1 0.805 0.738 0.798 0.67 0.783 

AICHA 0.845 0.776 0.795 0.805 1 0.948 0.94 0.904 0.973 

Yeo2011 0.768 0.71 0.721 0.738 0.948 1 0.897 0.857 0.945 

Harvard-
Oxford 

0.837 0.795 0.789 0.798 0.94 0.897 1 0.849 0.945 

Brainnetome 0.72 0.64 0.663 0.67 0.904 0.857 0.849 1 0.889 

Schaefer 0.829 0.762 0.776 0.783 0.973 0.945 0.945 0.889 1 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

Table 5: Correlation between the significant weight maps across the different atlases after 843 
applying the L1-MKL method in the valence classification. 844 
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L1-MKL 

Atlas Camb 
12 

Camb 
20 

Camb 
36 

Camb 
64 

AICHA Yeo2011 Harvard-
Oxford 

Brainnetome Schaefer 

Camb12 1 - - - - - - - - 

Camb20 - 1 - - - - - - - 

Camb36 - - 1 - - - - - - 

Camb64 - - - 1 - - - - - 

AICHA - - - - 1 - 0.217 0.428 - 

Yeo2011 - - - - - 1 - - - 

Harvard-
Oxford 

- - - - 0.217 - 1 - - 

Brainnetome - - - - 0.428 - - 1 - 

Schaefer - - - - - - - - 1 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

Table 6: Correlation between the significant weight maps across the different atlases after 859 
applying the L2-MKL method in the valence classification. 860 
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L2-MKL 

Atlas Camb 
12 

Camb 
20 

Camb 
36 

Camb 
64 

AICHA Yeo2011 Harva
rd-

Oxfor
d 

Brainnetome Schaefer 

Camb12 1 - - - - - - - - 

Camb20 - 1 - - - - - - - 

Camb36 - - 1 - - - - - - 

Camb64 - - - 1 - - - - - 

AICHA - - - - 1 - - - 0.975 

Yeo2011 - - - - - 1 - - 0.99 

Harvard-
Oxford 

- - - - - - 1 - - 

Brainnetome - - - - - - - 1 - 

Schaefer - - - - 0.975 0.99 - - 1 

 861 

 862 

 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 
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874 
Fig 1 Significant voxels obtained by the Searchlight approach and the different 875 
classification methods for all the Cambridge12 and Harvard-Oxford atlases in the 876 
decision classification.  877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 
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 894 

Fig 2 Significant voxels obtained by the Searchlight approach and the different 895 
classification methods for all the Cambridge12 and Harvard-Oxford atlases in the valence 896 
classification. 897 
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 913 

Fig 3 Summary of the results obtained for the decision classification by Searchlight, 914 
ABLA, L1-MKL, L2-MKL and univariate approaches. The three classification methods 915 
show large differences between the two groups considered (odd/even participants). 916 
Searchlight only provides information about the significance of each voxel itself, so that 917 
no separation between groups was considered. 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

 930 

 931 

 932 

 933 

 934 

 935 

References: 936 

Abdulrahman, H., Henson, R.N., 2016. Effect of trial-to-trial variability on optimal event-937 
related fMRI design: Implications for Beta-series correlation and multi-voxel pattern 938 
analysis. NeuroImage 125, 756-766. 939 

Adeli, E., Guorong, W., Saghafi, B., An, L., Shi, F., Shen, D., 2017. Kernel-based joint 940 
feature selection and max-margin classification for early diagnosis of Parkinson’s 941 
disease. Sci. Rep. 7, 41069. 942 

Ambrosini, A., Magis, D., Schoenen, J., 2010. Migraine – Clinical neurophysiology. In 943 
Handbook of Clinical Neurology 97, 275-293. 944 

Arco, J.E., González-García, C., Díaz-Gutiérrez, P., Ramírez, J., Ruz, M., (2018). 945 
Influence of activation pattern estimates and statistical significance tests in fMRI 946 
decoding analysis. Journal of Neuroscience Methods 308, 248-260. 947 

Arco, J.E., González-García, C., Ramírez, J., Ruz, M., 2016. Comparison of different 948 
methods for brain decoding from fMRI beta maps. Poster presented at 22nd Annual 949 
Meeting of the Organization for Human Brain Mapping, Geneve, (Switzerland). 950 

Arco, J.E., Ramírez, J., Puntonet, C.G., Górriz, J.M., Ruz, M., 2015. Short-term 951 
prediction of MCI to AD conversion based on longitudinal MRI analysis and 952 
neuropsychological tests. Innovation in Medicine Healthcare, 385-394. 953 

Baldassarre L., Pontil, M., Mourão-Miranda, J., 2017. Combining Accuracy and stability 954 
for model selection in brain decoding. Frontier in Neuroscience 11:62. 955 

Balci, S.K., Sabuncu, M.R., Yoo, J., Ghosh, S.S., Whitfield-Gabrieli, S., Gabrieli, J.D., 956 
Golland, P., 2008. Prediction of successful memory encoding from fMRI data. Med 957 
Image Comput Assist Inter. 11, 97-104. 958 

Bellec, P., Rosa-Neto, P., Lyttelton, O.C., Benali, H., Evans, A.C., 2010. Multi-level 959 
bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage 51, 1126-1139. 960 

Bennett, K.P., Blue, J.A., 1998. A support vector machine approach to decision trees. 961 
1998 IEEE International Joint Conference in Neural Networks Proceedings. 962 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

Bhandari, A., Gagne, C., Badre, D., 2018. Just above Chance: Is It Harder to Decode 963 
Information from Prefrontal Cortex Hemodynamic Activity Patterns? J Cogn Neurosci 964 
30(10), 1473-1498. 965 

Blankertz, B., Dornhege, G., Kraudelat, M., Müller, K.R., Curio, G., 2007. The non-966 
invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in 967 
untrained subjects. Neuroimage 37(2), 539-50. 968 

Bode, S., Haynes, J.-D., 2009. Decoding sequential stages of task preparation in the 969 
human brain. Neuroimage 45 (2), 606-613. 970 

Boser, B.E., Guyon, I., Vapnik, V., 1992. A training algorithm for optimal margin 971 
classifiers. Proceedings of the Fifth Annual Workshop on Computational Learning 972 
Theory, 144-152. 973 

Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M., 2010. The balanced accuracy 974 
and its posterior distribution. 2010 20th international conference on pattern recognition. 975 

Brodersen K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., 976 
Stephan, K.E., 2011. Generative embedding for model-based classification of fMRI data. 977 
PLoS Comput Biol 7(6).  978 

Burges, C., 1998. A tutorial on support vector machines for pattern recognition. Data 979 
Mining and Knowledge Discovery 2, 121-167. 980 

Chanel, G., Pichon, S., Conty, L., Berthoz, S., Chevallier, C., Grèzes, J., 2016. 981 
Classification of autistic individuals and controls using cross-task characterization of 982 
fMRI activity. Neuroimage: Clinical 10, 76-88. 983 

Chang, L.J., Sanfey, A.G., 2013. Great expectations: neural computations underlying the 984 
use of social norms in decision-making. Social Cognitive and Affective Neuroscience 985 
8(3), 277-284. 986 

Chen, Y., Namburi, P., Elliott, L., Heinzle, J., Soon, C., Chee, M., Haynes, J., 2011. 987 
Cortical surface-based searchlight decoding. NeuroImage 56, 582-592. 988 

Chen J., Leong, Y.C., Honey, C.J., Yong, C.H., Norman, K.A., Hasson, U., 2017. Shared 989 
memories reveal shared structure in neural activity across individuals. Nature 990 
neuroscience 20(1), 115-125. 991 

Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S., (2017). Refining diagnosis of 992 
Parkinson’s disease with deep learning-based interpretation of dopamine transporter 993 
imaging. NeuroImage: Clinical 16, 586–594.  994 

Cichy, R.M., Pantazis, D., Oliva, A., 2016. Similarity-based fusion of MEG and fMRI 995 
reveals spatio-temporal dynamics in human cortex during visual object 996 
recognition. Cerebral Cortex 26(8), 3563–3579. 997 

Coutanche, M.N., Thompson-Schill, S.L., Schultz, R.T., 2011. Multi-voxel pattern 998 
analysis of MRI data predicts clinical symptom severity. NeuroImage 57(1), 113-123. 999 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

Cox, D.D., Savoy, R.L., 2003. Functional magnetic resonance imaging (fMRI) “brain 1000 
reading”: detecting and classifying distributed patterns of fMRI activity in human visual 1001 
cortex. NeuroImage 19, 261-270. 1002 

Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S., 2012. A 1003 
whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain 1004 
Mapp. 33(8), 1914-28. 1005 

Dai, D., Wang, J., Hua, J., He, H., 2012. Classification of ADHD children through 1006 
multimodal magnetic resonance imaging. Front. Syst. Neurosci. 6(63).  1007 

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E., 2008. 1008 
Combining multivariate voxel selection and support vector machines for mapping and 1009 
classification of fMRI spatial patterns. NeuroImage 43, 44-58. 1010 

Del Gaizo, J., Mofrad, N., Jensen, J. H., Clark, D., Glenn, R., Helpern, J., & Bonilha, L. 1011 
(2017). Using machine learning to classify temporal lobe epilepsy based on diffusion 1012 
MRI. Brain and Behavior, 7(10), e00801. 1013 

Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., 1014 
Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., Albert, M.S., Killiany, R.J., 1015 
2006. An automated labeling system for subdividing the human cerebral cortex on MRI 1016 
scans into gyral based regions of interest. NeuroImage 31, 968-980. 1017 

Di Russo, F., Berchicci, M., Bozzacchi, C., Perri, R.L., Pitzalis, S., Spinelli, D., 2017. 1018 
Beyond the “Bereitschaftspotential”: Action preparation behind cognitive functions. 1019 
Neurosci Biobehav Rev. 78, 57-81. 1020 

Dosenbach, NU., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., et al., 1021 
2010. Prediction of individual brain maturity using fMRI. Science 329(5997), 1358-61. 1022 

Dubois, J., de Berker, A.O., Tsao, D.Y., 2015. Single-unit recordings in the macaque face 1023 
patch system reveal limitations of fMRI MVPA. The Journal of Neuroscience 35(6), 1024 
2791-2802. 1025 

Etzel, J.A., Zacks, J.M., Braver, T.S., 2013. Searchlight analysis: promise, pitfalls, and 1026 
potential. Neuroimage 78, 261-69. 1027 

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., L, 1028 
A.R., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T., 2016. The Human Brainnetome Atlas: 1029 
A New Brain Atlas Based on Connectional Architecture. Cerebral Cortex 26, 3508-3526. 1030 

Fan, L., Wang, J., Zhang, Y., Han, W., Yu, C., Jiang, T., 2014. Connectivity-based 1031 
parcellation of the human temporal pole using diffusion tensor imaging. Cereb Cortex 24, 1032 
3365-3378. 1033 

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J., 2008. LIBLINEAR: A 1034 
library for large linear classification. J. March. Learn. Res. 9, 1871-1874. 1035 

Filippone, M., Marquand, A.F., Blain, C.R.V., Williams, S.C.R., Mourão-Miranda, J., 1036 
Girolami, M., 2013. Probabilistic prediction of neurological disorders with a statistical 1037 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

assessment of neuroimaging data modalities. The annals of applied statistics 6(4), 1883-1038 
1905. 1039 

Forman, S., Cohen, J., Fitzgerald, M., Eddy, W., Mintum, M., Noll, D., 1995. Improved 1040 
assessment of significant activation in functional magnetic resonance imaging (fMRI): 1041 
use of a cluster-size threshold. Magn. Reson. Med. 33, 636-647. 1042 

Fort, G., Lambert-Lacroix, S., 2005. Classification using partial least squares with 1043 
penalized logistic regression. Bioinformatics 21, 1104-1111. 1044 

Friston K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S.J., 1045 
1995. Statistical parametric maps in functional imaging: a general linear approach. 1046 
Human Brain Mapping 2: 189- 210.  1047 

Gabay, A.S., Radua, J., Kempton, M.J., Mehta, M.A., 2014. The Ultimatum Game and 1048 
the brain: A meta-analysis. Neuroscience and Biobehavioral Reviews 47, 549-558. 1049 

Gaertig, C., Moser, A., Alguacil, S., Ruz, M., 2012. Social information and economic 1050 
decisión-making in the ultimatum game. Front Neurosci 6 (103). 1051 

Gaonkar, B., Shinohara, R., Davatzikos, C., Alzheimers Disease Neuroimaging Initiative, 1052 
2015. Interpreting support vector machine models for multivariate group analysis in 1053 
neuroimaging. Med Image Anal. 24(1), 190-204 1054 

González-García, C., Arco, J.E., Palenciano, A.F., Ramírez, J., Ruz, M., 2017. Encoding, 1055 
preparation and implementation of novel complex verbal instructions. NeuroImage 148, 1056 
264-273 1057 

González-García, C., Mas-Herrero, E., de Diego-Balaguer, R., Ruz, M., 2016. Task-1058 
specific preparatory neural activations in low-inference contexts. Brain Structure & 1059 
Functions 8, 3997-4006. 1060 

Gordon, E.M., Laumann, T.O., Gilmore, A.W., Newbold, D.J., Greene, D.J., Berg, J.J., 1061 
Ortega, M., Hoyt-Drazen, C., Gratton, C., Sun, H., Hampton, J.M., Coalson, R.S., 1062 
Nguyen, A.L., McDermott, K.B., Shimony, J.S., Snyder, A.Z., Schlaggar, B.L., Petersen, 1063 
S.E., Nelson, S.M., Dosenbach, N.U.F., 2017. Precision functional mapping of individual 1064 
human brains. Neuron 95(4), 791-807. 1065 

Grecucci, A., Giorgetta, C., van’t Wout, M., Bonini, N., Sanfey, A.G., 2013. Reappraising 1066 
the Ultimatum: an fMRI study of emotion regulation and decision making. Cerebral 1067 
Cortex 23(2), 399-410. 1068 

Haufe, S., Meinecke, F., Görgen, K, Dähne, S., Haynes, J.-D., Blankertz, B., Bießmann, 1069 
F., 2014. On the interpretation of weight vectors of linear models in multivariate 1070 
neuroimaging. Neuroimage 87, 96-110. 1071 

Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P., 2001. 1072 
Distributed and overlapping representations of faces and objects in ventral temporal 1073 
cortex. Science 293(5539), 2425-30. 1074 

Haxby, J.V., Connolly, A.C., Guntupalli, J.S., 2014. Decoding neural representational 1075 
spaces using multivariate pattern analysis. Annu Rev. Neurosci. 37, 435-456. 1076 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

Haynes, J.-D., Rees, G., 2006. Decoding mental states from brain activity in humans. Nat. 1077 
Rev. Neurosci. 7, 523–534. 1078 

Haynes, J.-D., Rees, G., 2005. Predicting the orientation of invisible stimuli from activity 1079 
in human primary visual cortex. Nat Neurosci. 8(5), 686-91. 1080 

Hebart, M.N., Baker, C.I., 2017. Deconstructing multivariate decoding for the study of 1081 
brain function. NeuroImage, https://doi.org/10.1016/j.neuroimage.2017.08.005 1082 

Henson, R., 2005. Design efficiency in fMRI. URL http://imaging.mrc-1083 
cbu.cam.ac.uk/imaging/DesignEfficiency# 1084 
VII._Should_I_treat_my_trials_as_events_or_epochs_.3F  1085 

Illan, I.A., Górriz, J.M., Ramírez, J., Meyer-Base, A., 2014. Spatial component analysis 1086 
of fMRI ata for Alzheimer’s disease diagnosis: a Bayesian network approach. Front. 1087 
Comput. Neurosci. 26, 156. 1088 

Joliot, M., Jobard, G., Naveau, M., Delcroix, N., Petit, L., Zago, L., Crivello, F., Mellet, 1089 
E., Mazoyer, B., Tzourio-Mazoyer, N., 2015. AICHA: An atlas of intrinsic connectivity 1090 
of homotopic areas. Journal of Neuroscience Methods 254, 46-59. 1091 

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the human 1092 
brain. Nat Neurosci. 8(5), 679-85. 1093 

Khedher, L., Illán, I.A., Górriz, J.M., Ramírez, J., Meyer-Baese, A., 2017. Independent 1094 
component analysis-support vector machine-based computer aided diagnosis system for 1095 
Alzheimer’s disease with visual support. International Journal of Neural Systems 27(3), 1096 
8 1650050. 1097 

Kriegeskorte, N., Goebel, R., Bandettini, P., 2006. Information-based functional brain 1098 
mapping. PNAS 103, 3863-3868. 1099 

Kuzmanovic, B., Rigoux, L., Tittgemeyer, M., 2018. Influence of vmPFC on dmPFC 1100 
Predicts Valence-Guided Belief Formation. The Journal of Neuroscience 38(37), 7996-1101 
8010. 1102 

Lanckriet, G.R.G., Cristianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.I., 2004. Learning 1103 
the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning 1104 
Research 5, 27-72. 1105 

Lindquist, K., Satpute, A., Wager, T., Weber, J., Barrett, L., 2015. The brain basis of 1106 
positive and negative affect: evidence from a meta-analysis of the human neuroimaging 1107 
literature. Cereb Cortex 26(5), 1910-1922. 1108 

Liu, H., Qin, W., Li, W., Fan, L., Wang, J., Jiang, T., Yu, C., 2013. Connectivity-based 1109 
parcellation of the human frontal pole with diffusion tensor imaging. J Neurosci. 33, 1110 
6782-6790. 1111 

Liu, H., Stufflebeam, S.M., Sepulcre, J., Hedden, T., Buckner, R.L., 2009. Evidence from 1112 
intrinsic activity that asymmetry of the human brain is controlled by multiple factors. 1113 
Proceedings of the National Academy of Sciences 106 (48). 1114 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

Loose, L.S., Wisniewski, D., Rusconi, M., Goschke, T., Haynes, J.-D., 2017. Switch-1115 
independent task representations in frontal and parietal lobe. Journal of Neuroscience 1116 
37(33), 8033-8042. 1117 

Misaki, M., Kim, Y., Bandettini, P., Kriegeskorte, N., 2010. Comparison of multivariate 1118 
classifiers and response normalizations for pattern-information fMRI. NeuroImage 53(1), 1119 
103-18. 1120 

Moser, A., Gaertig, C., Ruz, M., 2014. Social information and personal interests modulate 1121 
neural activity during economic decision-making. Frontiers in Human Neuroscience 8, 1122 
31. 1123 

Mourão-Miranda, J., Bokde, A.L.W., Born, C., Hampel, H., Stetter, M., 2005. Classifying 1124 
brain states and determining the discriminating activation patterns: Support Vector 1125 
Machine on functional fMRI data. NeuroImage 25, 980-995. 1126 

Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-reading: multi- 1127 
voxel pattern analysis of fMRI data. Trends Cognit. Sci. 10, 424–430.  1128 

Nurse, E.S., Karoly, P.J., Grayden, D.B., Freestone, D.R., 2015. A generalizable Brain-1129 
Computer-Interface (BCI) using machine learning for feature discovery. Plos One 10(6), 1130 
1-22.  1131 

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: A 1132 
tutorial overvie. NeuroImage 45, S199-209. 1133 

Plant, C., Teipel, S.J., Oswald, A., Böhm, C., Meindl, T., Mourão-Miranda, J., Bokde, 1134 
A.W., Hampel, H., Ewers, M., 2010. Automated detection of brain atrophy patterns based 1135 
on MRI for the prediction of Alzheimer’s disease. NeuroImage 50(1), 162-74. 1136 

Poldrack, R.A., 2007. Region of interest analysis for fMRI. Soc Cogn Affect Neurosci. 1137 
2(1), 67-70. 1138 

Poldrack, R.A., Farah, M.J., 2015. Progress and challenges in probing the human brain. 1139 
Nature 526, 371-379. 1140 

Qiao, L., Zhang, L., Chen, A., Egner T, 2017. Dynamic trial-by trial recoding of task-set 1141 
representations in the frontoparietal cortex mediates behavioral flexibility. Journal of 1142 
Neuroscience 37(45), 11037-11050. 1143 

Qureshi, M.N.I., Oh, J., Min, B., Jo, H.J., Lee, B., 2017. Multi-modal, multi-measure, and 1144 
multi-class discrimination of ADHD with hierarchical feature extraction and extreme 1145 
learning machine using structural and functional brain MRI. Front Hum Neurosci. 1146 
11(157). 1147 

Rakotomamonjy, A., Bach, F., Canu, S., Grandvalet, Y., 2008. SimpleMKL. Journal of 1148 
Machine Learning 9, 2491-2521. 1149 

Rondina, J.M., Hahn, T., de Oliveira, L., Marquand, A.F., Dresler, T., Fallgatter, A.J., 1150 
Shawe-Taylor, J., Mourão-Miranda, J., 2014. SCoRS—A method based on stability for 1151 
feature selection and mapping in neuroimaging. IEEE Trans Med Imaging 33(1), 85-98. 1152 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 37 

Sakai, K., 2008. Task set and prefrontal cortex. Annu. Rev. Neurosci. 31, 219-245. 1153 

Schaefer, A., Kong, R., Gordon, E.M., Laumann, T.O., Zuo, X.-N., Holmes, A.J., 1154 
Eickhoff, S.B., 2018. Local-global parcellation of the human cerebral cortex from 1155 
intrinsic functional connectivity MRI. Cerebral Cortex, 1-20. 1156 

Schrouff, J., Monteiro, J.M., Portugal, L., Rosa, M.J., Phillips, C., Mourão-Miranda, J., 1157 
2018. Embedding anatomical or functional knowledge in whole-brain multiple kernel 1158 
learnig models. Neuroinformatics 16, 117-143. 1159 

Schrouff, J., Cremers, J., Garraux, G., Baldassarre, L., Mourão-Miranda, J., Phillips, C., 1160 
2013a. Localizing and comparing weight maps generated from linear kernel machine 1161 
learning models. IEEE Explore, http://ieeexplore.ieee.org/document/6603572/. 1162 

Schrouff, J., Rosa, M.J., Rondina, J.M., Marquand, A.F., Chu, C., Ashburner, J., Phillips, 1163 
C., Richiardi, J., Mourão-Miranda, J., 2013b. PRoNTo: Pattern Recognition for 1164 
Neuroimaging Toolbox. Neuroinformatics 11(3), 319-337. 1165 

Sona, D., Veeramachaneni, S., Olivetti, E., Avesani, P., 2007. Inferring cognition from 1166 
fMRI brain images. Int. Conf. Artif. Neural Netw. 869-878. 1167 

Stelzer, J., Chen, Y., Turner, R., 2013. Statistical inference and multiple testing correction 1168 
in classification-based multi-voxel pattern analysis (MVPA): Random permutations and 1169 
cluster size control. NeuroImage 65, 69-82. 1170 

Sur, S., and Sinha, V.K., 2009. Event-related potential: an overview. Industrial Psychiatry 1171 
Journal 18(1), 70-73. 1172 

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. Journal of the 1173 
Royal Statistical Society 58(1), 267-288. 1174 

Turner, B., Mumford, J., Poldrack, R., Ashby, F., 2012. Spatiotemporal activity 1175 
estimation for multivoxel pattern analysis with rapid event-related designs. NeuroImage 1176 
62(3), 1429-1438. 1177 

Urchs, S., Dansereau, C., Benhajali, Y., Bellec, P. Group multiscale functional template 1178 
generated with BASC on the Cambridge sample.  1179 
https://figshare.com/articles/Group_multiscale_functional_template_generated_with_B1180 
ASC_on_the_Cambridge_sample/1285615 1181 

Wang, D., Buckner, R.L., Fox, M.D., Holt, D.J., Holmes, A.J., Stoecklein, S., Langs, G., 1182 
Pan, R., Qian, T., Kuncheng, L., Baker, J.T., Stufflebeam, S.M., Wang, K., Wang, X., 1183 
Hong, B., Liu, H., 2015. Parcellating cortical functional networks in individuals. Nature 1184 
Neuroscience 18, 1853-1860. 1185 

Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., 1186 
Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., Fischl, B., Liu, H., Buckner, R.L., 1187 
2011. The organization of the human cerebral cortex estimated by intrinsic functional 1188 
connectivity. J Neurophysiol 106, 1125-1165. 1189 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

Yu, S., Falck, T., Daemen, A., Tranchevent, L.C., Suykens, J.A., De Moor, B., Moreau, 1190 
Y., 2010. L2-norm multiple kernel learning and its application to biomedical data fusion. 1191 
BMC Bioinformatics 11, 309. 1192 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2019. ; https://doi.org/10.1101/446856doi: bioRxiv preprint 

https://doi.org/10.1101/446856
http://creativecommons.org/licenses/by-nc-nd/4.0/

