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ABSTRACT 14 

 15 

Genome-scale studies using high-throughput sequencing (HTS) technologies generate substantial 16 

lists of differentially expressed genes under different experimental conditions. These gene lists 17 

need to be further mined to narrow down biologically relevant genes and associated functions in 18 

order to guide downstream functional genetic analyses. A popular approach is to determine 19 

statistically overrepresented genes in a user-defined list through enrichment analysis tools, which 20 

rely on functional annotations of genes based on Gene Ontology (GO) terms. Here, we propose a 21 

new approach, GenFam, which allows classification and enrichment of genes based on their gene 22 

family, thus simplifying identification of candidate gene families and associated genes that may 23 

be relevant to the query. GenFam and its integrated database comprises of three-hundred and 24 

eighty-four unique gene families and supports gene family classification and enrichment 25 

analyses for sixty plant genomes. Four comparative case studies with plant species belonging to 26 

different clades and families were performed using GenFam which demonstrated its robustness 27 

and comprehensiveness over preexisting functional enrichment tools. To make it readily 28 

accessible for plant biologists, GenFam is available as a web-based application where users can 29 

input gene IDs and export enrichment results in both tabular and graphical formats. Users can 30 

also customize analysis parameters by choosing from the various statistical enrichment tests and 31 

multiple testing correction methods. Additionally, the web-based application, source code and 32 

database are freely available to use and download. Website: 33 

http://mandadilab.webfactional.com/home/. Source code and database: 34 

http://mandadilab.webfactional.com/home/dload/ .  35 

 36 
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INTRODUCTION 47 

 48 

In recent years, genome-wide analyses using high-throughput sequencing (HTS) technologies, 49 

have become indispensable to life science research. Generating large-scale datasets has become 50 

relatively straightforward, as opposed to efficiently interpreting the data to gain intuition into 51 

biologically significant mechanisms. Data mining tools that determine, predict, and enrich 52 

putative functions among HTS datasets are highly valuable for such genomic analyses (Backes et 53 

al., 2007). For instance, RNA-sequencing (RNA-seq) analysis is a high-throughput approach to 54 

study transcriptome regulation by determining transcript-level changes in multiple cell- or tissue-55 

types, or among varying experimental conditions (e.g., unstressed vs. stressed). In a typical 56 

RNA-seq experiment, the analysis yields hundreds, if not thousands, of genes that are 57 

differentially expressed among the experimental conditions. Uncovering enriched biological 58 

pathways among these gene lists is a valuable starting step for downstream functional genetic 59 

analyses. 60 

 61 

The Gene Ontology (GO)-term based enrichment tools (e.g., BinGO (Maere et al., 2005), 62 

Blast2GO (Conesa et al., 2005), AgriGO (Du et al., 2010), PlantGSEA (Yi et al., 2013)) are 63 

widely used by researchers to infer the biological mechanisms of genes identified in HTS 64 

experiments (Mandadi and Scholthof, 2012; Chen et al., 2013; Bedre et al., 2015; Mandadi and 65 

Scholthof, 2015; Bedre et al., 2016; Li et al., 2017; Bedre et al., 2019). These tools identify 66 

overrepresented GO terms associated within a user-defined list of genes by mapping them to the 67 

background genome annotations and calculating statistical probability of the enrichment relative 68 

to the background. The enrichment tools can classify genes into GO categories or pathways 69 

related to biological process, molecular function and cellular locations (Goffard and Weiller, 70 

2007; Du et al., 2010). The GO-enrichment and the resultant hierarchy are very useful to 71 

understand the complex biological processes that are being enriched. However, information on 72 

specific biological attributes of a gene, such as the gene family (a group of homologous genes 73 

with common evolutionary origin and biological functions) level information, are hard to glean 74 

from GO-enrichment alone (Ashburner et al., 2000; Lee et al., 2005). For instance, enrichment of 75 

a transcription factor will fetch GO terms for “regulation of transcription (GO:0006355)” or 76 

“DNA binding (GO:0003700)” or “response to stress (GO:0006950)” but does not identify 77 

which transcription factor family genes (e.g., WRKY, bZIP) being enriched. Having this 78 

information, allows users to readily interpret large-scale datasets effectively and select favorite 79 

gene families for further functional studies. While providing the information for functional 80 

studies, gene families also could reveal the accurate gene annotation information that could not 81 

be easily determined by BLAST-based tools alone. Further, comparative gene family size 82 

analysis can certainly be informative and valuable approach to explore the biologically relevant 83 

functions related to genome architecture and adaptation or speciation of various plant species 84 

(Guo, 2013).  85 

 86 

With the availability of complete genomes and sequence data, identification, and analysis of 87 

specific gene families among plant species has become necessary. In this study, we present a 88 

unique approach to perform classification and enrichment of genes to identify overrepresented 89 

gene families (GenFam) in a user-defined query list. We suggest that GenFam is a valuable 90 

addition to a plant biologists toolkit to analyze large-scale HTS datasets. By determining 91 

overrepresented gene families in a user-defined gene list, rather than GO terms or hierarchy 92 
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alone, GenFam empowers users to readily interpret information of gene families (e.g. WRKY, 93 

bZIP) in their queries, and move forward to selecting favorite overrepresented genes (or families) 94 

for downstream studies and interpretation. GenFam is also freely accessible to users on the 95 

world-wide web, as a user-friendly, graphical-user interface.  96 

 97 

MATERIALS AND METHODS 98 

 99 

Background database 100 

 101 

GenFam currently supports the analysis of sixty plant genomes. GenFam classifies genes into 102 

384 representative and unique gene families, which to the best of our knowledge the largest 103 

collection, based on the well-annotated Arabidopsis thaliana (Berardini et al., 2015) and rice 104 

(Oryza sativa) (Kawahara et al., 2013) genomes, literature search, and Pfam protein families 105 

database (El-Gebali et al., 2019). We have identified and used Pfam common conserved domains 106 

and domain organization among the homologous gene sequences to assign the gene families. 107 

These highly conserved domains define protein functions and classifies protein-coding genes 108 

into gene families. The conserved signature protein domains have the ability to detect the 109 

divergent or distantly related homologs which would be prohibitive with sequence based 110 

similarity analysis tools [e.g. BLAST (Altschul et al., 1997)]. Therefore, domain-based search 111 

method would identify more genes belonging to gene families than BLAST-based homology 112 

search. 113 

  114 

To identify and classify gene families in plants, we have leveraged the publicly available 115 

genomic resources at Phytozome (v12) database. The protein sequences of sixty plant genomes 116 

were used to identify conserved protein domains to assign families to known and unclassified or 117 

novel genes. The respective protein domains were predicted by HMMER (v3.1b2) using a 118 

protein family hidden Markov model (HMM) profiles (Pfam release 32.0) (El-Gebali et al., 119 

2019). We have established rules to classify and assign the genes to gene families based on the 120 

presence of signature conserved protein domains and have provided in Supplementary Table 121 

S1. This approach allowed us to maximize classification including orphan genes with missing 122 

annotations, genes with incorrect annotations, and novel genes present among the respective 123 

genome databases. Lastly, the background databases were curated to remove redundancy and 124 

duplication of gene members among families. In summary, we were able to integrate 384 125 

representative gene families and corresponding (on an average ~41%) genes from sixty plant 126 

genomes into our database (Supplementary Table S2). This is a the most comprehensive and 127 

largest collection of gene families spanning sixty plant species, when compared to other existing 128 

databases. For instance, the recently published gene family database in poplar (GFDP) has 129 

classified 6551 poplar genes into 145 gene families derived from Arabidopsis genome (Wang et 130 

al., 2018). PlantTFDB (v4.0) and PlnTFDB (v3.0) has classified the genes into 58 and 84 131 

transcription factor gene families (Perez-Rodriguez et al., 2010; Jin et al., 2017). Similarly, 132 

another database and analysis toolkit, PlantGSEA, supports the gene family analysis for 13 plant 133 

species which mostly imports gene families from well-annotated genomes such as rice (118 gene 134 

families) and maize (81 gene families) (Yi et al., 2013). 135 

 136 

All the gene family data was formatted using the PostgreSQL database to perform classification 137 

and enrichment analysis using various statistical enrichment methods. The GenFam database 138 
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with complete protein domain annotation and gene family classification can be downloaded from 139 

the GenFam website (http://mandadilab.webfactional.com/home/dload/ ). Detailed statistics for 140 

the number of genes assigned to each gene family and the total number of background genes are 141 

provided in Supplementary Table S2.  142 

 143 

Statistical enrichment methods 144 

 145 

GenFam performs three main functions: i) Annotation ii) classification, and iii) enrichment of a 146 

user-defined gene list to provide gene family-level attributes. The enrichment is based on the 147 

singular enrichment analysis (SEA) method, which computes enrichment of a user-defined list of 148 

genes with a precomputed background dataset (Huang da et al., 2009). GenFam accepts different 149 

types of gene IDs for the analysis. For example, for rice, it accepts gene (e.g., 150 

LOC_Os01g06882) and transcript (e.g., LOC_Os01g06882.1) IDs from parent database such as 151 

the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/). Additionally, GenFam 152 

also accepts Phytozome PAC IDs for a given gene (e.g., 24120792 for LOC_Os01g06882), 153 

which provides additional flexibility in performing the analysis. To determine an acceptable ID, 154 

the user can run the “check allowed ID type for each species” function on the GenFam analysis 155 

page (http://mandadilab.webfactional.com/family/). Once the appropriate gene IDs are provided, 156 

GenFam classifies and identifies specific gene families and members that are overrepresented in 157 

the input gene list.  158 

 159 

Even though there is no defined standard for choosing a reference background, it is ideal to 160 

select a background that will increase coverage (or intersection) with an input gene list, as well 161 

as that enhances specificity of the enrichment analysis (Huang da et al., 2009). GenFam utilizes 162 

the number of total genes categorized/annotated into gene families in each plant species as a 163 

reference background, rather than using the whole genome. This feature greatly improves the 164 

specificity of the enrichment analysis by implementing statistically stringent criteria. For 165 

instance, for case study 1, if enrichment analysis was performed with the whole genome as 166 

background, it would result in 35 enriched gene families with much lower P-values, when 167 

compared to using the current GenFam background (29 enriched gene families) (Supplementary 168 

Table S3). 169 

 170 

GenFam can employ standard statistical tests such as the Fisher exact, Chi-Square (χ2), Binomial 171 

distribution and Hypergeometric tests for enrichment, along with multiple testing corrections to 172 

control a false discovery. We recommend using Fisher exact, Chi-square (χ2) and 173 

Hypergeometric tests for smaller datasets (<1000) (McDonald, 2009), and Binomial distribution 174 

for larger datasets (Khatri and Draghici, 2005; Zheng and Wang, 2008). Furthermore, the Chi-175 

Square (χ2) test would be appropriate when the user defined gene list has less overlap with the 176 

background dataset. As a default test, GenFam performs the Fisher exact test, which relies on the 177 

proportion of observed data, instead of a value of a test statistic to estimate the probability of 178 

genes of interest corresponding to a specific category.  179 

 180 

To address the false positives resulting from multiple comparisons especially when the input 181 

gene list is large (>1000), GenFam subsequently employs false discovery correction methods 182 

including the Benjamini-Hochberg (Benjamini and Hochberg, 1995), Bonferroni (Bonferroni, 183 
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1936) and Bonferroni-Holm (Holm, 1979). The various statistical tests and false discovery 184 

correction methods can be customized by the user as appropriate.  185 

 186 

Output summary 187 

 188 

A snapshot of the analysis page and workflow is shown in Figure 1. Users have the option to 189 

either use the default settings or select desired statistical parameters. The analysis page also 190 

guides the users to select gene IDs that are acceptable in GenFam (Figure 1). Users are directed 191 

to the results after analysis is completed (Figure 1). The results of GenFam analysis are 192 

displayed as summary table (HTML) and graphical chart plotted using the -log10(P-Value) 193 

scores. Higher the -log10(P-Value) value, greater the confidence in enrichment of the gene family 194 

(Figure 2). The enriched and non-enriched gene family results can also be downloaded as 195 

tabular files, with further details of associated P-value and FDR statistics, gene family size, gene 196 

IDs and GO terms.  197 

 198 

Along with enrichment results for the gene families, GenFam also provides information related 199 

to GO terms in biological process, molecular function and cellular component categories 200 

associated with the enriched gene families. In addition to GO terms, GenFam also provides the 201 

gene family size and gene IDs associated with each gene family. These results can be 202 

downloaded as a tabular file (“Enriched Families”) or as a graphical figure of the enriched 203 

families (“Get Figures”). If users only want to retrieve the classification of genes, GenFam 204 

parses another tabular file containing the information of all annotated gene families (“All 205 

Families”). 206 

 207 

Web server implementation 208 

 209 

The GenFam web server is implemented using Python 3 (https://www.python.org/), Django 210 

1.11.7 (https://www.djangoproject.com/) and PostgreSQL (https://www.postgresql.org/) 211 

database. All the codes for data formatting and statistical analysis are implemented using Python 212 

scripting language. Python is a fully-fledged programming language which offers well developed 213 

packages for statistical analysis, graphics and integration with web apps. Therefore, we have 214 

chosen Python over other languages such as R for development of GenFam. The high-level 215 

Python web framework was constructed using Django. The Python web framework was hosted 216 

using WebFaction (https://www.webfaction.com/). The web-based templates were designed 217 

using Bootstrap, HTML, and CSS. The GenFam is compatible with all major browsers including 218 

Internet Explorer, Microsoft Edge, Google Chrome, Mozilla and Safari. All the precomputed 219 

plant gene family background databases were built using advanced PostgreSQL database. The 220 

analyzed data was visualized using the matplotlib (Droettboom et al., 2016) Python plotting 221 

library.  222 

 223 

RESULTS AND DISCUSSION 224 

 225 

Case studies and analysis 226 

 227 

To demonstrate the utility of GenFam, we performed four case studies using transcriptome 228 

datasets related to plants from different clades and families (cotton, tomato, soybean and rice) 229 
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(Bedre et al., 2015; Dametto et al., 2015; Zeng et al., 2017; Cui et al., 2018). We have previously 230 

identified 662 differentially expressed genes in cotton (Gossipium raimondii, family Malvaceae) 231 

infected with Aspergillus flavus (Bedre et al., 2015). For the first case study, we used GenFam to 232 

determine the enriched gene families among these differentially expressed genes, using the 233 

options of Fisher exact test for statistical enrichment, and the Benjamini-Hochberg (Benjamini 234 

and Hochberg, 1995) method to control false discovery rate (FDR). Among the 662 genes, 514 235 

genes were annotated and classified into gene families, resulting in ~78% intersection/coverage 236 

with the GenFam database. The GenFam enrichment analysis revealed overrepresented gene 237 

families such as expansins, kinases, reactive oxygen species (ROS) scavenging enzymes, defense 238 

related genes, heat shock proteins and transcription factors—genes that we have hypothesized to 239 

mediate cell-wall modifications, antioxidant activity and defense signaling in response to A. 240 

flavus infection (Bedre et al., 2015). Additionally, GenFam also identified new enriched gene 241 

families such as bHLH, GH3, glycosyltransferases and thaumatin that were not reported or 242 

identified (Figures 1 and 2; Supplementary Table S3). In the second case study, we analyzed 243 

758 genes which were up-regulated in a cold-tolerant rice (Oryza sativa, family Poaceae) 244 

(Dametto et al., 2015). Among the 758 genes, 460 genes were annotated and classified into gene 245 

families by GenFam, resulting in ~61% intersection/coverage with the GenFam database. 246 

GenFam was able to successfully determine enriched gene families related to aquaporins, 247 

glutathione S-transferases (GST), transporters, lipid metabolism, transcription factors as well as 248 

gene families involved in cell wall-related mechanisms (Supplementary Table S4) —genes that 249 

were hypothesized by Dametto et al. (2015) (Dametto et al., 2015) to play a role in the rice cold 250 

stress response. Additionally, GenFam also identified new enriched gene families such as 251 

aldehyde dehydrogenase (ADH), kinesins, glycosyltransferases, tubulin, phenylalanine ammonia 252 

lyase (PAL) and thaumatin that were not reported or identified (Supplementary Table S4). 253 

Next, we analyzed the differentially regulated genes from tomato (Solanum lycopersicum, family 254 

Solanaceae) (Cui et al., 2018) and soybean (Glycine max, family Fabaceae) (Zeng et al., 2017) 255 

using GenFam (Supplementary Table S5 and S6). We obtained ~65% and ~59% 256 

intersection/coverage with the GenFam database for tomato and soybean respectively. The 257 

GenFam results in both these studies revealed enrichment of several gene families that were 258 

overrepresented and reported by Cui et al. (2018) (Cui et al., 2018) and  Zeng et al. (2017) (Zeng 259 

et al., 2017) (Supplementary Table S5 and S6). Additionally, GenFam also identified new 260 

enriched gene families such as aquaporins, VQ, tify, GST, and PAL in tomato, and BET, 261 

Dirigent, Expansins, Asparagine synthase (ASNS), and Carbonic anhydrase (CA) in soybean that 262 

were not reported or identified (Supplementary Table S5 and S6). The detailed statistics of 263 

enriched gene families for these case studies are provided in Supplementary Table S3, S4, S5 264 

and S6. 265 

 266 

GenFam advantages and comparison with preexisting enrichment tools  267 

To the best of our knowledge, there is only one existing enrichment tool that comes close to the 268 

GenFam approach, i.e., PlantGSEA (Yi et al., 2013), which also allows users to enrich gene lists 269 

using gene family attributes. Hence, we performed a comparative analysis of GenFam and 270 

PlantGSEA with a dataset from cotton (662 genes)(Bedre et al., 2015) and employing identical 271 

parameters (Fisher exact test and Benjamini-Hochberg method) for enrichment. GenFam 272 

enriched gene families belonging to cell-wall modifying genes, ROS scavenging genes, 273 

transcription factors, lipid metabolism, and stress responsive gene families, both new and 274 
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previously shown to be biologically-relevant during A. flavus infection of cotton (Bedre et al., 275 

2015), while PlantGSEA missed several of these categories (Supplementary Table S3 and S7). 276 

Upon further examination, we found that several gene family categories such as the ABC 277 

transporters, expansins, and glutathione-S-transferase were absent in the PlantGSEA G. 278 

raimondii background database. Moreover, PlantGSEA supports only thirteen plant genomes 279 

with several redundant and overlapping genes and gene families, which could impact the 280 

accuracy of the enrichment analysis. For instance, in the A. thaliana genome there are 37 281 

annotated “C2-C2 Dof” transcription factors. PlantGSEA categorized 36 out of the 37 genes into 282 

a “C2-C2 Dof” family, but also into an additional “Dof” family leading to redundant gene family 283 

categories. GenFam avoids such discrepancies by curation and filtering redundant categories.  284 

 285 

Taken together, we suggest that GenFam is a comprehensive and robust gene family 286 

classification and enrichment program over prevailing tools, with several advantages: i) GenFam 287 

is a dedicated and comprehensive platform for gene family-level classification, annotation and 288 

enrichment analysis and supports sixty plant genomes including model and non-model plant 289 

species. ii) GenFam background dataset was constructed from well-annotated gene families of A. 290 

thaliana and rice genomes, literature search, and as well as a systematic HMM profile search for 291 

signature conserved protein domain analysis using the Pfam database. This inclusive strategy 292 

enabled us to categorize most of the genes into families, including those which may lack a 293 

defined annotation in their corresponding genome database or could be novel genes. As a result, 294 

GenFam database is by far the largest collection of gene families (384 families). In contrast, 295 

existing databases such as PlantGSEA and GFDP only relies on annotations defined by other 296 

databases such as TAIR and MSU annotations and/or other transcription factor databases (Yi et 297 

al., 2013; Wang et al., 2018). The lack of additional analysis of protein domains perhaps explains 298 

the poor representation of gene families in PlantGSEA and GFDP databases. iii) GenFam 299 

background dataset was curated to remove redundancy and overlapping genes into different gene 300 

families, that enhances the accuracy of the analysis. iv) In contrast to PlantGSEA, GenFam uses 301 

the annotated gene families as reference background instead of the whole genome. This feature 302 

ensures decreasing enrichment bias and increasing the accuracy of the analysis (Huang da et al., 303 

2009). v) GenFam accepts multiple input IDs including, gene IDs, transcript IDs and PAC IDs, 304 

however PlantGSEA and GFDP are restricted to using only gene IDs. vi) GenFam can be solely 305 

used for gene family annotation and classification regardless of enrichment analysis if a user is 306 

only interested in annotating genes.  307 

 308 

CONCLUSION 309 

 310 

Data mining of big datasets (e.g., HTS data) is a very important step, and approaches that can 311 

systematically mine biologically relevant information from big data are highly desirable. GO 312 

term-based enrichment analyses, although very useful to gain insight about the complex 313 

biological information, does not reveal specific gene family level attributes or overrepresented 314 

gene families. GenFam can be used as a complementary or alternative approach to GO-based 315 

enrichment to interpret biologically relevant information in big datasets by classifying and 316 

enriching gene families within a user-defined gene list. This specific information on which gene 317 

families are overrepresented allows users to readily identify favorite genes for downstream 318 

inquiries. Along with enriching gene families, GenFam can be useful to annotate the large list of 319 

genes generated from HTS experiments irrespective of enrichment analysis. In conclusion, we 320 
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suggest that GenFam would be a valuable and powerful tool for plant biologists utilizing 321 

genomics strategies to study plant biology and functional genetics.  322 

 323 

AVAILABILITY AND REQUIREMENTS 324 

 325 

Project name: GenFam 326 

Project home page: http://mandadilab.webfactional.com/home/ 327 

Operating system(s): Platform independent 328 

Programming language: Python 3, Django 1.11.7 329 

License: CC BY-NC-ND 4.0  330 

Any restrictions to use by non-academics:  License needed 331 

 332 

CONFLICT OF INTERESTS 333 

 334 

The authors declare no competing financial interests. 335 

 336 

AUTHOR CONTRIBUTIONS 337 

 338 

RB conceived the project, developed the database/webserver, performed the case studies and 339 

prepared the manuscript. KKM supervised the study, data analysis and interpretation. Both 340 

authors have read, reviewed and approved the manuscript. 341 

 342 

ACKNOWLEDGEMENTS 343 

 344 

We thank Sonia Irigoyen (Texas A&M AgriLife Research) for review and comments during the 345 

preparation of this manuscript. All experiments were conducted following the guidelines and 346 

appropriate permissions of the Institutional Biosafety Committee of Texas A&M University. 347 

This work was supported by funds from Texas A&M AgriLife Research Insect-vectored Disease 348 

Seed Grant to KKM. 349 

 350 

REFERENCES 351 

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., et al. (1997). 352 

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. 353 

Nucleic Acids Research 25(17), 3389-3402. doi: Doi 10.1093/Nar/25.17.3389. 354 

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al. (2000). Gene 355 

ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1), 356 

25-29. doi: 10.1038/75556. 357 

Backes, C., Keller, A., Kuentzer, J., Kneissl, B., Comtesse, N., Elnakady, Y.A., et al. (2007). 358 

GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res 35(Web Server issue), 359 

W186-192. doi: 10.1093/nar/gkm323. 360 

Bedre, R., Irigoyen, S., Schaker, P.D.C., Monteiro-Vitorello, C.B., Da Silva, J.A., and Mandadi, 361 

K.K. (2019). Genome-wide alternative splicing landscapes modulated by biotrophic sugarcane 362 

smut pathogen. Sci Rep 9(1), 8876. doi: 10.1038/s41598-019-45184-1. 363 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/272187doi: bioRxiv preprint 

https://doi.org/10.1101/272187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

9 
 

Bedre, R., Mangu, V.R., Srivastava, S., Sanchez, L.E., and Baisakh, N. (2016). Transcriptome 364 

analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals 365 

candidate genes involved in its adaptation to salinity. BMC Genomics 17(1), 657. doi: 366 

10.1186/s12864-016-3017-3. 367 

Bedre, R., Rajasekaran, K., Mangu, V.R., Timm, L.E.S., Bhatnagar, D., and Baisakh, N. (2015). 368 

Genome-wide transcriptome analysis of cotton (Gossypium hirsutum L.) identifies candidate 369 

gene signatures in response to aflatoxin producing fungus Aspergillus flavus. Plos One 10(9), 370 

e0138025. doi: ARTN e0138025 371 

10.1371/journal.pone.0138025. 372 

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate - a practical and 373 

powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-374 

Methodological 57(1), 289-300. 375 

Berardini, T.Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., Strait, E., et al. (2015). The 376 

Arabidopsis information resource: making and mining the “gold standard” annotated reference 377 

plant genome. genesis 53(8), 474-485. 378 

Bonferroni, C.E. (1936). Teoria statistica delle classi e calcolo delle probabilita. Libreria 379 

internazionale Seeber. 380 

Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., et al. (2013). Enrichr: 381 

interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 382 

128. doi: 10.1186/1471-2105-14-128. 383 

Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., and Robles, M. (2005). 384 

Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics 385 

research. Bioinformatics 21(18), 3674-3676. doi: 10.1093/bioinformatics/bti610. 386 

Cui, J., Xu, P., Meng, J., Li, J., Jiang, N., and Luan, Y. (2018). Transcriptome signatures of 387 

tomato leaf induced by Phytophthora infestans and functional identification of transcription 388 

factor SpWRKY3. Theor Appl Genet 131(4), 787-800. doi: 10.1007/s00122-017-3035-9. 389 

Dametto, A., Sperotto, R.A., Adamski, J.M., Blasi, E.A., Cargnelutti, D., de Oliveira, L.F., et al. 390 

(2015). Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of 391 

contrasting indica genotypes. Plant Sci 238, 1-12. doi: 10.1016/j.plantsci.2015.05.009. 392 

Droettboom, M., Hunter, J., Caswell, T., Firing, E., Nielsen, J., Elson, P., et al. (2016). 393 

"matplotlib: matplotlib v1. 5.1". doi). 394 

Du, Z., Zhou, X., Ling, Y., Zhang, Z.H., and Su, Z. (2010). agriGO: a GO analysis toolkit for the 395 

agricultural community. Nucleic Acids Research 38, W64-W70. doi: 10.1093/nar/gkq310. 396 

El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., et al. (2019). The 397 

Pfam protein families database in 2019. Nucleic Acids Res 47(D1), D427-D432. doi: 398 

10.1093/nar/gky995. 399 

Goffard, N., and Weiller, G. (2007). PathExpress: a web-based tool to identify relevant pathways 400 

in gene expression data. Nucleic Acids Research 35, W176-W181. doi: 10.1093/nar/gkm261. 401 

Guo, Y.L. (2013). Gene family evolution in green plants with emphasis on the origination and 402 

evolution of Arabidopsis thaliana genes. Plant J 73(6), 941-951. doi: 10.1111/tpj.12089. 403 

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal 404 

of statistics 6(2), 65-70. 405 

Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Bioinformatics enrichment tools: 406 

paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1), 407 

1-13. doi: 10.1093/nar/gkn923. 408 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 28, 2019. ; https://doi.org/10.1101/272187doi: bioRxiv preprint 

https://doi.org/10.1101/272187
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

10 
 

Jin, J., Tian, F., Yang, D.C., Meng, Y.Q., Kong, L., Luo, J., et al. (2017). PlantTFDB 4.0: toward 409 

a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 410 

45(D1), D1040-D1045. doi: 10.1093/nar/gkw982. 411 

Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., et 412 

al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation 413 

sequence and optical map data. Rice 6. doi: Artn 4 414 

10.1186/1939-8433-6-4. 415 

Khatri, P., and Draghici, S. (2005). Ontological analysis of gene expression data: current tools, 416 

limitations, and open problems. Bioinformatics 21(18), 3587-3595. doi: 417 

10.1093/bioinformatics/bti565. 418 

Lee, J.S., Katari, G., and Sachidanandam, R. (2005). GObar: a gene ontology based analysis and 419 

visualization tool for gene sets. BMC Bioinformatics 6, 189. doi: 10.1186/1471-2105-6-189. 420 

Li, Y., Dai, C., Hu, C., Liu, Z., and Kang, C. (2017). Global identification of alternative splicing 421 

via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J 90(1), 422 

164-176. doi: 10.1111/tpj.13462. 423 

Maere, S., Heymans, K., and Kuiper, M. (2005). BiNGO: a Cytoscape plugin to assess 424 

overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics 21(16), 425 

3448-3449. doi: Doi 10.1093/Bioinformatics/Bti551. 426 

Mandadi, K.K., and Scholthof, K.-B.G. (2015). Genome-wide analysis of alternative splicing 427 

landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27, 428 

71-85. doi: 10.1105/tpc.114.133991. 429 

Mandadi, K.K., and Scholthof, K.B. (2012). Characterization of a viral synergism in the monocot 430 

Brachypodium distachyon reveals distinctly altered host molecular processes associated with 431 

disease. Plant Physiol 160(3), 1432-1452. doi: 10.1104/pp.112.204362. 432 

McDonald, J.H. (2009). Handbook of biological statistics. Sparky House Publishing Baltimore, 433 

MD. 434 

Perez-Rodriguez, P., Riano-Pachon, D.M., Correa, L.G.G., Rensing, S.A., Kersten, B., and 435 

Mueller-Roeber, B. (2010). PInTFDB: updated content and new features of the plant 436 

transcription factor database. Nucleic Acids Research 38, D822-D827. doi: 10.1093/nar/gkp805. 437 

Wang, H., Yan, H., Liu, H., Liu, R., Chen, J., and Xiang, Y. (2018). GFDP: the gene family 438 

database in poplar. Database (Oxford) 2018. doi: 10.1093/database/bay107. 439 

Yi, X., Du, Z., and Su, Z. (2013). PlantGSEA: a gene set enrichment analysis toolkit for plant 440 

community. Nucleic Acids Res 41(Web Server issue), W98-103. doi: 10.1093/nar/gkt281. 441 

Zeng, W., Sun, Z., Cai, Z., Chen, H., Lai, Z., Yang, S., et al. (2017). Comparative transcriptome 442 

analysis of soybean response to bean pyralid larvae. BMC Genomics 18(1), 871. doi: 443 

10.1186/s12864-017-4256-7. 444 

Zheng, Q., and Wang, X.J. (2008). GOEAST: a web-based software toolkit for Gene Ontology 445 

enrichment analysis. Nucleic Acids Res 36(Web Server issue), W358-363. doi: 446 

10.1093/nar/gkn276. 447 

 448 

FIGURE LEGENDS 449 

 450 

Figure 1. GenFam workflow. The list of input gene IDs for respective plant species provided by 451 

the user are analyzed for enrichment analysis using various statistical tests. The ouput of the 452 

analysis can be viewed and/or downloaded as a table and/or graphical summary. The results page 453 

has multiple options to visualize or download data for both enriched and non-enriched categories 454 
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(all gene families). The detailed output data from case studies are provided in Supplementary 455 

Tables S3, S4, S5 and S6. 456 

 457 

Figure 2. Graphical summary of  GenFam enrichment analysis of a cotton case study. Results 458 

are plotted as bar chart using the -log10(P-Value) scores. Higher the -log10(P-Value) value, 459 

greater the confidence in enrichment of the gene family. 460 

 461 

SUPPLEMENTARY MATERIAL 462 

 463 

Supplementary Table S1: The classification of gene families and assignment of conserved 464 

protein domain to each gene family 465 

Supplementary Table S2: GenFam database statistics for total number of genes classified into 466 

gene families and background number of genes in each plant species 467 

Supplementary Table S3: List of the differentially regulated genes and analysis output of the 468 

cotton case study 469 

Supplementary Table S4: List of the differentially regulated genes and analysis output of the 470 

rice case study 471 

Supplementary Table S5: List of the differentially regulated genes and analysis output of the 472 

tomato case study 473 

Supplementary Table S6: List of the differentially regulated genes and analysis output of the 474 

soybean case study 475 

Supplementary Table S7: PlantGSEA result for gene family enrichment analysis using G. 476 

raimondii dataset used in GenFam case study. 477 
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