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Abstract

Genome Wide Association Studies (GWAS) have successfully identified thousands of loci associated with

human diseases. Bayesian genetic fine-mapping studies aim to identify the specific causal variants within

GWAS loci responsible for each association, reporting credible sets of plausible causal variants, which are

interpreted as containing the causal variant with some “coverage probability”.

Here, we investigate the coverage probabilities of credible sets through simulations and find that these

are systematically biased. We present a method to re-estimate the coverage of credible sets using rapid

simulations based on the observed, or estimated, SNP correlation structure, we call this the “corrected

coverage estimate”. This is extended to find “corrected credible sets”, which are the smallest set of variants

such that their corrected coverage estimate meets the target coverage.

We use our method to improve the resolution of a fine-mapping study of type 1 diabetes. We found that

in 27 out of 39 associated genomic regions our method could reduce the number of potentially causal variants

to consider for follow-up, and found that none of the 95% or 99% credible sets required the inclusion of more

variants – a pattern matched in simulations of well powered GWAS.

Crucially, our correction method requires only GWAS summary statistics and remains accurate when

SNP correlations are estimated from a large reference panel. Using our method to improve the resolution of

fine-mapping studies will enable more efficient expenditure of resources in the follow-up process of annotating

the variants in the credible set to determine the implicated genes and pathways in human diseases.
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Author summary

Pinpointing specific genetic variants within the genome that are causal for human diseases is difficult due

to complex correlation patterns existing between variants. Consequently, researchers typically prioritise a

set of plausible causal variants for functional validation - these sets of putative causal variants are called

“credible sets”. We find that the probabilistic interpretation that these credible sets do indeed contain the

true causal variant are systematically biased, in that the reported probabilities consistently underestimate the

true coverage of the causal variant in the credible set. We have developed a method to provide researchers

with a “corrected coverage estimate” that the true causal variant appears in the credible set, and this has

been extended to find “corrected credible sets”, allowing for more efficient allocation of resources in the

expensive follow-up laboratory experiments. We used our method to reduce the number of genetic variants to

consider as causal candidates for follow-up in 27 genomic regions that are associated with type 1 diabetes.

Introduction 1

Genome-Wide Association Studies (GWAS) have identified thousands of disease-associated regions in the 2

human genome, but the resolution of these regions is limited due to linkage disequilibrium (LD) between 3

variants [1]. Consequently, GWAS identifies multiple statistical, but often non-causal, associations at common 4

genetic variants (typically SNPs) that are in LD with the true causal variants. Follow-up studies are therefore 5

required for the prioritisation of the causal variants within these regions, which is an inherently difficult 6

problem due to convoluted LD patterns between hundreds or thousands of SNPs. Consequently, fine-mapping 7

studies prioritise a set of variants most likely to be causal in each risk loci. Laboratory functional studies or 8

large-scale replication studies may be used to identify the true causal variants within these sets, which can 9

then be linked to their target genes to better understand the genetic basis of many human diseases [2, 3]. 10

Early statistical approaches for fine-mapping tended to focus on the SNP in the region with the smallest P 11

value, called the lead-SNP. However, it is generally acknowledged that this SNP may not be the causal variant 12

in a given region due to correlations with the true causal variants [1, 4]. Studies may therefore prioritise the 13

lead-SNP before extending the analysis to include either variants in high LD with this SNP or the top k 14

variants with the highest evidence of association [5]. 15

Fine-mapping is analogous to a variable selection problem with many highly correlated variables (the 16

SNPs) [8]. As such, methods such as penalised regression have also been adopted for fine-mapping, with 17

the aim of choosing the variables representing the variants most likely to be causal for inclusion in the final 18

model [9]. Yet these methods ultimately select one final model and lack probabilistic quantification for this 19
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selected model. 20

Bayesian approaches for fine-mapping [10–14] use posterior probabilities of causality (PPs) to quantify 21

the evidence that a variant is causal for a given disease, and these can be meaningfully compared both within 22

and across studies. The standard Bayesian approach for fine-mapping was developed by Maller et al. (2012) 23

and assumes a single causal variant per genetic region to prioritise an “(α× 100)% credible set” of putative 24

causal variants. This is derived by ranking variants based on their PPs and summing these until a threshold, 25

α is exceeded - with the variants required to exceed this threshold comprising the credible set. 26

These credible sets are interpreted as having good frequentist coverage of the causal variant [10,15,16], 27

although there is no mathematical basis for this [8]. For example, researchers often state that an (α× 100)% 28

credible set contains the causal variant with (α× 100)% probability [17–21] or with probability ≥ (α× 100)% 29

[8, 22,23]. More specifically, they may be interpreted as containing the causal variant with probability equal 30

to the sum of the PPs of the variants in the credible set [24], for which the threshold forms a lower bound. A 31

simulation study found that the coverage of the causal variant in 95% and 99% credible sets varied with the 32

power to detect the signal (S1 Fig in [1]), implying that inferring the frequentist coverage estimate of these 33

Bayesian credible sets may not be as straightforward as the literature suggests. 34

In this work, we investigate the accuracy of standard coverage estimates reported in the literature and 35

find that these are systematically biased. We develop a new method to re-estimate the frequentist coverage 36

of these credible sets, deriving a “corrected coverage estimate” and extending this to construct a “corrected 37

credible set”. We validate our method through simulations and demonstrate it’s improved performance 38

relative to standard coverage estimates reported in the literature. 39

Our method is available as a CRAN R package, corrcoverage (https://github.com/annahutch/corrcoverage, 40

https://cran.r-project.org/web/packages/corrcoverage/index.html), which was used to decrease the size of 41

95% credible sets for 27 out of 39 genomic regions that are associated with type 1 diabetes. Crucially, our 42

method requires only summary-level data and remains accurate when SNP correlations are estimated from a 43

reference panel (such as the UK10K project [25]). 44

Results 45

Claimed coverage estimates for credible sets of genetic variants are biased 46

The standard results from single causal variant fine-mapping are credible sets of putative causal variants 47

that are interpreted as containing the true causal variant with some specified probability [10]. To investigate 48

the true coverage of the causal variant in these Bayesian credible sets, we simulated a variety of single 49

September 24, 2019 3/23

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2019. ; https://doi.org/10.1101/781062doi: bioRxiv preprint 

https://doi.org/10.1101/781062
http://creativecommons.org/licenses/by/4.0/


causal variant association studies using 1006 European haplotypes or 1322 African haplotypes from the 1000 50

Genomes Phase 3 data set [26]. Sets of SNPs were sampled from genomic regions with various LD patterns 51

and here we present results from two regions; one of low LD (Fig 1D) and one of high LD (Fig 1H), although 52

the results are similar for other LD patterns. 53

In each region, causality was randomly allocated to one of the variants (with minor allele frequency (MAF) 54

> 0.05) with an additive phenotypic effect (OR; 1.05, 1.1 or 1.2). Sample sizes (NN; number of cases = 55

number of controls = 5000, 10000 or 50000) were also varied across simulations. We calculated the frequentist 56

empirical estimate of the true coverage for each simulated credible set as the proportion of 5000 replicate 57

credible sets that contained the simulated causal variant. 58

We found that the threshold coverage estimate consistently under-estimated the true coverage (Fig 1A,E), 59

implying that this value could be used as a lower bound for the coverage of the credible set [8, 22, 23]. As the 60

minimum P value across all the SNPs in the region (Pmin) decreases, the power of the study increases and 61

the ability to detect the true causal variant (and therefore include it in the credible set) increases, while the 62

threshold coverage estimate remains fixed. 63

We define the “claimed coverage” of credible sets as the sum of the PPs of the variants in the set [24]. In 64

very high powered studies (Pmin < 10−12), the claimed coverage estimates were unbiased but with relatively 65

large variability between estimates, especially in high LD regions. However, we found that these claimed 66

coverage estimates are also systematically biased in representatively powered simulations where fine-mapping 67

is usually performed, Pmin > 10−12 (Fig 1B,F). 68

Thus, the probabilities that the causal variant is contained within the credible set that are reported in the 69

literature are typically too low, and researchers can afford to be “more confident” that they have captured 70

the true causal variant in their credible set. 71

Our results imply that the accuracy of the coverage estimates depend on the background LD for the 72

genomic region. We repeated the analysis, varying LD patterns over a much larger population (7562 European 73

UK10K haplotypes) and averaging the results over a range of LD patterns (see Methods). We found that the 74

results were similar to those of the high LD region in Fig 1 (S1 Fig). 75

We next investigated potential causes of this systematic bias. We found that the PPs themselves are 76

empirically well calibrated (S2 Fig), implying that it is the procedure of forming the credible sets that is 77

causing the bias. Sorting the variants into descending order of PPs prior to the assembly of the credible set 78

ensures that the sets contain as few variants as possible. However, it also confers additional information 79

which is not utilised in the procedure, specifically the ranking of each SNP’s PP relative to all the other PPs 80

for the SNPs in the region. We found that removing this ordering step from the algorithm, such that the 81

variants were added to the set in a random order had only a minor effect on the bias (S3 Fig), implying that 82
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the step of summing PPs until a target threshold is reached has an effect itself. 83

The standard Bayesian fine-mapping approach does not incorporate the null model of no genetic effect 84

into the method. In low power, there may not be enough evidence to deduce that there actually is a causal 85

variant in the region, such that if the null model was included in the analysis, then it may hold a substantial 86

proportion of the posterior probability (S4 Fig). This means that omitting the null model from the calculations 87

may contribute to the systematic bias we see in coverage estimates in low powered scenarios. 88

Corrected coverage estimate improves empirical calibration of credible sets 89

We developed a new estimator for the true coverage of the causal variant in credible sets, the “corrected 90

coverage estimate”, which is based on learning the bias in the system by repeatedly simulating summary 91

GWAS data from the same MAF and LD structure as the observed data. We derive an estimate of effect size 92

at the causal variant from the distribution of Z scores (S5 Fig) and use the observed PPs as weights to tailor 93

the correction as closely as possible to the observed data (see Methods for detailed derivation). 94

For each of the simulated credible sets, we found that the corrected coverage estimates were better 95

empirically calibrated than the claimed coverage estimates in simulations that are representative of those 96

considered for fine-mapping (Pmin < 0.01) (Fig 1C,G). Particularly, the median accuracy of the corrected 97

coverage estimates improve for 10−12 < Pmin < 10−2, and their variability also decreases where the claimed 98

coverage estimates are unbiased but with large variability (Pmin < 10−12). 99

Corrected coverage robust to departures from single causal variant assumption 100

The Bayesian approach for fine-mapping described by Maller et al. assumes a single causal variant per 101

genomic region, which may be unrealistic [28]. Using simulated data with 2 causal variants, and defining 102

coverage as the frequency with which a credible set contained at least 1 causal variant, we found that the 103

corrected coverage estimates tend to be more accurate than the claimed coverage estimates for causal variants 104

in low LD (r2 < 0.01, Fig 2A). When the 2 causal variants are in high LD (r2 > 0.7), the corrected coverage 105

estimates are still generally more accurate than the claimed coverage estimates, although both tend to 106

underestimate the true coverage (and are thus conservative) (Fig 2B). These results imply that even when 107

the key assumption underlying Bayesian fine-mapping is violated, the corrected coverage estimates are often 108

still better empirically calibrated than the claimed coverage estimates. 109
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Fig 2. Percentage relative error of coverage estimates for 90% credible sets in regions with 2
causal variants. Percentage relative error is calculated as
[(estimated coverage− empirical coverage)/empirical coverage]× 100 where empirical coverage is the
proportion of the 5000 simulated 90% credible sets that contain at least one of the 2 causal variants and
estimated coverage is the claimed or corrected coverage estimate as defined in the text. The median
percentage relative error and interquartile range of claimed and corrected coverage estimates of 90% credible
sets from 5000 simulated regions with 2 causal variants that are (A) in low LD (r2 < 0.01) (B) in high LD
(r2 > 0.7). Faceted by odds ratio values at the causal variants.

Corrected coverage robust to reference panel estimated MAF and LD 110

Our method relies on MAF and SNP correlation data to simulate GWAS summary statistics representative of 111

the GWAS data. So far we have assumed that this information is available from the GWAS samples, but this 112

is not generally the case. We therefore evaluated the performance of our correction when using independent 113
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reference data to estimate MAFs and SNP correlations. We applied our correction to sets simulated from the 114

1000 Genomes data using either 1000 Genomes or UK10K MAF and SNP correlation estimates. We found 115

that the corrected coverage estimates remained accurate (Fig 3). 116
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Fig 3. Percentage relative error of coverage estimates for 90% credible sets when using a
reference panel to approximate MAFs and SNP correlations. Percentage relative error is
calculated as [(estimated coverage− empirical coverage)/empirical coverage]× 100. Coverage estimates
from 5000 simulated 90% credible sets. (A) Claimed coverage estimate (the sum of the posterior probabilities
of causality for the variants in the credible set) (B) Corrected coverage estimate (C) Corrected coverage
estimate using UK10K data to approximate MAFs and SNP correlations (D) Graphical display of SNP
correlations in 1000 Genomes (E) Graphical display of the estimated SNP correlations in UK10K.

Corrected credible sets 117

Obtaining an accurate coverage estimate that the causal variant appears in the credible set is useful in its 118

own right, but it is also beneficial to obtain a “corrected credible set” - that is, the smallest set of variants 119

required such that the corrected coverage estimate of the resultant credible set achieves some desired coverage. 120

For example, discovering that a 90% credible set actually has 99% coverage of the causal variant is useful, 121

but an obvious follow-up question is “What variants do I need such that the coverage is actually 90%?”. 122

We explored this using an example simulated GWAS across 200 SNPs. The 90% credible set, constructed 123

using the standard Bayesian approach, contained 8 variants and had a claimed coverage value of 0.903. The 124

corrected coverage estimate of this credible set was 0.969, which is close to the empirical coverage of the 125

credible set, which was 0.972. 126

We used the root bisection method [29] to iteratively search for the threshold value required that yields a 127
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credible set with accurate coverage of the causal variant. We found a corrected 90% credible set could be 128

constructed using a threshold value of 0.781. This corrected credible set had a coverage estimate of 0.905 129

(empirical estimated coverage of 0.907) and reduced in size from 8 to 4 variants (Fig 4). 130
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Fig 4. A simple example to illustrate the results of our correction method. (A) The absolute Z
scores of the SNPs. (B) The PPs of the SNPs. Red SNPs are those in the corrected 90% credible set and
blue SNPs are those that only appear in the standard 90% credible set. The credible set formed of the red
SNPs has a corrected coverage estimate of 0.905 and the credible set formed of both the blue and red SNPs
has a corrected coverage estimate of 0.969.

Simulations confirmed that the empirical coverage probabilities of corrected credible sets created in this 131

way are accurate (S7 Fig), such that on average the empirical estimate of the true coverage of a corrected 132
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90% credible set is indeed 90%. 133

corrcoverage R package 134

We created a CRAN R package, corrcoverage (https://annahutch.github.io/corrcoverage/, https://cran.r- 135

project.org/web/packages/corrcoverage/index.html), that uses marginal summary statistics to derive corrected 136

coverage estimates and corrected credible sets. The functions to calculate corrected coverage estimates are 137

computationally efficient, taking approximately 1 minute for a 1000 SNP region (using one core of an Intel 138

Xeon E5-2670 processor running at 2.6GHz, S6 Fig). 139

The functions to derive corrected credible sets require only the summary statistics needed to derive 140

the corrected coverage estimate (Z scores, MAFs, sample sizes and SNP correlation matrix) plus some 141

user-specified desired coverage. Users are able to customise the optional arguments to suit both their accuracy 142

requirements and computational constraints. The algorithm then works iteratively such that the threshold 143

and the corrected coverage estimate of each tested credible set is displayed, until the smallest set of variants 144

with the desired coverage is established, offering researchers an easy tool to improve the resolution of their 145

credible set. 146

Impact of correcting credible sets in a GWAS 147

We applied our corrected coverage method to association data from a large type 1 diabetes (T1D) genetic 148

association study consisting of 6,670 cases and 12,262 controls [30]. In the original study, 99% credible sets 149

are found for 40 genomic regions. Here we focus on 95% credible sets as these best illustrate the utility of our 150

method due to the greater margin for error, and we exclude the INS region with lead SNP rs689 which failed 151

QC in the ImmunoChip (and for which additional genotyping data was used in the original study). 152

The results match our previous findings - that the claimed coverage estimates are often too low (Fig 5). 153

We found that the size of the 95% credible set could be reduced in 27 out of the 39 regions, without the use 154

of any additional data (S1 Table S2 Table). Similarly, we found that the size of the 99% credible set could be 155

reduced in 26 out of the 39 regions (S8 Fig, S2 File, S3 Table, S4 Table). 156
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Fig 5. Summary of corrected coverage estimates and corrected credible sets in T1D data set.
Top panel: The decrease in size of the credible set after correction. Bottom panel: The corrected coverage
estimates of 95% Bayesian credible sets for T1D-associated genomic regions. Black points represents regions
where the credible set changed after the correction and the “-” values for the circled points represent the
decrease in the number of variants from the standard to the corrected 95% credible set. Blue points represent
regions where the credible set did not change after the correction and grey points represent regions where the
credible set did not need to be corrected since the threshold was contained in the 95% confidence interval of
the coverage estimate, or because the credible set already contained only a single variant.

Fine mapping to single base resolution has been used as a measure of GWAS resolution [23]. Two of the 157

original 95% credible sets only contained a single variant: rs34536443 (missense in TYK2 ) and rs72928038 158

(intronic in BACH2 ). After applying our correction, two additional 95% credible sets were narrowed down 159

from two variants to a single variant. First, rs2476601 (missense variant R620W in PTPN22 ) was selected, 160

dropping rs6679677 which is in high LD with rs2476601 (r2 = 0.996). These SNPs have high PPs (0.856185774 161

and 0.143814226, respectively) and the corrected credible set containing only rs2476601 has a corrected 162
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coverage estimate of 0.9501 with 95% confidence interval of (0.9392, 0.9613). 163

Second, rs9585056 was selected, dropping rs9517719 (r2 = 0.483). rs9517719 is intergenic, while rs9585056 164

is in the 3’ UTR of the lncRNA AL136961.1, but has been shown to regulate expression of GPR183 which in 165

turn regulates an IRF7-driven inflammatory network [31]. While it is likely that R620W is indeed the causal 166

variant at PTPN22, there is no conclusive data to evaluate whether rs9585056 is more likely to be causal 167

compared to rs9517719. Nonetheless, the enrichment for missense variants (from 1/2 to 2/4 single variant 168

corrected credible sets) is encouraging. In total, the number of putative causal variants for T1D in credible 169

sets reduced from 658 to 582 upon correction. 170

Discussion 171

Bayesian methods for fine-mapping genetic variants in genomic risk loci typically prioritise a credible set 172

of putative causal variants. In this work, we have shown that the inferred probabilities that these credible 173

sets do indeed contain the causal variant are systematically biased. Specifically, whilst credible sets do have 174

good frequentist coverage in very high powered scenarios, this is not the case in the more modestly powered 175

scenarios where fine-mapping is usually performed. 176

We could not pinpoint the exact source of the bias. We found that the posterior probabilities of causality 177

themselves are well empirically calibrated, which implies that it is the procedure of forming the credible sets 178

that is responsible for the bias. Investigating the cause of this bias and whether this problem arises in other 179

variable selection problems is an interesting direction for future research. 180

Our method is limited in that it does not model multiple causal variants. Fine-mapping approaches that 181

jointly model SNPs have been developed, such as GUESSFM [4] which uses genotype data and FINEMAP [11] 182

and JAM [14] which attempt to reconstruct multivariate SNP associations from univariate GWAS summary 183

statistics, differing both in the form they use for the likelihood and the method used to stochastically search 184

the model space. The output from these methods are posterior probabilities for various configurations of 185

causal variants, and therefore the grouping of SNPs to distinct association signals must be performed post-hoc 186

to obtain similar inferences to that of single causal variant fine-mapping (e.g. to obtain credible sets). 187

The sum of single effects (SuSiE) method [8] removes the single causal variant assumption and groups 188

SNPs to distinct association signals in the analysis, such that it aims to find as many credible sets of variants 189

that are required so that each set captures an effect variant, whilst also containing as few variants as possible 190

(similar to “signal clusters” in Lee et al.’s DAP-G method [32]). This sophisticated approach has great 191

potential but the simulated 95% credible sets formed using both the SuSiE and DAP-G methods “typically 192

had coverage slightly below 0.95, but usually > 0.9” (Fig 3 and Fig S3 in [8]). Our method could potentially 193
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be extended to improve on the coverage of credible sets obtained using SuSiE and DAP-G fine-mapping 194

methods. 195

Our method does not address all the limitations of single causal variant fine-mapping, but it improves on 196

the common inferences that are reported in the literature by researchers. We recommend that our correction 197

is used as an extra step in the single causal variant fine-mapping pipeline, to obtain a corrected coverage 198

estimate that the causal variant is contained within the credible set and if required, to derive a corrected 199

credible set. 200

Methods 201

Design of simulation pipeline 202

We simulated a variety of genetic association studies using African and European haplotypes present in the 203

1000 Genomes Phase 3 data set [26]. Regions were selected that contained approximately 700 SNPs in low 204

LD (Chr10:6030194-6219451) or high LD (Chr10:60969-431161). Causality was randomly allocated to one of 205

these variants (with MAF > 0.05) with an additive phenotypic effect (OR; 1.05, 1.1 or 1.2). 206

The values for the OR and MAF of the causal variant (CV) were selected such that the simulations reflect 207

the common disease-common variant (CDCV) hypothesis, which asserts that common diseases are caused 208

by common variants with small to modest effects [33,34]. Sample sizes (NN; number of cases = number of 209

controls = 5000, 10000 or 50000) were also varied across simulations. 210

The haplotype frequencies and sampled parameter values were then used in the simGWAS R package [27] 211

to: (i) simulate the results of a case-control GWAS (the study to “correct”) (ii) simulate results from 5000 212

case-control GWASs (to evaluate the accuracy of our method). These simulated GWAS results are marginal Z 213

scores, which were then converted to PPs using the corrcoverage::ppfunc or corrcoverage::ppfunc.mat 214

functions. 215

The variants are then sorted into descending order of their PPs and these are summed until the credible 216

set threshold (0.9) is exceeded. The variants required to exceed this threshold comprise the 90% credible set. 217

The frequentist empirical estimate of the true coverage is calculated as the proportion of the 5000 simulated 218

credible sets that contain the CV. The claimed coverage is defined as the size of credible set that we wish to 219

correct – that is, the sum of the PPs of the variants in the credible set [24], which must be greater than or 220

equal to the threshold by virtue of the method. The corrected coverage estimate is also calculated for each 221

credible set using the corrcoverage::corrcov function. The simulation procedure is repeated many times 222

to obtain a final simulation data set, consisting of the sampled parameter values and the empirical, claimed 223
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and corrected coverage estimates of the simulated credible sets. 224

For the evaluation of averaging results over a range of LD patterns, we used haplotypes from the UK10K 225

data. In each simulation, genomic regions were randomly selected (bounded by recombination hotspots 226

defined using the LD detect method [35]) on chromosome 22 and two non-overlapping sets of 100 adjacent 227

variants were selected, so that the simulated region consisted of 200 correlated and non-correlated variants. 228

The simulation pipeline described above was then followed to obtain a final simulation data set for various 229

LD patterns. 230

For investigating the effect of the ordering step in the credible set algorithm, we re-ran the simulations 231

whereby the variants were not sorted into descending order of PP prior to assembly of the credible set. This 232

means that they were included into the credible set in a random order until the threshold was exceeded. 233

For investigating the effect of violating the single causal variant assumption, 2 CVs were simulated in 234

each genomic region, which were in high LD (r2 > 0.7) or low LD (r2 < 0.01), and coverage was defined as 235

the frequency with which a credible set contained at least one of the CVs. The odds ratio quantities of the 236

simulated CVs were sampled independently and sample sizes were varied so that the power of the simulated 237

systems varied (S10 Fig). 238

Corrected coverage estimate 239

Associations between a SNP and a trait are usually tested for using single-SNP models, such that marginal Z 240

scores are derived. In contrast, if the SNPs in the region are jointly modelled, then joint Z scores can be 241

derived. Under the assumption of a single CV per region, the expected joint Z scores can be derived and 242

used to write down the joint Z score vector, 243

ZJ = (0, . . . , 0, µ, 0, . . . , 0)T , (1)

where ZJ has length equal to the number of SNPs in the region, and all elements equal to 0 except at the 244

causal SNP’s position which takes the value µ. 245

The value of µ is unknown in genetic association studies and it must therefore be estimated in our method 246

to derive the ZJ vector. We consider using the absolute Z score at the lead-SNP as an estimate for µ, but 247

find this to be too high in low powered scenarios (S5 Fig). This is because E(|Z|) > 0 even when E(Z) = 0, 248

and thus E(|Z|) > E(Z) when E(Z) is close to zero. Instead, we consider a weighted average of the absolute 249
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Z scores, so that for a region comprising of k SNPs, 250

µ̂ =
k∑

i=1

|Zi| × PPi. (2)

and find this estimate to have small relative error, even at small µ (S5 Fig). 251

The joint Z vector can now be estimated by 252

ẐJ = (0, . . . , 0, µ̂, 0, . . . , 0)T , (3)

and the expected marginal Z scores can be written as 253

E(Z) = Σ× ẐJ , (4)

where Σ is the SNP correlation matrix [36]. 254

The asymptotic distribution of these test statistics is multi-variate normal (MVN) with variance equal to 255

the SNP correlation matrix [36], 256

Z ∼MVN(E(Z),Σ). (5)

We simulate multiple replicates of marginal Z scores, convert these into PPs and derive credible sets. 257

Thus, the proportion of these credible sets that contain the assumed CV can be empirically calculated. For 258

each SNP i considered as the CV, the joint Z vector is constructed as 259

ẐJ [j] =

 0 j 6= i

µ̂ j = i
(6)

and we simulate N = 1000 marginal Z score vectors, 260

Z∗N=1000 = {Z∗1 , . . . , Z∗1000}
iid∼ MVN(Σ× ẐJ ,Σ). (7)

Each simulated Z∗ vector is then converted to PPs and credible sets are formed using the standard 261

Bayesian method (sort and sum). The proportion of the N = 1000 simulated credible sets that contain SNP 262

i, propi, is calculated. 263

This procedure is implemented for each SNP in the genomic region with PP > 0.001 (this value can be 264

altered using the ‘pp0min’ parameter in the software) considered as causal. The final corrected coverage 265

estimate is then calculated by weighting each of these proportions by the PP of the SNP considered causal, 266
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so that for a region containing p SNPs with PP > 0.001, 267

Corrected Coverage Estimate =

p∑
i=1

PPi × propi. (8)

Intuitively, proportions obtained from realistic scenarios (SNPs with high posterior probabilities of causality 268

considered as causal) are up-weighted and proportions obtained from more unrealistic scenarios (SNPs with 269

low posterior probabilities of causality considered as causal) are down-weighted. 270

A value of N = 1000, so that 1000 credible sets are simulated for each SNP that is considered causal was 271

found to be a robust choice, but is included as an optional parameter in the software. This allows users to 272

increase or decrease the value as desired, for example in the interest of computational time for small or large 273

numbers of SNPs in a genomic region, respectively. 274

Using a reference panel 275

We evaluated the performance of corrected coverage estimates when using a reference population to approxi- 276

mate MAFs and SNP correlations, that is, to derive the ‘f ’ and ‘Σ’ parameters in the relevant functions in 277

the corrcoverage R package. In this analysis, we selected an LD block (chr10:6030194-6219451) and chose 278

only the SNPs in this region that could be matched by their position between the 1000 Genomes data and 279

the UK10K data (578 SNPs) for our simulations. European haplotype data for these SNPs was collected 280

from both the 1000 Genomes data (consisting of 503 individuals) and the UK10K data (consisting of 3781 281

individuals). 282

As in our standard simulation pipeline, causality was randomly allocated to one of these variants (with 283

MAF > 0.05) with an additive phenotypic effect (OR; 1.05, 1.1 or 1.2). Sample sizes (NN; number of cases 284

= number of controls = 5000, 10000 or 50000) were also varied across simulations. These sampled parameter 285

values were then used with MAFs and haplotype data from the 1000 Genomes data to simulate marginal Z 286

scores from various genetic association studies. The standard claimed and corrected coverage estimates (Fig 287

3A,B respectively) were then derived as usual and the corrected coverage estimates were also calculated when 288

using the reference data to estimate MAFs and SNP correlations (Fig 3C). 289

For comparison, we also investigated the effect of using a reference panel for the correction in the high 290

LD region previously discussed (we omitted the low LD region as this used African haplotypes, for which we 291

do not have a large representative reference panel). The results were similar, indicating that there is minimal 292

loss of accuracy in corrected coverage estimates when approximating SNP correlations using a reference panel 293

(S9 Fig). 294
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T1D data set 295

For the T1D data analysis, we used the index SNPs for the genomic regions reported in the original study [30]. 296

For each of these index SNPs, we found the relevant 1000 Genomes build 37 genomic region and used 297

ImmunoChip data to find the other SNPs in each of these regions. We then used the corrcoverage R 298

package with default parameters to find 95% (and 99%) credible sets of variants, along with the claimed 299

and corrected coverage estimates for each of these. 95% confidence intervals for the corrected coverage 300

estimates were derived by calculating 100 corrected coverage estimates and taking the 2.5th and 97.5th 301

percentile of these. If 0.95 (or 0.99 for 99% credible sets) did not fall within this confidence interval, then 302

the corrcoverage::corrected cs function with the following optional parameter values: ‘acc = 0.0001, 303

max.iter = 70’ was used to find a corrected credible set; that is, the smallest set of variants required such 304

that the corrected coverage of the resultant credible set is close to the threshold value (within 0.0001 or as 305

close as possible within 70 iterations). 306

Supporting information 307

S1 Fig. Percentage relative error of coverage estimates for 90% credible sets using UK10K 308

data. Percentage relative error is calculated as [(estimated coverage− empirical coverage)/empirical coverage]×309

100. Boxplots showing percentage relative error of coverage estimates where (A) coverage estimate equals 310

threshold (α = 0.9) (B) coverage estimate equals claimed coverage (sum of the posterior probabilities of the 311

variants in the set) (C) coverage estimate is corrected coverage. Results from 5000 simulations have been 312

averaged over many genomic regions that vary in LD patterns. 313

S2 Fig. Empirical calibration of PPs. Estimated probability of causality against claimed posterior 314

probability where claimed posterior probabilities are calculated using the ABF approach. Points are the 315

prediction from a logit(y) ∼ logit(x) model fitted to 10000 simulations where y is a binary indicator of SNP 316

causality and x is the claimed posterior probability. Grey ribbon shows the 95% confidence interval. 317

S3 Fig. Analysis of removing the ordering step in the credible set algorithm. The variants 318

were not sorted into descending order of PP prior to assembly of the credible set, and were therefore 319

included into the set in a random order (“unordered”). (A) Percentage relative error of coverage es- 320

timates (threshold and claimed) of 90% credible sets formed from unordered variants, calculated as 321

[(estimated coverage− empirical coverage)/empirical coverage]× 100 for low and high LD regions. (B) The 322

number of variants in the credible sets formed using unordered variants against using ordered variants. (C) 323
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Empirical estimate of the true coverage of credible sets formed using ordered and unordered variants. 324

S4 Fig. Evaluation of including the null model of no genetic effect. (A) Posterior probability of 325

the null model (calculated using 1e-04 as the prior for causality at each variant) for 5000 simulated GWAS. 326

(B) Schematic of how the exclusion of the null model may affect the variant posterior probabilities in low 327

power scenarios. While all variants and the null model are required to reach the target threshold of 0.9, 328

ignoring the null model and rescaling, so that the PPs over the variants sum to 1, implies that some variants 329

will be inappropriately dropped, causing the empirical coverage to be lower than the target. 330

S5 Fig. Estimating µ. Relative error of µ estimates calculated as µ̂X − µ. The x axis is the joint Z 331

score at the CV. Line is fitted using a GAM as the smoothing function (geom smooth() in ggplot2). (A) 332

µ̂ = max
i∈{1,...,k}

(|Zi|) (B) µ̂ =
∑k

i=1 |Zi| × PPi. 333

S6 Fig. R package timings. Curve showing the timings of the corrcoverage::corrcov function for dif- 334

ferent sized genomic regions. For each size of genomic region analysed, 50 replicates of the corrcoverage::corrcov335

function were ran and the mean time taken is plotted. Curve drawn using geom smooth() function in ggplot2. 336

Simulations ran using one core of an Intel Xeon Gold 6142 processor running at 2.6GHz. 337

S7 Fig. Empirical estimate of the true coverage of corrected 90% credible sets. 5000 simulated 338

90% credible sets were “corrected” using the corrcoverage::corrected cs function (with default parameters 339

and ‘desired.cov=0.9’), and the “required threshold” value obtained from each simulation was used to form 340

5000 replicate credible sets to estimate the empirical coverage of these corrected 90% credible sets. 341

S8 Fig. Summary of corrected coverage estimates and corrected 99% credible sets in T1D 342

data set. Top panel: The decrease in size of the credible set after correction. Bottom panel: The corrected 343

coverage estimates of 99% Bayesian credible sets for T1D-associated genomic regions. Black points represents 344

regions where the credible set changed after the correction and the “-” values for the circled points represent 345

the decrease in the number of variants from the standard to the corrected 99% credible set. Blue points 346

represent regions where the credible set did not change after the correction and grey points represent regions 347

where the credible set did not need to be corrected since the threshold was contained in the 99% confidence 348

interval of the coverage estimate, or because the credible set already contained only a single variant. 349

S9 Fig. Percentage relative error of coverage estimates for 90% credible sets using a reference 350

panel to approximate MAFs and SNP correlations in a high LD region. Percentage relative error 351
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is calculated as [(estimated coverage− empirical coverage)/empirical coverage] × 100. Coverage estimates 352

from 5000 simulations. (A) Claimed coverage estimate (the sum of the posterior probabilities of causality 353

for the variants in the credible set) (B) Corrected coverage estimate (C) Corrected coverage estimate using 354

UK10K data to approximate MAFs and SNP correlations (D) Graphical display of SNP correlations in 1000 355

Genomes data (E) Graphical display of the estimated SNP correlations in UK10K data. 356

S10 Fig. Distribution of the minimum P value for 2 CV simulations (Fig 2). 2 CVs are (A) in 357

low LD (r2 < 0.01) (B) in high LD (r2 > 0.7). Faceted by odds ratio values at the causal variants. 358

S1 File. Individual plots for 95% credible set T1D analysis. Zip file containing Z-score plots, PP 359

plots and Manhattan plots for the 39 T1D association regions analysed. 360

S2 File. Individual plots for 99% credible set T1D analysis. Zip file containing Z-score plots, PP 361

plots and Manhattan plots for the 39 T1D association regions analysed. 362

S1 Table. T1D corrected 95% credible set results. 363

S2 Table. List of 95% credible sets before and after correction. 364

S3 Table. T1D corrected 99% credible set results. 365

S4 Table. List of 99% credible sets before and after correction. 366
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