
i
i

i
i

i
i

i
i

A
rticle

GeneRax: A tool for species tree-aware maximum
likelihood based gene tree inference under gene
duplication, transfer, and loss.
Benoit Morel,1 Alexey M. Kozlov,1 Alexandros Stamatakis,1,2 and Gergely J. Szöllősi3,4,5
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Abstract

Inferring gene trees is difficult because alignments are often too short, and thus contain insufficient

signal, while substitution models inevitably fail to capture the complexity of the evolutionary processes.

To overcome these challenges species tree-aware methods seek to use information from a putative species

tree. However, there are few methods available that implement a full likelihood framework or account for

horizontal gene transfers. Furthermore, these methods often require expensive data pre-processing (e.g.,

computing bootstrap trees), and rely on approximations and heuristics that limit the exploration of tree

space. Here we present GeneRax, the first maximum likelihood species tree-aware gene tree inference

software. It simultaneously accounts for substitutions at the sequence level and gene level events, such as

duplication, transfer and loss and uses established maximum likelihood optimization algorithms. GeneRax

can infer rooted gene trees for an arbitrary number of gene families, directly from the per-gene sequence

alignments and a rooted, but undated, species tree. We show that compared to competing tools, on

simulated data GeneRax infers trees that are the closest to the true tree in 90% of the simulations in

terms relative Robinson-Foulds distance. While, on empirical datasets, GeneRax is the fastest among all

tested methods when starting from aligned sequences, and that it infers trees with the highest likelihood

score, based on our model. GeneRax completed tree inferences and reconciliations for 1099 Cyanobacteria

families in eight minutes on 512 CPU cores. Thus, its advanced parallelization scheme enables large-scale

analyses. GeneRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax.

Key words: gene tree, reconciliation, maximum likelihood, gene duplication, horizontal gene transfer,
species tree-aware

white space

c© Anonymous

Anonymous. Anonymous

.CC-BY-ND 4.0 International licensereview) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peerthis version posted September 26, 2019. ; https://doi.org/10.1101/779066doi: bioRxiv preprint 

https://github.com/BenoitMorel/GeneRax
https://doi.org/10.1101/779066
http://creativecommons.org/licenses/by-nd/4.0/


i
i

i
i

i
i

i
i

Introduction

Reconstructing the evolutionary history of

homologous genes is a fundamental problem in

phylogenetics, as gene trees play a prominent

role in numerous biological studies. For instance,

gene trees are essential to understand genome

dynamics (Touchon et al., 2009), to study specific

traits (Musilova et al., 2019), or to infer the

species tree (Boussau et al., 2012; Mirarab et al.,

2014).

Most common methods infer phylogenetic trees

from multiple sequence alignments (MSAs), for

instance using the maximum likelihood (ML)

criterion (Kozlov et al., 2019; Nguyen et al.,

2015). Under the correct substitution model, ML

methods are statistically consistent (Yang, 1994),

that is, they converge to the true tree when

the sequences are long enough. However, this

condition is often violated for gene trees: typical

per-gene MSAs are short (50 to 1000 sites) and can

comprise a large number of sequences representing

a large number of taxa (hundreds or thousands for

large gene families). As a result, there is typically

insufficient signal in the MSA to reconstruct a

well supported phylogeny. In other words, the tree

with the highest likelihood will most likely not

correspond to the true tree.
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(a) Real scenario

a1 a2 bc
(b) True tree

a1 a2b c

(c) Tree inferred
from the sequences
only

a1 a2 bc
(d) Tree inferred
from the species tree
only

FIG. 1. A gene tree evolving along the species tree, and
several possible inferred trees. (a) The true history. The
gene tree (blue lines) evolves within the species tree (grey
area), and undergoes speciations (S), duplications (D),
losses (L) and HGT (T). (b) The true gene tree. (c) A
gene tree inferred with a sequence-aware method. The
duplication and the speciation between the species a and
b are very close in time, and there is not enough signal
in the sequences to correctly decide which split happened
first. (d) Tree inferred from the species tree only (without
accounting for the sequences), assuming that HGT are less
likely than duplications.

Species-tree-aware (STA) approaches aim to

compensate for this insufficient signal by relying

on a putative species tree. Indeed, gene trees and

the species tree exhibit an intricate relationship:

genes evolve within a (species) genome and

undergo biological processes such as duplication,

horizontal gene transfer (HGT), loss, or speciation

(Fig. 1). Therefore, although gene trees can be

topologically different from the species tree, their

own evolutionary history is greatly affected by the

species tree. STA methods use this dependence

between the gene trees and the species tree as

additional information to either directly infer or a

posteriori correct gene trees. In the following, we

denote gene duplication, gene loss, and horizontal

gene transfer events as DTL events.
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A common approach used by STA

methods (Chen et al., 2000; Noutahi et al.,

2016; Scornavacca et al., 2014) consists in

contracting weakly supported gene tree branches

into polytomies, which are subsequently resolved

using the species tree. This heuristic limits

the set of gene trees explored to trees that

can be obtained as combinations of alternative

resolutions of the contracted branches, and in

most existing implementations (Chen et al.,

2000; Noutahi et al., 2016) based on parsimony

requires arbitrary DTL parsimony costs. This is

especially problematic if the substitution model

is miss-specified, or fails to adequately capture

the complexity of the data (which if often the

case for shorter gene alignments where parameter

rich substitution models are more difficult to

use). In addition, the user must define what a

”weak support value” is, often by setting an

arbitrary threshold. Treerecs (Comte et al., 2018)

addresses this last limitation by exploring several

thresholds, and returning the gene tree that

maximizes a likelihood score that is based on

both, the MSAs and the species tree. Finally,

obtaining branch support values usually requires

a significant amount of computational effort (e.g.,

1-2 orders of magnitude more than for a simple

ML tree search on the original MSA, if the classic

Felsenstein Bootstrap is used (Felsenstein, 1985)).

Other STA methods utilize a hierarchical

probabilistic model of sequence level substitutions

and gene level events, such as duplication, transfer

and loss. This allows the definition of the joint

likelihood as the product of the probability of

observing the alignments given the gene trees

(phylogenetic likelihood) and the probability of

observing the gene trees given the species tree

(reconciliation likelihood):

L(G,S|A)∝
∏
Gi∈G

P (Ai|Gi)P (Gi|S) (1)

where S is the species tree, G is the set of gene

trees, and A the set of MSAs. Phyldog (Boussau

et al., 2012) co-estimates the gene trees and the

species tree by conducting a tree search that is

based on such a joint likelihood score. However,

Phyldog does not model HGT. ALE (Szöllősi

et al., 2013a) calculates the joint likelihood using

a dynamic programming scheme that requires the

phylogenetic likelihood to be approximated by

conditional clade probabilities (Larget, 2013). In

order to calculate conditional clade probabilities

ALE requires a sample of gene trees as input

that are typically obtained via Markov Chain

Monte Carlo (MCMC) sampling. This approach

has two shortcomings, first the conditional clade

probability approximation inevitably limits the

set of gene trees explored to trees that are

comprised of clades observed in an tree sample,

as the phylogenetic likelihood of all other trees is

approximated to be zero (Szöllősi et al., 2013a).

While less severe, conceptually this limitation

is similar to that exhibited by the branch

contraction methods discussed above, and is

similarly sensitive to model miss-specification and
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inadequacy. Second, obtaining a tree sample,

either by running Bayesian phylogenetic MCMC

methods or by using bootstrap methods for a set

of gene families is computationally expensive. For

an in depth review of gene tree inference methods,

see (El-Mabrouk and Noutahi, 2019; Szöllősi et al.,

2014).

Probabilistic frameworks to model both,

sequence (Felsenstein, 1981), and gene evolution

events (Åkerborg et al., 2009; Szöllősi et al.,

2012a) can be found in the literature. However, at

present, no ML tool is available that can directly

infer gene trees from MSAs by simultaneously

accounting for sequence substitutions and DTL

events. We believe that such a method can

significantly improve the accuracy of gene tree

inference. A common argument against using

STA ML approaches is the amount of time and

computational resources required to conduct such

an analysis (El-Mabrouk and Noutahi, 2019).

However, a joint (phylogenetic and reconciliation

likelihood) ML approach dispenses with the

pre-processing steps required by other methods

obsolete and can thereby decrease the overall

computational cost significantly, while at the

same time increasing accuracy. Tree search

heuristics are widely used to infer trees from

sequences only (Kozlov et al., 2019; Nguyen

et al., 2015) using the phylogenetic likelihood.

Thus, extending these methods by joint likelihood

calculations represents a natural way of improving

the accuracy of gene tree inference.

Here we introduce GeneRax, our novel software

to infer reconciled gene trees via a joint ML

tree search. The GeneRax input consists of a

rooted, but undated binary (fully bifurcating)

species tree, a set of per-family MSAs (DNA

or amino-acid), and corresponding gene-to-species

leaf name mappings. In addition, the user can

provide initial gene family trees, typically inferred

via non-STA methods (Kozlov et al., 2019;

Nguyen et al., 2015). GeneRax is easy to use,

models DTL events, and can process the gene

families in parallel. Employing a hierarchical

probabilistic model allows it to simultaneously

account for both the signal from the gene family

MSAs and from the species tree. It estimates all

substitution and DTL event intensity parameters,

and does not require any ad hoc threshold or set

of DTL event parsimony costs.

New Approaches

In this section, we outline the joint likelihood

computation, our tree search algorithm, and our

parallelization scheme.

Reconciliation likelihood

In this subsection, we derive the reconciliation

likelihood function for an undated rooted species

tree and a rooted gene tree, as implemented in

ALE.

The “undated” DTL model, in contrast to

the continuous time model described in (Szöllősi

et al., 2013b), is a discrete state model, which

begins with a single gene copy on a branch of
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the species tree. Subsequently gene copies evolve

independently until either all copies are observed

at the leaves or every gene becomes extinct. On

an arbitrary branch of the species tree a gene

copy either duplicates (with probability pD), in

which case it is replaced by two gene copies

on the same branch, arrives via transfer (with

probability pT ), in which case a copy is left

on the donor branch, is lost (with probability

pL) or finally (with probability pS =1−pD−pT−

pL) either i) for internal branches, undergoes a

speciation event, in which case it is replaced by a

copy on each descendant branch or ii) for terminal

branches arrives at the present and is observed,

terminating the process.

We denote by δ, λ, and τ the duplication, loss,

and transfer intensity parameters and parametrize

the above event probabilities as follows:

pD =δ/(1+δ+τ+λ) (2)

pT =τ/(1+δ+τ+λ) (3)

pL =λ/(1+δ+τ+λ) (4)

pS =1/(1+δ+τ+λ). (5)

Let e be branch of the species tree S, and let

f and g be its descendant branches (remember

that the species tree is rooted). Let T (e) be the

set of species tree branches that can receive a

HGT from e. Because we do not assume any

time information on the species tree aside of the

order of descent implied by the tree topology, we

consider that T (e) corresponds to all nodes that

are not ancestors of e. We allow transfers from

e to its descendants, because a gene could have

evolved along an extinct or unsampled lineage and

have been transferred back to a descendant of e

(Szöllősi et al., 2013b).

The probability that a gene copy observed on

an internal branch e becomes extinct before the

present is:

Ee =pL+pS (EfEg)+pD
(
E2

e

)
+pT

(
EeĒ

T
)
. (6)

The terms correspond to respectively the i)

probability of loss, ii) speciation and subsequent

extinction in both descending lineages (this term

must be omitted for terminal branches), iii)

duplication and subsequent extinction of both

copies and finally iv) transfer and subsequent

extinction of both the donor copy on branch e

and the transferred copy on branch h, were for

the latter event we have introduced the notation:

ĒT =
∑

h∈T (e)

Eh

|T (e)|
(7)

In (6), the value of Ee depends on ĒT , and thus

on the extinction probabilities of all the species in

the species tree. We iteratively estimate ĒT and

Ee for all node e in the species tree, by initializing

[Ee]
0
=0 and computing :

[Ee]
n

=pL+pS [Ef ]
n−1

[Eg]
n−1

+pD([Ee]
n−1

)2

+pT [Ee]
n−1 ∑

h∈T (e)

[Eh]
n−1

/|T (e)| (8)

If the limit of the sequence [Ee]
n

exists, then it is

solution of (6). We do not prove here the existence

of this limit.

We observed on simulations that 5 iterations are

enough to estimate Ee, and we set the number
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of iterations to 5 in our implementation. In the

special case where τ=0 (no HGT), the term ĒT

is equal to zero, and we can directly compute Ee

from Ef and Eg.

To calculate the probability of a rooted gene

tree G we have to sum over all reconciliations

of G with S, i.e. all possible scenarios involving

D, T, L and speciation events that may have

produced the observed rooted gene tree topology

along the species tree. To describe the sum over

reconcilations, we begin with the probability Pe,u

of observing some internal branch u of G on

an internal branch e of S. Let v and w be the

descendants of u on G and f and g be the

descendants of e on S, we can write Pe,u as:

Pe,u =pS (Pg,vPf,w+Pg,wPf,v)+pS (EfPg,u+Pf,uEg)

+pD (Pe,vPe,w)+pD (2Pe,uEe)

+pT
(
P̄ T

wPe,v +P̄ T
v Pe,w

)
+pT

(
P̄ T

u Ee+ĒTPe,u

)
,

(9)

were we have introduced the notation:

P̄ T
u =

∑
h∈T (e)

Ph,u

|T (e)|
, (10)

and the terms on the right correspond to

respectively i) speciation with both descending

gene lineages surviving, ii) speciation and

subsequent extinction (these term must be

omitted for terminal branches), iii) duplication

and subsequent extinction, iv) duplication and

subsequent extinction of one of the copies and

finally v) transfer with respectively branch v

and w corresponding to the copy remaining in

the donor linage, and finally vi) transfer and

subsequent extinction of respectively the the

donor or the recipient copy.

Pe,u depends on itself through the terms

involving transfer where the recipient gene does

not go extinct, we solve this through fixed point

iteration analogously to (6). Aside of the self

dependence, every other term involves either

descendent branches in G (u and w), descendent

branches in in S (f and g) or both, this allows

us to set up a bottom-up dynamic programming

recursion starting at the leaves, such that for leaf

g of the gene tree and leaf s of the species tree

P (g,s)=1 if g gene maps to species s and zero

otherwise.

Let G be a rooted gene tree, r its root, S a

rooted species tree and N={δ,τ,λ} the set of DTL

intensity parameters. Then the reconciliation

likelihood function is defined as:

L(S,N |G)=
∑
s∈S

Pr,s (11)

Joint likelihood evaluation

GeneRax attempts to maximize the joint

likelihood function defined as:

L(G,S,N |A)∝
∏
Gi∈G

L(S,N |Gi)L(Gi|Ai) (12)

where G is the set of gene trees, S is the species

tree, N are the DTL event intensity parameters,

and A is the set of gene MSAs.

GeneRax estimates the reconciliation likelihood

L(S,N |Gi) based on the dynamics programming

recursion described above. It uses the highly
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Step 0 (optional)

Step 1 Step 2

Print Reconciled gene trees

 and terminate

Step 3

Increase SPR radius

MSA1

MSA2

MSA3

Gene tree 1

Gene tree 2

Gene tree 3

Gene tree 1

Gene tree 2

Gene tree 3

Species tree

DTL rates DTL rates

MSA1

MSA2

MSA3

Gene tree 1

Gene tree 2

Gene tree 3

Species tree

  SPR radius

 >

 maxRadius

yes

no

FIG. 2. GeneRax pipeline. In each step, we draw in red the parameters that GeneRax optimizes, and in grey the fixed
parameters that GeneRax uses to compute the likelihoods. GeneRax performs Step 0 only when starting from random gene
trees, to infer ML gene trees from the MSAs. Step 1 optimizes the DTL event rates from the gene trees and the species tree.
Step 2 optimizes the gene trees from the MSAs, the species tree and the DTL rates. GeneRax repeats Step 1 and Step 2
with increasing SPR radius, until it reaches the maximum radius. Then it applies Step 3 to reconcile the gene trees with
the species tree.

optimized pll-modules library (Darriba et al.,

2019) to compute the phylogenetic likelihood

L(Gi|Ai). Hence, GeneRax offers all substitution

models supported by RAxML-NG (Kozlov et al.,

2019).

Joint likelihood optimization

Given a set of MSAs and a species tree, GeneRax

searches for the set of rooted gene trees and

DTL intensity parameters that maximize the joint

likelihood. We illustrate the search pipeline in

Fig. 2.

GeneRax either starts from user-specified gene

trees or from random gene trees. Our joint

likelihood search algorithm needs to start from

gene trees with high phylogenetic likelihood,

preferably inferred with phylogenetic ML tools

such as RAxML-NG (Kozlov et al., 2019). We

provide a rationale for this in the Results section.

When starting from random gene trees, GeneRax

performs an initial search (Step 0 in Fig. 2) to only

maximize the phylogenetic likelihood, without

accounting for the reconciliation likelihood.

After this optional step, GeneRax starts

optimizing the joint likelihood, by alternatively

7
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optimizing the gene trees and the DTL event

intensity parameters.

When optimizing the gene trees (Step 1

in Fig. 2), GeneRax processes each family

independently, and applies a tree search heuristic

to each of them separately: for a given tree, it

tests all possible Subtree Prune and Regraft (SPR)

moves within a given radius and then applies

the SPR move that yields the tree with the best

joint likelihood. Then it iterates by applying SPR

moves on this new tree, until the joint likelihood

can not be further improved. At the end of the

gene tree optimization, GeneRax increases the

SPR radius by one.

GeneRax optimizes the DTL intensity

parameters globally over all gene families (Step

2 in Fig. 2). To this end, we apply the gradient

descent method to find a set of DTL intensity

parameters that maximizes the reconciliation

likelihood over all gene families. We numerically

approximate the gradient with finite differences.

The whole procedure stops when the SPR radius

(starting from 1) exceeds a user-defined value.

When the user does not define this maximum SPR

radius, we set it to 5, as we did not observe any

improvement above this value on our experiments.

Gene tree and species tree reconciliation

The reconciliation likelihood computation

algorithm recursively traverses in post-order

traversal both, the species tree, and the gene tree,

and sums over all possible scenarios at each step

of the recursion. To infer the ML reconciliation

FIG. 3. Reconciled gene tree and species tree. Users can
easily visualize reconciliations inferred with GeneRax using
the online tool RecPhyloXML-visu (Duchemin et al., 2018).
This example illustrates one HGT and one duplication
events.

(Step 3 in Fig.2), GeneRax keeps track of the

maximum likelihood path during the recursion.

8
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GeneRax can export the reconciled trees

into both Notung (Chen et al., 2000) and

RecPhyloXML (Duchemin et al., 2018) formats

(Fig. 3).

Parallelization

Achieving ’good’ parallel efficiency given a large

number of gene families is challenging: the most

natural solution consists in assigning a subset

of gene families to each core (Boussau et al.,

2012). However, gene family MSAs are highly

heterogeneous in terms of size, and are hence

hard to evenly distribute over cores (Morel et al.,

2018) such as to achieve ’good’ load balance.

In particular, large gene family MSAs can easily

generate a parallel performance bottleneck. Our

solution allows to split up inferences on these

large gene families across several cores. Thus, we

parallelize over, but also within gene families, in

analogy to our ParGenes (Morel et al., 2018) tool.

However, unlike ParGenes, GeneRax parallelizes

individual gene family tree searches over the

possible SPR moves and not over MSA sites. This

has two reasons: (1) the reconciliation likelihood

computation does not depend on the number

of sites (i.e., a parallelization will not scale

with the number of sites in contrast to the

phylogenetic likelihood), and (2) gene sequences

are typically not long enough to efficiently

parallelize phylogenetic likelihood calculations

over the sites.

Experiments

We compared GeneRax to competing gene tree

inference methods on both, simulated, and

empirical datasets.

Tested software

This subsection describes the settings we used

for executing the competing tools (summarized in

Table 2) in all of our experiments.

We used ParGenes (Morel et al., 2018) to run

RAxML-NG with 10 random and 10 parsimony

starting trees and 100 bootstrap trees. For

methods requiring starting gene trees, we selected

the tree with the best likelihood found by

RAxML-NG. We used 100 bootstrap trees to

compute gene trees with branch support values

as required for Notung and Treerecs. As Notung

does not provide any clear recommendation for

setting the bootstrap support threshold, we used

the default value (90%). We executed Treerecs

with its automatic threshold selection from seven

threshold values (seven is the default value). We

executed Phyldog with a fixed species tree. In the

absence of recommendation, we set its maximum

SPR radius to 5, as in GeneRax. To execute ALE,

we first generated posterior tree samples with

MrBayes, using two independent runs, four chains,

1,000,000 generations, a sampling frequency of

1,000 and a burn-in of 100 trees. We used the

undated ALE model to produce 100 tree samples

per gene family. We used the same MrBayes

tree samples to execute EcceTERA with the
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Dataset Database Species Families Avg. sites Avg. genes Max. genes

Primates ENSEMBL 13 1523 84 45 349

Cyanobacteria HOGENOM 36 1099 239 37 130

Table 1. Description of the empirical datasets used in our benchmarks. We extracted the Primates dataset from the release
96 of the Ensembl Compara database (Zerbino et al., 2017). The Cyanobacteria dataset was originally used in a previous
study (Szöllősi et al., 2013a) and was extracted from the HOGENOM database (Penel et al., 2009).

Software Method type Input trees STA HGT Ref.

RAxML-NG ML Random No No (Kozlov et al., 2019)

Notung Parsimony Supported ML Yes No (Chen et al., 2000)

Treerecs Parsimony + ML Supported ML Yes No (Comte et al., 2018)

Phyldog ML ML Yes No (Boussau et al., 2012)

EcceTERA Parsimony Supported ML or MCMC samples Yes Yes (Scornavacca et al., 2014)

ALE ML MCMC samples Yes Yes (Szöllősi et al., 2013a)

GeneRax ML Random or ML Yes Yes (this paper)

Table 2. Softwares used in our benchmark, with the type of method (ML, parsimony or both), the nature of the input trees
(random tree, ML tree, tree with bootstrap support values or MCMC sample of trees), whether the method is STA and
whether the method accounts for HGT.

amalgamate option, without transfer from the

dead, and with the dated species tree option.

Note that, Treerecs, Notung, MrBayes,

EcceTERA and ALE do not provide a way

of parallelizing over gene families on cluster

architectures. To execute them on large datasets,

we scheduled them with an MPI program, by

dynamically assigning jobs (with one job per gene

family) to the available MPI ranks, starting from

the most expensive jobs with the largest gene

family MSAs. Henceforth, we refer to sequential

runtime as the sum of the time required by each

job, and to parallel runtime as the elapsed time

spent for the entire MPI run. For a given number

of cores, the parallel efficiency is the sequential

runtime divided by the product of the parallel

runtime and the number of cores.

We executed GeneRax with default parameters

and with both random (GeneRax-random) and

RAxML-NG (GeneRax-raxml) starting trees.

When not stated otherwise, we present GeneRax

results for random starting trees.

When working on simulated datasets that were

not expected to contain HGT, we executed both,

ALE, and GeneRax with a HGT rate fixed to zero,

and denote these runs as ALE-DL and GeneRax-

DL. When accounting for HGT, we denote them

as ALE-DTL and GeneRax-DTL.
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Simulated datasets

We executed all tools described in Table 2

on the dataset originally used to benchmark

ALE (Szöllősi et al., 2013a). Szöllosi et al. initially

inferred gene trees for 1099 Cyanobacteria gene

families using ALE. Then, they simulated new

sequences under the LG+Γ+I model along these

trees, retaining both, the MSA sizes, and branch

lengths.

In our experiments, we inferred gene trees

once under LG+Γ+I (true substitution model)

and once under WAG without rate heterogeneity

(misspecified substitution model).

In addition, we generated additional simulated

datasets to investigate the influence of various

parameters on the methods and their respective

accuracy. The parameters we studied are the

number of sites, the average gene branch lengths,

the species tree’s size, and the DTL intensity

parameters. We also used putative species trees

that were increasingly different from the true

species tree to quantify the robustness of the

methods with respect to topological errors in the

species tree. We simulated the species and gene

trees using GenPhyloData (Sjöstrand et al., 2013),

and the sequences using Seq-Gen (Rambaut and

Grass, 1997), which simulates a continuous time

birth and death process along a time-like species

tree.

To assess the quality of the resulting gene trees,

we evaluated the average relative Robinson-Foulds

(RF) distance (Robinson and Foulds, 1981) to the

FIG. 4. Relative RF distances to true trees, by inferring
gene trees with the true substitution model (LG+Γ+I) and
a misspecified substitution model (WAG).

true trees with the ETE Toolkit (Huerta-Cepas

et al., 2016).

Empirical datasets

We executed all methods in Table 2 on the

empirical datasets listed in Table 1. We measured

both, sequential, and parallel runtimes. We also

used GeneRax to evaluate the joint likelihood of

the trees inferred with each method, to assess the

quality of our tree search algorithm whose goal is

to maximize this likelihood.

Results

In the following, we present the results of our

experiments. For all methods, we report gene tree

quality (measured by RF distance to true trees

on simulated datasets, and joint likelihood on

empirical datasets) and computational efficiency

(measured by sequential runtime and parallel

efficiency). All the data and all the inferred

trees are available at https://cme.h-its.org/

exelixis/material/generax_data.tar.gz.

RF distances to true trees
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FIG. 5. Branch score distance to true trees. We excluded
from the plot methods with an average score above 4.

(a) Increasingly wrong species tree

(b) Average DTL rates
FIG. 6. RF distance to true trees on simulated datasets.
(a) Trees inferred with wrong species trees. All other
parameters are fixed. (b) Trees inferred with varying DTL
rates. We started from D=0.1, T =0.1 and L=0.2, and
multiplied all rates by a varying value (i.e. the ratio between
the rates is constant).

We show the relative RF distances between the

1099 simulated Cyanobacteria true trees and the

respective inferred trees in Fig. 4. For methods

that produce several gene trees per gene family

(ALE and RAxML-NG), we average the distance

over all the output trees.

GeneRax and ALE perform better than all

the other methods, except in the case of the

misspecified substitution model where Treerecs

also performs equally well. With the true

model, STA methods that do not account

for HGT but use a joint likelihood score

(Phyldog and Treerecs) perform better than

purely sequence-based method (RAxML-NG),

but worse than methods accounting for HGT.

Although EcceTERA accounts for transfers, it

only performs as good as Treerecs, maybe because

EcceTERA algorithm only uses parsimony. We

hypothesize that Notung performs worse than all

the other methods because it rearranges trees

based on a parsimony score and an arbitrary

support value threshold.

We show all results of the simulations where

we vary parameters (DTL intensity parameters,

etc.) in the Supplementary Material, and only

include two representative plots here (FIG. 6).

GeneRax finds the best trees under 90% of our

simulation scenarios, but ALE finds almost as

good trees on most of the simulations. Treerecs

and Phyldog perform almost as well as GeneRax

and ALE in the absence of HGT, but worse when
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(a) Primates (b) Cyanobacteria

FIG. 7. Log-likelihoods (the higher the better) evaluated with GeneRax. When evaluating the joint likelihood for Primates,
we set the HGT rate to 0.

the simulations contain HGT. Notung performs

significantly worse than all SPA methods.

Branch score distances to true trees

To compare the quality of the gene branch lengths,

in terms of expected number of substitutions

per site, we measured the average branch score

distance (Kuhner and Felsenstein, 1994) between

the inferred trees and the true trees (Fig. (5) with

the phangorn R library (Schliep, 2010). GeneRax

performs better than all competing tools. In

particular, GeneRax has a significantly better

average branch score distance (1.02) than ALE

(1.48). A plausible explanation is that some of

the competing tools do not optimize the branch

lengths (ALE, EcceTERA, Notung), or not in

terms of expected number of substitutions per

site. When using those tools, users interested in

branch lengths would need to add another tool to

their pipeline (e.g., RAxML-NG).

Joint likelihood

FIG. 8. Reconciliation and sequence log-likelihoods during
GeneRax tree search on the Cyanobacteria dataset. The
sequence likelihood decreases while the reconciliation
likelihood increases.

We report the joint maximum likelihood scores

of the gene trees obtained with the different

tools in Fig. 7. As the true tree is generally

not know for empirical data, and given that we

are willing to accept the maximum likelihood

criterion, we must assume that the trees yielding

the best joint maximum likelihood is also the

one that best explains the data. This approach

of benchmarking ML tools on empirical datasets
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has been used repeatedly for assessing standard

tree inference tools (Kozlov et al., 2019; Nguyen

et al., 2015). The rationale for this is that standard

tree searches based on the phylogenetic likelihood

are inherently more difficult on empirical than

on smooth and perfect simulated data. That is,

differences between tree search algorithms might

sometimes only be observable on empirical data.

As expected, GeneRax finds the highest joint

likelihood score. ALE is close to GeneRax, because

it strives to optimize an approximation of the

same model. As the remaining tools, implement

distinct models, the comparison might appear as

being unfair. However, we mainly regard this as

a means of verifying that GeneRax can infer the

best-known trees under its reconciliation model.

Treerecs, Phyldog are also very close to GeneRax

in absence of transfers, because they also a

similar joint likelihood function. ALE is doing

better than Treerecs and Phyldog in presence

of HGT, because Treerecs and Phyldog only

account for gene duplication and loss. RAxML-

NG, EcceTERA and Notung do not rely upon

any joint reconciliation likelihood model, which

explains their low scores.

In addition, when running GeneRax on the

empirical Cyanobacteria dataset, we recorded

both, the reconciliation likelihood and the

phylogenetic likelihood during the tree search

(Fig. 8). We observer that the joint likelihood

optimization occurs through an increase of

the reconciliation likelihood at the expense

FIG. 9. Sequential runtimes and additional overhead from
precomputation steps (bootstrap trees with RAxML-NG
for Notung and Treerecs, MCMC samples with MrBayes
for ALE and EcceTERA, and RAxML-NG starting trees for
GeneRax-raxml). The RAxML-NG column corresponds to
the time spent in one single tree search. We represent times
with a logarithmic scale.

of the phylogenetic likelihood. We made the

same observation on all simulated and empirical

datasets we experimented with. In general, we

observed that our joint likelihood tree search

heuristic is not efficient in improving the

phylogenetic likelihood, and thus needs to start

from trees with a high phylogenetic likelihood.

For this reason, when the user does not provide

a starting tree, we initially only optimize the

phylogenetic likelihood, and subsequently start

the joint likelihood optimization.
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FIG. 10. Parallel speedup of GeneRax on the empirical
Cyanobacteria dataset (1099 families), using from 4 to 512
cores.

Sequential runtimes

We measured the sequential runtimes of all

tools on the empirical Cyanobacteria dataset.

Comparing runtimes is not straightforward: some

tools are very fast, but require an external pre-

processing step, as described in Table 2. For

instance, Notung is the fastest tool, but it requires

gene trees with support values as input, and

obtaining those can be extremely time-consuming.

For a fair comparison, we plot both the time spent

in the gene tree inference tools alone, and the

time spent in their respective pre-processing steps

(Fig.9).

When only considering the stand-alone runtimes

of the tools, GeneRax is the slowest method.

However, when including the pre-processing cost,

GeneRax becomes the fastest STA approach. In

addition, using only a single tool for the entire

inference process substantially improves usability

and reproducibility of the analysis.

FIG. 11. Parallel efficiency of the different methods applied
to the cyanobacteria empirical dataset on 512 CPU cores.
We do not include pre-processing steps .

Parallel efficiency

We measured the parallel runtimes of GeneRax for

different numbers of cores. For this experiment,

we ran GeneRax on the empirical Cyanobacteria

dataset (1099 families), starting from RAxML-NG

trees. We used 4 up to 512 cores. In Fig. 10 we

plot the speedup as a function of the number of

cores. Despite highly heterogeneous gene family

MSA sizes (in terms of both number of sites

and number of taxa, see Supplement Material),

GeneRax achieves high parallel efficiency (0.7) on

512 cores.

We then measured the parallel efficiency of

running the competing methods as described in

the Experiments section, and present them in

Fig. 11. GeneRax is the only tool that achieves

good efficiency (0.7) because it parallelizes both,

over, and within gene families, thereby achieving

a ’good’ load balance. Despite a similar two-

level parallelization scheme, the parallel efficiency

of RAxML-NG (scheduled with ParGenes, with

one starting tree per family) is below 0.2. The
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reason for this is that ParGenes parallelizes

individual tree searches over the sites whereas

GeneRax parallelizes them over the SPR moves.

Gene MSAs are often short, and there are

typically not enough sites to allocate several

cores per tree search with RAxML-NG. Other

competing tools also fail to attain good parallel

efficiency (<0.4), because they do not parallelize

individual gene tree inferences, and are thus

limited by the highest individual tree search

runtime. GeneRax is less parallel-efficient when

starting from random trees, because the initial

phylogenetic likelihood optimization step is based

on RAxML-NG code, which does not implement

our two-level parallelization scheme yet.

Discussion

An accurate, robust and fast approach

We present GeneRax, an open source STA gene

tree inference software. GeneRax simultaneously

accounts for substitution and DTL events. It

performs a tree search to optimize a joint

likelihood function, that is, product of the

phylogenetic and the reconciliation likelihoods.

It can handle multiple gene families in parallel.

To the best of our knowledge, GeneRax is the

first STA tool that does not require any pre-

processing of the MSAs. Also, it does not require

any arbitrary threshold settings or parsimony

weights, and it can account for HGT.

On simulated datasets we demonstrate that

GeneRax and ALE find trees that are closer to

the true trees than those inferred by competing

tools. We show that GeneRax is robust to

inaccuracies in the assumed species tree and

misspecified substitution models. Using two

empirical datasets (Cyanobacteria and Primates),

we confirm that GeneRax finds the best-scoring

maximum likelihood trees among the tested tools,

both, with, and without HGT. Finally, we show

that GeneRax is not only faster than the tested

competing methods (when accounting for the

computational cost of the pre-processing steps),

but also has a higher parallel efficiency, making it

suitable for seamless large-scale analysis.

GeneRax is a production-level code. We kept its

installation and its interface as simple as possible

to facilitate usability. While most competing STA

methods require input gene trees, sometimes,

including additional information (e.g., support

values), GeneRax can directly infer the gene trees

from a set of given MSAs. This simplified analysis

pipeline reduces the number of ad hoc choices

users have to make: GeneRax does not require

bootstrap-support thresholds, parsimony weights,

MCMC convergence criteria, chain settings,

proposal tuning, or priors. Reducing the number

of arbitrary choices does not only yield the tool

easier to run, but also substantially improves the

reproducibility of the results. One could contest

the parameters we used in our experiments for

the pre-processing steps: Treerecs and Notung

might not need 100 bootstrap trees to obtain

reliable support values. ALE and EcceTERA

might not need as many MrBayes runs, chains,
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or generations to correctly approximate the

phylogenetic likelihood. In general, it is possible

to run the pre-processing steps faster than in

our experiments. When running the competing

methods, we tried to use the parameters that favor

result quality/confidence over short runtimes, as

we would have done in a real analysis.

Future work

Despite the favorable evaluation results, GeneRax

still faces several challenges.

First, the GeneRax reconciliation model does

not take into account the branch lengths, neither

in species tree, nor in the gene trees. This leads

to information loss, and furthermore allows for

transfers between non-contemporary species. We

believe that further adapting and extending the

reconciliation model could improve the quality of

the results. For instance, one could exploit an

ultrametric dated species tree and use speciation

events to slice the species tree, as done in

(Szöllősi et al., 2012b). However, slicing the

species tree increases the number of inner species

nodes quadratically, and thus incurs a substantial

increase in computational cost.

Second, the GeneRax reconciliation model

assumes that incomplete lineage sorting

(ILS) does not occur. Some promising

work (D Rasmussen and Kellis, 2012) has

been conducted to combine gene loss, gene

duplication, and ILS in a single model. We

believe that a computationally efficient software

that can account for ILS, DTL events, and

substitutions in a probabilistic framework would

represent a major breakthrough in phylogenetic

inference.

Finally, GeneRax needs a known/given species

tree to estimate the gene trees. To this end, we

plan to extend GeneRax to co-estimate both,

the gene trees, and the species tree, as done

in (Boussau et al., 2012). An idea to solve this

problem consists in inferring initial gene trees with

non-STA methods, and then inferring an initial

species tree that maximizes the reconciliation

likelihood given these gene trees. Then in a

second step, one can propose new species tree

topologies, optimize the gene trees and DTL

intensity parameters on this proposal, and update

the species tree if the joint likelihood increases.
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