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Abstract

Background: During the last decade, the analysis of ancient DNA (aDNA) sequence has become a
powerful tool for the study of past human populations. However, the degraded nature of aDNA
means that aDNA sequencing reads are short, single-ended and frequently mutated by post-mortem
chemical modifications. All these features decrease read mapping accuracy and increase reference
bias, in which reads containing non-reference alleles are less likely to be mapped than those containing
reference alleles. Recently, alternative approaches for read mapping and genetic variation analysis
have been developed that replace the linear reference by a variation graph which includes all the
alternative variants at each genetic locus. Here, we evaluate the use of variation graph software vg

to avoid reference bias for ancient DNA.
Results: We used vg to align multiple previously published aDNA samples to a variation graph
containing 1000 Genome Project variants, and compared these with the same data aligned with
bwa to the human linear reference genome. We show that use of vg leads to a much more balanced
allelic representation at polymorphic sites and better variant detection in comparison with bwa,
especially in the presence of post-mortem changes, effectively removing reference bias. A recently
published approach that filters bwa alignments using modified reads also removes bias, but has lower
sensitivity than vg.
Conclusions: Our findings demonstrate that aligning aDNA sequences to variation graphs allows
recovering a higher fraction of non-reference variation and effectively mitigates the impact of reference
bias in population genetics analyses using aDNA, while retaining mapping sensitivity.
Keywords: ancient DNA, variation graph, sequence alignment, reference bias.

Background

In suitable conditions, DNA can survive for tens or even hundreds of thousands of years ex vivo,
providing a unique window into the past history of life [1]. Since the initial application of high-
throughput sequencing to ancient human remains [2], the number of aDNA samples with available
sequence data has been increasing at a fast pace, and currently over 2000 ancient samples have been
published [3]. These studies have provided insights into past population history and allow direct
tests of hypotheses raised in archaeology, anthropology and linguistics [4, 5].

However, aDNA sequence analysis poses several significant challenges. The amount of DNA
available is limited, and often only a small fraction is endogenous, coming from the target individual,
with the rest originating from microbial contamination [6]. Read lengths are limited by the
degradation of DNA due to taphonomic processes and subsequent environmental exposure. Post-
mortem damage (PMD) of the DNA occurs at a high rate, introducing mismatches in the tails of
the short DNA molecules, which are frequently in a single-stranded and relatively unprotected state.
This manifests mostly as the conversion of cytosine to uracil, but also can lead to depurination
[1]. Ancient DNA may be treated with uracil-DNA-glycosylase (UDG) and endonuclease VIII to
fully [7] or partially [8] remove uracil residues and abasic sites, leaving undamaged portions of the
DNA fragments intact. However, this process results in a reduction of read length and library
depth, which is disadvantageous. Furthermore, a number of unique and irreplaceable samples were
sequenced prior to the adoption of UDG treatment. Taking all these factors into account, ancient
DNA data is generally of low coverage, short length and high intrinsic error rate.

The typical workflow for ancient DNA data processing starts with the alignment of sequencing
reads to a linear reference genome, which contains only the reference allele at polymorphic sites.

2

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/782755doi: bioRxiv preprint 

https://doi.org/10.1101/782755
http://creativecommons.org/licenses/by/4.0/


Reads containing the alternate allele are less likely to map than reads containing the reference allele,
creating a potentially strong bias against non-reference variation, which can have a significant effect
on population genetic inference and implications for many aDNA studies [9, 10]. For example, a
standard approach to genotyping is to generate pseudo-haploid calls by selecting a random read
crossing each variable site. However, because of reference bias, at heterozygous sites reads containing
the reference allele compose the majority of reads, resulting in a more frequent sampling of the
reference allele than the alternate one.

There have been previous attempts to mitigate the effects of reference bias and low coverage
in aDNA, such as by implementing a model of reference bias in genotyping [11], or by working
with genotype likelihoods throughout all downstream population genetic analyses [12]. A recently
proposed approach modifies both the reference genome and the aDNA sequencing reads in order
to account for alternate alleles at polymorphic sites[10]. The authors show that by taking into
account non-reference variation in the alignment process, reference bias can be substantially reduced.
However, a limitation of this approach is that it has only considered biallelic single nucleotide
polymorphisms (SNPs). Therefore, non-reference alleles at insertion and deletion (indel) loci are not
accounted for, despite there being hundreds of thousands of non-reference indels in a typical human
genome [13], and these having a greater affect on read mapping than SNPs [14].

An alternative way to improve read mapping and avoid reference bias is to map reads to a
sequence graph that represents both reference and alternate alleles at known variable sites[15].
However, the application of this approach to ancient DNA data has not yet been examined. We
recently introduced the variation graph (vg) software[14], and in Figure 1 show an example of
how vg can recover the alignment of short aDNA reads to alternate alleles. Here we apply vg and
bwa systematically to map both simulated data and 34 previously published ancient human DNA
samples, and demonstrate that mapping with vg can effectively reduce reference bias for ancient
DNA samples in comparison to bwa. Furthermore vg increases sensitivity for detection of variation
in aDNA, unlike read modification methods.

Results

Evaluating reference bias in aDNA using simulation

First we used simulation to examine the impact of post-mortem deamination (PMD) in vg and bwa

read alignment, including assessments after applying read modification as in reference [10]. We
generated all possible 50 bp reads spanning variant sites on chromosome 11 of the Human Origins
SNP panel [16, 17], which contains a set of SNPs designed to be highly informative about the genetic
diversity in human populations. In half of the simulated reads the SNP position was mutated to the
alternate allele. Different levels of ancient DNA PMD estimated in 102 ancient genomes from [18]
were introduced in the reads using gargammel [19].

We generated a variation graph (1000GP graph) with variants identified as part of the phase 3
of the 1000 Genomes Project [13] above 0.1% MAF (minor allele frequency), to be used for read
mapping with vg. We then mapped simulated sequences back to the 1000GP graph or GRCh37
linear genome using vg map and bwa aln respectively, and filtered the resulting alignments for those
above mapping quality 30 for bwa aligned reads and mapping quality 50 for vg (see Supplementary
Figure S1 and Methods for details). The reason for using different mapping quality thresholds is
that mapping qualities are estimated differently in bwa and vg, and have different ranges: bwa aln’s
maximum values are capped at 37 and vg’s at 60.
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At high levels of simulated PMD, alignment with bwa against the linear reference prevents the
observation of non-reference alleles in a large fraction of cases (Figure 2). This effect is notable at
deamination rates as low as 10%, and with 30% deamination the rate of alignment to non-reference
alleles is reduced by nearly 15% relative to the total. In contrast there is no such reduction for
vg map. These observations are maintained across a range of different mapping quality thresholds
(Supplementary Figure S2). Given that we simulated the same number of reads at each SNP site, one
with the reference allele and the other with the alternate, we would expect a 1:1 ratio of alternate
reads to reference reads in the final alignment. However, because of reference bias, this ratio is on
average 0.9335 in bwa but essentially 1 in vg (0.9995), supporting that vg alignment is not affected
by reference bias in the same way as bwa.

To discern whether these differences are due to the use of a variation graph or the vg mapper, we
also aligned simulated reads with vg to the human linear reference genome GRCh37 (’vg linear’) and
compared the results obtained with vg alignments to the 1000GP graph (Supplementary Figures S2
and S3). In the vg alignment to the linear reference, the fraction of reads containing the reference
allele that are aligned remains constant at increasing rates of deamination, while, similarly to bwa,
the percentage of aligned reads with the alternate allele drops as deamination increases. We also
applied the read modification protocol of Günther et al.[10] to our bwa mapping data. In this case,
the bias is removed, but at the cost of a substantial decrease in sensitivity for reads containing the
reference as well as alternate alleles (Supplementary Figure S3).

Considering that vg mapped 2-18% more reads than bwa, we next examined the error rates
of the various alignment strategies. We considered a given read to be correctly mapped if there
was an exact match between the genomic coordinates from which it had been simulated and the
ones for a major part of the alignment, taking into account any offsets introduced by insertions,
deletions and soft clips. (Soft clipping is the masking of a number of bases at the end of the read
where they appear to be diverging significantly from the reference; this is done by read aligners to
avoid misalignments around insertions and deletions, or problems with chimaeric sequences.) In
vg graph alignments, 0.00012% of reference allele reads and 0.00025% of the alternate allele reads
were incorrectly mapped. In bwa alignments, we observed that 0.00002% and 0.00024% of reads
containing the reference and the alternate allele, respectively, were incorrectly mapped. With vg

alignment to the linear reference sequence, reads containing the reference allele were mapped with
similar accuracy to that observed in vg graph (0.00013%), but the error in the alignment of reads
with the alternate allele was an order of magnitude higher (0.00110%) (Table S1, Supplementary
Figure S4). The bwa read modification approach only removes excess reference-allele reads, so does
not change the false positive rates for reads containing alternative alleles.

Error rates in all three of vg graph, vg linear and bwa were positively correlated with the amount
of deamination (Supplementary Figure S5). There appears to be a qualitative difference between the
types of errors made by vg and bwa, in that bwa makes more scattered errors that are typically long
range, whereas vg tends to make clusters of errors at nearby locations. Unsurprisingly, the majority
of errors (≈70%) made by both methods occur in regions of reduced mappability (Supplementary
Figure S6).

Together, the results of our analysis of simulated data demonstrate that the high degree of
reference bias in ancient DNA read alignment is mitigated at known sites by aligning against a
variation graph with vg. Although read modification in bwa also removes bias, it does this at the
cost of decreasing sensitivity for reads containing the reference allele, whereas vg increases the
sensitivity for reads containing the alternate allele. This increase in vg’s sensitivity in mapping
reads containing the alternate allele is achieved at comparable error rates to those observed with
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bwa, although there is a slight decrease in accuracy in mapping the reference allele.

Aligning ancient samples to the 1000GP variation graph

To evaluate whether the improvements seen in the previous section mitigate reference bias in real
ancient DNA data, we selected 34 previously published ancient DNA samples (Table 1), including
Iron Age, Roman, and Anglo-Saxon period samples shotgun sequenced to low-medium coverage [20,
21], high-coverage Yamnaya and Botai culture individuals [22], and target captured samples from
South America [23]. These are representative of the different types of data produced in the field of
aDNA, as they are of variable genomic coverage, they were generated as part of SNP array target
capture or whole-genome shotgun sequencing experiments, and were subject to different enzymatic
treatments.

First we evaluated the effect of using vg on standard quality control metrics used in aDNA
analysis, using mapping quality threshold 50 for vg and 30 for bwa as above, except where stated
otherwise. When using ANGSD to estimate sample contamination from the X chromosome of male
samples, vg gave similar but marginally increased values (mean 0.95%, range 0.30-3.36%) compared
to bwa (0.87%, range 0.26-3.32%) (Supplementary Figure S7). In terms of total endogenous DNA
percentage, vg gave slightly lower percentages (Table S2), though as we will see below, more reads are
mapped to alternate alleles. Finally, reads mapped with vg continue to show terminal deamination
damage, which is used as a standard diagnostic for the presence of true ancient DNA, as seen in
mapDamage [24] plots, although levels are slightly reduced (Supplementary Figure S8). We attribute
this reduction to differences in softclipping by the vg algorithm, which follows bwa mem not bwa

aln.
To investigate the effect of using vg and a variation graph on genetic variant calling and

genotyping, we focused on the Yamnaya sample from reference [22], which provides approximately
20-fold coverage of the genome, thus allowing us to compare results to confident genotype calls, and
to downsample to explore behaviour at different sequencing depths. We called variants on the full
depth sample using bcftools [25] for both vg and bwa alignments, and used these callsets as ground
truth. Looking at high quality heterozygous transversion sites, vg has an alternate allele mapped
read fraction of 0.4925 compared to bwa of 0.4742. As expected, this difference was entirely due to
mapping to previously identified 1000 Genomes Project sites present in the graph: new sites not in
the graph showed no difference between the methods (Supplementary Figure S9). The restriction to
transversions for this analysis is a standard approach in aDNA analysis to control for noise created
by deamination damage, which generates apparent transitions.

We next measured our ability to recover the heterozygous variants in the full coverage set at
lower coverage levels. As seen in Figure 3, when calling using bcftools, bwa aln recovers fewer
heterozygous SNPs than vg map alignment to the 1000GP graph at all coverage levels. For example
at 4x coverage, vg map recovers ≈13% more heterozygotes as a fraction of the total. Filtering bwa

alignments using read modification reduces sensitivity still further. We note that if pseudo-haploid
calls were made by selecting a random spanning read as is often done in aDNA analysis [26], then the
allele imbalance described in the previous paragraph will directly lead to undercalling of alternate
alleles.
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Population genetics analyses

In order to evaluate the consequences of reference bias, we applied the ABBA-BABA test of
phylogenetic tree topology based on the D-statistic of population relationship [27, 16]. When
estimating D-statistics of the form D(vg, bwa; GRCh37, Chimp), a deviation from zero indicates
an excess of shared alleles between bwa- or vg- aligned samples and the GRCh37 reference genome.
Our results based on pseudo-haploid random-allele calls, summarized in Figure 4a, show negative
D-statistics for all but a handful of samples, consistent with bwa calls being closer to the reference
than vg calls. The positive D scores obtained were for samples with very low coverage, and therefore
their D-statistic result is less reliable, as demonstrated by the wide error bars for these samples.
Indeed, we observe some variation for these samples in the Supplementary Material, where we
included 5 replicates per ancient sample to account for the randomness in pseudo-haploid genotype
generation (Supplementary Figures S10-S13). When we applied the read modification approach to
the bwa-mapped data, we saw no consistent deviation from zero in D(vg, bwa-modreads; GRCh37,
Chimp), as expected from our earlier results (Supplementary Figure S14).

The bias in D statistic between vg and bwa is strongest for shorter reads, as seen when we stratify
the data by read length as in Figure 4b (Supplementary Figures S15 and S16), consistent with a
previously reported increase in reference bias for shorter reads[10]. It is also stronger at higher
levels of deamination in our simulated data (Supplementary Figures S17 and S18). Together these
results indicate that vg offers an advantage in mapping both shorter fragments and also fragments
containing high rates of deamination.

We also investigated the effect of vg or bwa alignment on Principal Component Analysis (PCA),
another widely used analysis technique in the field of aDNA. Restricting this analysis to samples
from Europe and West/Central Asia, we projected the ancient samples and the reference genome
onto a PCA plot derived from modern samples. We observe modest differences between the positions
of vg and bwa aligned samples, but these are not conclusive in terms of the direction of the bias
(Supplementary Figures S19 and S20). For example, the bwa processed Botai sample appears to be
slightly closer to the reference than its vg aligned equivalent, while the opposite pattern is observed
for the Yamnaya sample. Given the variability in our PCA results, it is not possible to make strong
conclusions about the effects of removing reference bias on PCA projection.

Discussion

The analysis of highly fragmented and damaged ancient DNA sequence data is challenging and
subject to reference bias, leading to a relative under-representation of alternate alleles at polymorphic
sites. The consequences of this in downstream analysis can be real but quite subtle, as has been
noted before [10], and we have seen in our results. Here we have shown that vg can be used to
effectively remove this reference bias, especially in the presence of post-mortem damage and when
dealing with short sequences, both inherent characteristics of aDNA data.

Although other methods have recently been introduced to address the same problem[10], these
have the consequence of reducing sensitivity of mapping of reads containing the reference allele,
rather than increasing the sensitivity of reads containing the alternate allele. In contrast mapping
with vg increases sensitivity, and this is achieved while maintaining specificity of mapping, and
avoiding increased error rate. Therefore the vg approach retains more information, which can be
important at low read coverage (Figures 3 and Supplementary Figure S3).

One complication of our analysis is that mapping qualities are not directly comparable between
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vg and bwa aln. Because of this, we presented comparisons between vg and bwa at different mapping
quality filter thresholds. More generally, we note that different mapping programs and parameters,
and different procedures for data pre-processing such as adapter trimming, or the imposition of a
minimum read length threshold prior alignment, will all affect how ancient samples compare to each
other. For any given analysis, it is important to standardize these settings and to remap all ancient
samples in the same way to reduce spurious findings.

One possible concern with the use of vg as proposed is that it depends on a reference graph
constructed from present day human variation. For modern human samples from the last 40,000
years, this is not a major issue, since almost all common variation is shared with extant populations
on that time frame, although there will be increased private rare variation in very divergent samples
such as Ust-Ishim [28]. However this approach would not be appropriate for samples from archaic
populations such as Neanderthals and Denisovans, for which we do not yet have substantial collections
of genetic variation. Introgressed material from archaic humans within modern humans can provide
a partial source of information on genetic variation in those parts of the genome where it persists,
but for graph alignment approaches to work effectively across the whole genome these samples
we will have to wait until sufficient archaic genomes have been sequenced to high depth to enable
construction of a representative archaic variation graph. A related advantage of working with graph
genomes is that as multiple independently assembled human genomes are added into the reference
variation graph, we will be able to assign ancient DNA sequence to human sequences not in the
current reference graph, which are currently hidden from standard analyses of ancient DNA.
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Methods

Datasets and sequence data processing

In order to compare read mapping between vg and bwa, we compiled a dataset of sequencing
reads from previously published ancient individuals (Table 1). Adapter trimming was done with
AdapterRemoval [29] for [22] and [30] for [20]. Unaligned fastq data from the other two datasets
[21, 23] were already provided with trimmed adapters. We aligned trimmed reads to the human
linear reference genome (hs37d5) using bwa aln [25] with parameters -l1024 -n 0.02 [31], keeping
bases with quality above or equal to 15. We constructed the index file for vg [14] with hs37d5 and
variants from the 1000 Genomes Project phase 3 dataset [13] above 0.1% MAF. In total, the graph
contained 27,485,419 SNPs, 2,662,263 indels and 4,753 other small complex variants. Trimmed
reads were aligned to the variation graph using vg map with parameters ‘–surject-to bam’ and ’-k
15’. Duplicate reads were removed with sambamba markdup [32] using the ‘–remove-duplicates’
parameter. BAM files were subsequently filtered with samtools view [25], selecting reads with
different mapping qualities thresholds (bwa and vg: mapQ > 0; ≥ 30; vg only: ≥ 50; ≥ 60). The
reason for using different mapping quality thresholds is that bwa uses a different mapping quality
estimation process with maximum around 37 than vg with maximum 60. Coverage was estimated
with qualimap [33] bamqc utility. We present read number, endogenous DNA content and coverage
for samples aligned with vg and bwa in Table S2.

Simulations

We simulated all possible reads overlapping chromosome 11 SNPs in the Human Origins dataset [16,
17]. In half of the simulated reads, the alternate allele was introduced. We then added different
levels of deamination into simulated reads using gargammel [19], based on empirically estimated
post-mortem damage in a dataset of 102 ancient genomes [18]. We aligned these simulated reads to
the 1000GP graph with vg or to the linear human reference genome (GRCh37) with bwa and vg

(here referred to as ’vg linear’). Read mapping with vg took approximately four (2.12-7.57) times
longer than with bwa. The resulting alignments were sorted with sambamba sort, converted to bam
with samtools view, and filtered with different mapping qualities thresholds (bwa and vg: mapQ >
0; ≥ 30; vg only: ≥ 50; ≥ 60). We estimated read alignment accuracy by comparing the genome
coordinate from where each read originates and the coordinate obtained after mapping, accounting
for offsets between these caused by softclips, deletions and insertions. Circos plots were plotted
using [34].

Authenticity and contamination estimates

Post-mortem deamination plots were generated with mapDamage v2 [24], sampling one million
reads per sample. We estimated X-chromosome contamination in all male samples with ANGSD
[35], with the parameters ’-r X:5000000-154900000 -doCounts 1 -iCounts 1 -minQ 20’ and using
polymorphic sites identified in the HapMap Project.

Variant calling and population genetics analyses

For population genetics analyses, we used the Human Origins dataset distributed with Lazaridis
et al. [36]. In order to estimate D-statistics and Principal Component Analyses, we generated
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pileups for each individual [25] at 1233553 SNPs from the Human Origins dataset using samtools
mpileup, imposing a minimum base quality filter of q20. We note that pileups were generated from
bwa aligned bam files filtered for mapping quality 30 and vg for mapping quality 50. We generated
pseudo-haploid genotypes by randomly sampling one allele at each SNP site and converted resulting
pseudo-haploid genotypes to PLINK format using PLINK 1.9 [37]. These were subsequently merged
with the Chimp and Href (the human reference genome) samples from the Human Origins dataset
and converted to eigenstrat format using convertf. We estimated D-statistics with qpDstat [16],
passing the parameter ’printsd: YES’ to obtain standard deviation estimates.

For Principal Component Analysis, we first filtered the Human Origins dataset, removing variants
with minor allele frequency below 0.02 and genotyping missingness of 0.05, and selecting West
Eurasian individuals. We merged this dataset with the pseudo-haploid genotypes belonging to the
ancient samples as described above and ran smartpca [38, 39], restricting the analysis to transversion
SNPs, using the parameters ’lsqproject: YES’ to project ancient samples into the PCA coordinates
estimated with present-day populations, ’killr2: YES’ to exclude SNPs in high linkage disequilibrium
(r2thresh: 0.2) and performing two iterations for outlier removal (numoutlieriter: 2).

Downsampling experiment

We downsampled bwa and vg alignments belonging to the high-coverage Yamnaya individual from
1 to 10x using samtools. We then called 1,054,447 biallelic snps present in the 1000 Genomes
chr21 VCF from all alignments using bcftools v. 1.8, requiring a base quality of at least 20. From
the resulting variant calls, we kept only biallelic SNPs and selected heterozygous genotypes. We
removed potential deamination SNPs and excluded variant calls with quality score below 30. Finally,
we estimated the proportion of variants correctly recovered by comparing the genotypes obtained
from the downsampled alignments with those obtained at full coverage. Comparison with the read
modification method was done by modifying the downsampled and full coverage bwa-aligned reads
with the 1000 Genomes SNP alleles and calling variants as described above.

Alternate allele support and allele balance

In order to compare alternate allele support between vg and bwa alignments, we called chromosome
1 SNPs from the Yamnaya alignemnts with bcftools. We then filtered these by variant quality
greater or equal than 30, with depth of coverage above 8, and selected heterozygous variants. From
these genotype calls, we obtained reference and alternate allelic depth and compared alternate allele
support between the vg and bwa aligned sample.

Comparison with an alternative method for reducing reference bias

We compared vg with the workflow proposed by [10] to reduce reference bias. The following method
was applied to both real and simulated data. First, for each bwa-aligned sample, we selected reads
overlapping with the Human Origins SNPs. We then modified the allele in these reads using the
’modify read alternative.py’ script, distributed with [10], and remapped them with bwa to GRCh37
as described above. We then kept the original reads which mapped to the the same location of
the modified reads with ’filter sam startpos dict.py’. We estimated D-statistics from the resulting
filtered alignments as described above.
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List of abbreviations

aDNA - ancient DNA
MAF - minor allele frequency
PCA - Principal Component Analysis
UDG - uracil-DNA-glycosylase
PMD - Post-mortem damage
1000GP - 1000 Genomes Project
mapQ - mapping quality
OLS - ordinary least squares
bp - basepairs
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Figures and Tables

Table 1: Datasets analysed in the present study.

Dataset Number of individuals Genomic coverage Treatment Type Region

Damgaard et al. 2018 2 11.24-18.95x untreated whole-genome shotgun sequencing Eurasian Steppe
Martiniano et al. 2016 9 0.54-1.63x untreated whole-genome shotgun sequencing England

Shiffels et al., 2016 11 0.47-7.86x partial UDG/USER whole-genome shotgun sequencing England
Posth et al. 2018 13 0.02-0.40x partial UDG target capture Americas
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Fig. 1: Sequence tube maps [40] of a small region of the human genome with aDNA reads from
the Yamnaya individual aligned with A) bwa aln to a linear reference sequence and B) vg map

to a graph containing 1000 Genomes variants. The individual is heterozygous for both an indel
(GTTTGAG/-) and a SNP (A/C) in this region, with insertion and alternate allele on the same
haplotype. The two underlying haplotypes in this region are coloured in grey, and red and blue lines
indicate forward and reverse reads respectively. None of the 6 reads across the insertion and only 2
of 12 reads across the SNP were mapped by bwa. Reads were locally realigned with vg map to the
graph for the purpose of visualization.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 26, 2019. ; https://doi.org/10.1101/782755doi: bioRxiv preprint 

https://doi.org/10.1101/782755
http://creativecommons.org/licenses/by/4.0/


0.10 0.15 0.20 0.25 0.30 0.35 0.40

80
85

90
95

10
0

deamination

%
 a

lig
ne

d 
re

ad
s

●

●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

vg ALT
bwa ALT
vg REF
bwa REF
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when aligning reads simulated from chromosome 11 of the Human Origins panel. Lines represent
ordinary least squares (OLS) regression results for the allele/aligner conditions corresponding to
their colors.
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Fig. 4: D-statistic based ABBA-BABA tests of reference bias in aDNA. a) D-statistics of the form
D(vg, bwa; GRCh37, Chimp) estimated for 34 ancient individuals, using transversion SNPs only.
The figure label indicates the type of sequencing, enzymatic treatment and genomic coverage for
each sample. b) D-statistic for the ancient Yamnaya sample stratified by read length. In both
panels, negative D results indicate excess allele sharing between bwa alignments of the samples
and GRCh37 (the ABBA pattern), while positive values indicate an excess of sharing between vg

alignments and GRCh37 (the BABA pattern). The two patterns are illustrated by the trees above
the panels, where A alleles are given as blue lines on the tree and B alleles are shown in red.
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