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Single-cell RNA sequencing enables researchers to study
the gene expression of individual cells. However, in high-
throughput methods the portrait of each individual cell
is noisy, representing thousands of the hundreds of thou-
sands of mRNA molecules originally present. While many
methods for denoising single-cell data have been proposed,
a principled procedure for selecting and calibrating the
best method for a given dataset has been lacking. We
present “molecular cross-validation,” a statistically princi-
pled and data-driven approach for estimating the accuracy
of any denoising method without the need for ground-truth.
We validate this approach for three denoising methods—
principal component analysis, network diffusion, and a
deep autoencoder—on a dataset of deeply-sequenced neu-
rons. We show that molecular cross-validation correctly se-
lects the optimal parameters for each method and identifies
the best method for the dataset.
Keywords: Single-cell sequencing, Statistics, Deep Learn-
ing

High-throughput single-cell RNA sequencing (scRNA-
seq) has become an essential tool to study cellular diversity and
dynamics, enabling researchers to discover novel cell types1,
map whole-organism transcriptomic atlases2, describe features
of fate determination in development3–6, and uncover transcrip-
tional responses to stimuli7.

The data from scRNA-seq experiments are distinguished
by their sparsity: in cell types where mRNA from ten thou-
sand genes are observed in bulk data, mRNA from only a few
thousand of those genes will be detected in each cell. While
some of that variability may reflect biological phenomena such
as the existence of sub-populations of cell types or transcrip-
tional bursting, much of it is an inevitable consequence of the
numbers involved. In high-throughput methods, many cells are
sequenced to a depth of only a few thousand unique mRNA
molecules8–10. Since a typical mammalian cell contains hun-
dreds of thousands of mRNA molecules11, many genes present
at low levels will not be detected simply by chance12, 13. Sig-
nificant processing and analysis is required to extract biological
meaning from such sparse and noisy data.

Many computational methods have been proposed to re-
duce the noise in single-cell RNA-seq data. The most com-
mon approach, principal component analysis (PCA), approx-
imates the gene expression matrix as a product of low-rank
matrices, and is included as a preprocessing step in popular
software packages for scRNA-seq analysis14–16. Deep autoen-
coders provide a flexible extension to PCA, allowing for hierar-
chical features, nonlinear effects, and loss functions tailored to
count data17, 18. In contrast, diffusion-based methods perform

local smoothing, where the expression of each cell is averaged
with those of the most similar cells from the same experiment19.
Applying one of these denoising methods can make subsequent
analyses simpler: instead of having to design a clustering, tra-
jectory, or pathway method tailored end-to-end to undersam-
pled scRNA-seq data, one may apply a more straightforward
method to the denoised data.

Each of these denoising methods has parameters that
control the trade-off between removing noise and blurring the
biological signal. For PCA, the key parameter is the number
of principal components. As more components are used, more
of the true variability between cells is retained, but so is more
of the noise. For deep autoencoders, the key parameter is the
width of the bottleneck layer. When the bottleneck layer is
wide, the autoencoder will let noise through, and when the bot-
tleneck layer is narrow, the autoencoder will discard signal∗.
For diffusion-based methods, the key parameter is how much
to diffuse: too little and noise remains, too much and the true
heterogeneity of the cells is obscured. Choosing these parame-
ters well can improve all downstream biological analyses.

We propose an approach for estimating the relative ac-
curacy of any single-cell denoising method, inspired by self-
supervised approaches to image denoising20, 21. We randomly
apportion the counts from each cell into two groups, each simu-
lating a shallower but statistically independent measurement of
the original cell (Fig. 1a). The accuracy of a denoising model
can be evaluated by fitting it on one of the groups (training) and
comparing the denoised output to the other group (validation).
We prove that this “molecular cross-validation” (MCV) loss ap-
proximates, up to a constant, the ground-truth loss, defined as a
hypothetical comparison to the full mRNA content of the orig-
inal cell (Fig. 1b, Methods). Just as ordinary cross-validation
may be used to select good parameters for a predictive model
on a given dataset, molecular cross-validation may be used to
find good parameters for a denoising model.

We validate this approach on two datasets for which we
have a form of ground-truth. The first (Neuron) is a set of 4581
deeply-sequenced neurons from a large dataset of 1.3 million
neurons22. We selected all cells with at least 20,000 UMIs
and subsampled them to 3000 molecules to simulate a typical
shallow-depth experiment. We split molecules into training and
validation sets using a 90/10 ratio, and compute the average loss
over ten splits. The original counts serve as a proxy for ground-
truth gene expression. In Figure 1c, we show how three key
metrics vary as we sweep the parameters of three different de-
noising models on the Neuron dataset. The second example is
a simulated dataset of 4096 cells where the molecules detected
are drawn at random from a known distribution. The corre-
sponding plots for the simulated dataset are in Supplementary

∗PCA can be viewed as a linear autoencoder with one hidden layer, the
bottleneck, whose width is the number of principal components.
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Figure 1: Molecular Cross-Validation loss calibrates denoising methods for single-cell RNA-seq. (a) A random partition of the
molecules captured from a cell (x) simulates two independent samples (x′, x′′) of the cell’s total mRNA (z). (b) The performance
of a denoiser f is evaluated in three ways: by comparing f(x′) to x′ (reconstruction loss) and to x′′ (MCV loss), and by comparing
f(x) to z (ground-truth loss). (c) Performance of three denoising methods across a range of model parameters. Arrows denote
the minima of the MCV and ground-truth loss curves; red arrows denote the global minima among all three methods. Curves
shown are for the Neuron dataset of 4581 deeply-sequenced cells.

Fig. 1.

The first metric shown, the reconstruction loss, measures
the difference between the training data and the denoised train-
ing data (Fig. 1c, top row). This is the objective function explic-
itly minimized by PCA and the deep autoencoder, and it strictly
decreases as the number of principal components or bottleneck
width increases. In diffusion-based methods, the reconstruc-
tion loss strictly increases as a function of diffusion time, where
t = 0 leaves the input data unchanged and t >> 0 corresponds
to replacing each cell with the bulk average. Because the recon-
struction loss vanishes when no denoising is done, it is a poor
measure of the quality of a denoiser.

The second metric is the molecular cross-validation loss,
which measures the difference between the validation data and
the denoised training data (Fig. 1c, middle row). The third
metric is the ground-truth loss (Fig. 1c, bottom row), which
measures the difference between the denoised data and the true
gene expression of the original cell. The best parameter values
for a particular model are those which minimize the ground-
truth loss.

In accordance with the theory, the MCV loss and the
ground-truth loss curves have almost identical shapes†. In par-
ticular, their minima occur at nearly the same parameter values.
That means one can select the optimal parameters for each de-
noising algorithm by finding the minimizer of the molecular

†Asymptotically, their shapes will be identical; with finite data they will
merely be very close. See methods for details.

cross-validation loss (Fig. 1c check marks). One can also use
the MCV to decide between algorithms. For the Neuron data,
the MCV loss is minimized by diffusion with t = 2; note that
this is also the minimizer of the ground-truth loss.

The losses above are based on the mean-square error, a
generic loss function for any numerical data. For count-based
data such as scRNA-seq, one may also use a count-based loss
such as Poisson. The MCV procedure extends naturally to the
Poisson loss, and in the case of the Neuron dataset, selects the
same optimal method and parameter value (Methods, Supple-
mentary Fig. 2).

The qualitative effect of choosing the right parameter
values for a denoiser is illustrated in Figure 2. We calibrate
PCA on a dataset (Myeloid) of 2417 myeloid bone marrow cells
from Paul, Arkin, & Giladi et al.. In Fig. 2a we show clustered
heatmaps for 33 genes of interest in this dataset. When only
the first three components are used (far right panel), the gene
expression is forced into a block structure, artificially remov-
ing heterogeneity that was present in the original sample. Con-
versely, when too many components are used, sampling noise
is retained and some subtle relationships are lost. In Fig. 2b
we show that the qualitative relationship between the expres-
sion of Gata1 and Apoe depends on the amount of smoothing.
By selecting an optimal number of principal components with
MCV, it is possible to see separation between the Gata1-low
and -high populations. When too many components are used,
the noise overpowers this signal and the presence of Apoe in a
Gata1-intermediate population is difficult to discern. When too
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Figure 2: The effect of denoising bone marrow data from the Myeloid dataset using PCA with different numbers of principal
components. (a) Heatmaps for 33 genes of interest. Expression values have been scaled per-gene and re-ordered based on the
optimally-smoothed expression matrix. (b) Hexbin plots showing the relationship between Apoe and Gata1 in the data at each
level of smoothing.

few components are used, only a broad and perhaps spurious
correlation is visible.

PCA is a simple method for denoising, with one free
parameter. More complex methods can have many more pa-
rameters, and the MCV loss may be used to simultaneously
calibrate all of them. We demonstrate this for MAGIC, which
combines PCA with graph diffusion19, on a dataset of cells un-
dergoing an epithelial-to-mesenchymal transition. We focus on
three genes which provide a portrait of the transition: an ep-
ithelial marker, CDH1, a mesenchymal marker, VIM, and a
transcription factor, ZEB1. We perform a grid search to find
the values of three parameters of MAGIC which are best for
these data: the number of principal components, the number of
neighbors used to build the graph, and the diffusion time. We
find that the optimal parameter values (20 PCs, 4 neighbors, and
1 diffusion step) differ appreciably from the default parameters
(100 PCs, 10 neighbors, and 7 diffusion steps). In Figure 3,
we show the qualitative consequences of that difference. While
no relationship between the three genes is discernible in the
raw data, the version denoised with default parameters shows a
strikingly smooth transition from a CDH1-high VIM-low state
to a CDH1-low VIM-high state, with ZEB1 turning on some-
where in the middle. When denoised with optimal parameters,
however, the data reveal a more heterogeneous version of the
same general trend. At low values of CDH1, there is a wide
range of VIM and ZEB1 expression, perhaps representing the

natural variation exhibited by cells along this trajectory. This
demonstrates the danger of evaluating denoising methods by
agreement with expected patterns. The patterns of gene expres-
sion learned from bulk studies will appear more clearly as data
is oversmoothed.

Discussion

In this work we demonstrate molecular cross-validation, an
approach for evaluating any method for denoising single-cell
RNA-seq data. As more tools for scRNA-seq analysis be-
come available, there is an increasing burden on researchers
to run, tune, and evaluate the performance of different meth-
ods on their specific data. This process is time-consuming and
prone to bias, as it is tempting to select the method giving the
best concordance with prior biological knowledge. In contrast,
molecular cross-validation provides an unbiased way to both
calibrate a given denoising method and to compare its perfor-
mance to other methods. This allows researchers to take advan-
tage of novel methods when they offer better performance on
their data.

The key feature of molecular cross-validation is that it
directly estimates the quantity of interest: the similarity of the
denoised data to the full set of mRNA present in the orig-
inal cell. This avoids the pitfalls of existing approaches to
calibration. Some approaches are specific to certain models:
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Figure 3: MAGIC denoising algorithm with parameters optimized using the MCV loss shows a heterogeneous portrait of the
epithelial-mesenchymal transition. (a) Parameter space for MAGIC algorithm. Each point represents a setting for diffusion time,
the number of graph neighbors, and the number of principal components. (b) Effect on MCV loss of changing each parameter
away from optimal value (red arrows). (c) The relationship between an epithelial marker, CDH1, a mesenchymal marker, VIM,
and a transcription factor, ZEB1, is indiscernible in the raw data, overly smooth when denoised with default parameters, and
present but heterogeneous when denoised with optimal parameters.

bi-cross-validation23 and eigenvalue-localization24 only apply
to matrix factorization models like PCA. Information-theoretic
approaches like the Akaike information criterion fail to ex-
tend to nonparametric methods like diffusion or overparame-
terized models like deep neural networks25. Finally, metrics
that measure the concordance of downstream results with prior
expectations, such as silhouette width, do not directly reward
accuracy26. For example, replacing the expression of each cell
with the average expression of its cluster will increase the sil-
houette width while removing all within-group heterogeneity.
The MCV loss, in contrast, makes no assumptions about the
structure of the model or the dataset.

The accuracy of the estimate of the ground-truth loss
provided by a single round of MCV depends on the choice of
train-validation split. As more molecules are used for train-
ing, the optimal parameters for the training data will approach
the optimal parameters for the full data. However, as fewer
molecules are used for validation, the MCV loss will be less sta-
ble over different random splits. To resolve this bias-variance
tradeoff, we compute the average of the MCV loss over many
random splits (here, 10), using most of the molecules for train-
ing each time (here, 90%). There may be computationally effi-
cient ways to adaptively select the training-validation split and
number of replicates; this is an interesting topic for future work.

We have shown how to calibrate the parameters of de-
terministic single-cell denoising methods, and how to select the
best method for a given dataset. Probabilistic methods for mod-

eling single-cell data, such as scVI and SAVER18, 27 also have
parameters that require tuning, and calibrating and comparing
such methods is an interesting direction for future work. It is
also possible that more complex methods with many more pa-
rameters could be developed, using the MCV loss to fit those
parameters in a principled way. One might even train a model
to directly minimize the MCV loss, as in recent self-supervised
deep learning models for image denoising21, 28.
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Methods

We begin by describing a simple statistical model of the capture and sequencing process. Consider a collection of cells c1, . . . , cn,
each containing a set of mRNA molecules Ω1, . . . ,Ωn. The output of a single-cell RNA-seq experiment using unique molecular
identifiers (UMIs) will be sequences from a random subset of the molecules from each cell. We assume that the molecules
detected from cell i are drawn uniformly at random from Ωi, with each molecule having a probability pi of being detected. (The
capture efficiencies pi may differ between cells.) By aligning the sequences of detected molecules to a genome, a vector xi of
counts for each gene is produced.‡ We write X for the full cell-by-gene matrix, where Xij is the count of molecules from cell i
mapping to gene j. We also consider a hypothetical matrix Xdeep which would have been produced if all of the molecules from
each cell were detected. If we imagine rerunning the random capture process on the same set of cells, then X becomes a random
matrix with entries Xij ∼ Binomial(Xdeep

ij , pi).

It is common in the literature to use a Negative Binomial distribution to model the variability in gene counts between
cells17, 18. This represents three kinds of variability: biological differences between cells, variability in library size, and sampling.
Here, we are taking the mRNA content of each cell and the fraction of molecules captured as fixed. The only remaining variability
is in which molecules are sampled, yielding the Binomial distribution above. Note that for sequencing methods without UMIs,
counts do not represent independently captured molecules, violating the assumptions required for molecular cross-validation.

We view a denoising algorithm as a function f which takes in the entire matrix of observed counts X and produces an
estimate of Xdeep. We would like to select a function f for which the loss L(f(X), Xdeep) is small, for an appropriate loss
function L. Molecular cross-validation (MCV) is a procedure for estimating that loss (up to a constant) from X alone. Before
describing MCV, we first recall some properties of ordinary cross-validation (CV) and the difficulties of applying CV to the task
of denoising.

Cross-Validation. In an ordinary prediction problem, one fits a model g to a training set D = {(x1, y1), . . . , (xn, yn)}. The
inferential task is to estimate the accuracy that the resulting predictor g(x;D) would have on new data points. Usually, one is
considering some family of models gm with a hyperparameter m, and is looking to select the model which will generalize the
best.

Note that the error of the model on the training data itself,

R(m,D) =
1

n

∑
(xi,yi)∈D

L(gm(xi;D), yi),

is a poor prediction of generalization, as more complex models will always fit their training data better.

In cross-validation, one repeatedly splits the training dataset into complementary pieces Dk and D−k, each time using the
larger piece D−k to train the model and the smaller piece Dk to evaluate it. [In traditional K-fold cross-validation, each training
data point appears in exactly one Dk. Similar estimates may be obtained by choosing each Dk to be a random subset of 1/K of
the training data.] The estimate of the generalization error is

RCV (m,D) =
1

n

K∑
k=1

∑
(xi,yi)∈Dk

L(gm(xi;D−k), yi).

This is an imperfect estimate for the generalization error of gm(x;D), since each time the model is fit it has access to only
a subset of the training data. Perhaps a more expressive model could be fit if all of the data were used, but in the limit of large
training sets, this gap disappears.

Difficulties arise when cross-validation is used on an unsupervised task like denoising, where only the noisy data x is
observed. One may still use CV to estimate the expected reconstruction error L(f(x), x) for a model f by fitting it on some data
points and validating it on held-out data points. However, the expected reconstruction error is not a measure of the quality of the
denoiser, as the identity function, which does no denoising, will generate zero loss on both train and validation sets. Since a more

‡For linguistic convenience we will assume that the counts are indexed by genes, but the same arguments apply if (pseudo)alignments to a transcriptome are
used instead.
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complex model will be better able to approximate the identity function, it will have lower loss on the held-out validation sets even
when it has over-fit the data. For example, PCA with m principal components fits a model of the form gm(x) = UV Tx where
U and V are m × p matrices. As m increases, the capacity of the model goes up, and RCV (m,D) strictly decreases. However,
the distance between gm(x;D) and the ground truth will decrease until an optimal m is reached and then increase thereafter (as
in Figure 1).

To get a proper estimate of the denoising quality of f , we need a way to decouple the noise in the data used to fit f from
the noise in the data used to evaluate it, so that the identity mapping will no longer be optimal.

Independence. While we may never have access to the ground truth Xdeep, we can construct statistically independent samples
from it by carefully splitting our measurement X .

If we did have two independent random captures of a cell with efficiency p′ and p′′, then their overlap would be a capture
of efficiency p′p′′ and their union would be a capture of efficiency

p = p′ + p′′ − p′p′′. (1)

We instead begin with a single capture S of efficiency p from a set of molecules Ω, and choose probabilities p′ and
p′′ satisfying (1). Then we work backwards to generate independent samples summing to the observed sample: we randomly
partition the captured molecules into three groups S1, S2, S3 with relative proportions p′(1 − p′′) : p′p′′ : p′′(1 − p′). The
unions S′ = S1 ∪ S2 and S′′ = S2 ∪ S3 form independent draws from Ω with union S. The corresponding formulation for the
cell-by-gene matrix of observed counts is as follows:

Proposition 1. Fix a count matrix Xdeep, capture efficiencies pi, and a validation ratio α. Then there exist probabilities p′i, p
′′
i

such that if we draw

Xij ∼ Binomial(Xdeep
ij , pi)

X ′ij ∼ Binomial(Xij , p
′
i/p)

Xo
ij ∼ Binomial(X ′ij , p

′′
i )

X ′′ = X −X ′ +Xo

then X ′ and X ′′ are independent random variables with entries distributed Binomial(Xdeep
ij , p′i) and Binomial(Xdeep

ij , p′′i ),
respectively, and p′′i /p

′
i = α.

Proof. The conditions p′′i /p
′
i = α and p = p′ + p′′ − p′p′′ produce a quadratic equation for p′:

p = p′(1 + α)− α(p′)2,

whose solution is

p′ =
1 + α−

√
(1 + α)2 − 4αp

2α
.

We then set p′′ = αp′. The claim follows from analyzing the conditional probabilities. Take two independent draws S′ and S′′

from a set Ω with probabilities p′ and p′′, where now |Ω| = Xdeep
ij , and set S = S′ ∪ S′′. Then for a given molecule m, we have

P(m ∈ S) = p

P(m ∈ S′|m ∈ S) = p′/p

P(m ∈ S′ ∩ S′′|m ∈ S′) = p′p′′/p′ = p′′.

The principal of inclusion-exclusion for the sizes of the sets S, S′, and S′′ finishes the proof.

Because the noise in the renditions of each cell in X ′ and X ′′ is independent while the underlying signal is the same,
training a denoising model on one and validating its output using the other gives insight into its accuracy.

In what follows, we suppress indices i, j where both sides of an equation straightforwardly vectorize.
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Proposition 2 (MSE Loss). Let X ∼ Binomial(Xdeep, p). Fix a validation ratio α, and let X ′, X ′′ be random splits of X and
let p′, p′′ be probabilities as in Proposition 1. Let f be an arbitrary denoising function. Then

E
∥∥αf(X ′)−X ′′

∥∥2 = E
∥∥αf(X ′)− p′′Xdeep

∥∥2 + E
∥∥p′′Xdeep −X ′′

∥∥2 , (2)

where the expectations are with respect to the sampling of X from Xdeep and X ′, X ′′ from X .

Proof. We expand the left-hand side as,

E
∥∥αf(X ′)−X ′′

∥∥2 = E
∥∥αf(X ′)− p′′Xdeep + p′′Xdeep −X ′′

∥∥2
= E

∥∥αf(X ′)− p′′Xdeep
∥∥2 +

∥∥p′′Xdeep −X ′′
∥∥2 + 2〈αf(X ′)− p′′Xdeep, p′′Xdeep −X ′′〉,

where 〈A,B〉 denotes the entrywise inner product between matrices. By Proposition 1, the process of drawing X from Xdeep

and splitting it into X ′ and X ′′ is equivalent to drawing X ′ and X ′′ independently from Xdeep and adding them (less overlap) to
get X . Since X ′ and X ′′ are independent, we may bring the expectation inside the third term:

EX〈αf(X ′)− p′′Xdeep, p′′Xdeep −X ′′〉 = 〈EX′ [αf(X ′)− p′′Xdeep],EX′′ [p′′Xdeep −X ′′]〉
= 〈EX′ [f(X ′)− p′′Xdeep], 0〉 = 0.

In the formulation above, f can be an arbitrarily complex function of the input matrixX ′. For example, f may be ”perform
PCA on X ′ and project it onto the first k principal components” or ”train a deep autoencoder neural network using stochastic
gradient descent with a cosine annealed learning rate and weight decay with random seed equal to 42.”

Equation 2 states that the molecular cross-validation loss (left-hand side) is equal to the ground-truth loss (right-hand side,
first term) plus a constant independent of f (right-hand side, second term). The denoising function minimizing the MCV loss
will also be the function minimizing the ground-truth loss.

Practical Considerations. Note that the ground-truth loss on the right is for the denoiser applied to X ′. If one chooses parame-
ters for f which minimize the MCV, they will be optimal for X ′ but not necessarily for the full set of molecules X . In a typical
usage, where 90% of the molecules are used for training (corresponding to α = 1/9), X ′ is close to X and it is reasonable to
expect that the optimal parameters for denoising X ′ will be close to those for denoising X . In practice, we find this to be the case
(e.g. Figure 1 and Supplementary Figure 1.) This is analogous to the situation for ordinary CV, in which optimal hyperparameters
for fitting a model on 90% of the data points may be slightly suboptimal for fitting a model on all of the data; a more complex
model might take advantage of having more data to fit on. Nevertheless, it is common practice to take the hyperparameters found
using CV and use them to fit a model on all the data, and we recommend the same procedure for MCV.

Note that the overlap between the molecules in X ′ and X ′′ in Proposition 1 is very small when the capture efficiency p is
low. For a cell with 5000 molecules detected from a population of 500,000 (p = 1%) and validation ratio α = 1/9, the expected
overlap is only 4.5 molecules. In practice, one may simply partition the molecules inX , settingX ′ ∼ Binomial(X, 1/(1+α))
and X ′′ = X − X ′. On the other hand, if a significant fraction of the molecules from Xdeep are captured, one should use an
overlap as in Proposition 1. This is the case for the Neuron dataset below, where the deeply sequenced cells used as a proxy for
ground-truth contain as few as 20,000 molecules.

Normalization. To cope with differing capture rates between cells and differing magnitudes of expression for different genes, it
is common to normalize gene expression matrices. For example, the rows of the matrix may be normalized to “counts per N”
for some N , and the resulting matrix entries may be log or square-root normalized. Molecular Cross-Validation can also be used
to estimate the distance of a denoised normalized matrix to an appropriately normalized ground truth. The appropriate ground
truth is the expected value of the normalized matrix, which, since expectations do not commute with nonlinear functions, is not
given by naively normalizing a downscaled deep count matrix. Because the nonlinear effects of normalization may be different at
different sampling depths, specifically on the training and validation versions of each cell, a rescaling function may be necessary
to convert the denoised training matrix to the scale of the validation matrix.

Proposition 3 (MSE Loss with Normalization). Let X ∼ Binomial(Xdeep, p). Fix a validation ratio α, and let X ′, X ′′ be
random splits of X and p′, p′′ be probabilities as in Proposition 1. Let f be an arbitrary denoising function, let η be an arbitrary
normalization function, and let ν : R→ R be an arbitrary rescaling function. Then
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E
∥∥ν(f(η(X ′))− η(X ′′)

∥∥2 = E ‖ν(f(η(X ′))− Z‖2 + E ‖Z − η(X ′′)‖2 , (3)

where the expectations are with respect to the sampling of X from Xdeep and X ′, X ′′ from X . where Z = EY [η(Y )] for
Y ∼ Binomial(Xdeep, p′′).

Proof. As before, we exploit the independence of X ′ and X ′′. We have,

E
∥∥ν(f(η(X ′)))− η(X ′′)

∥∥2 = E ‖ν(f(η(X ′)))− Z + Z − η(X ′′)‖2

= E ‖ν(f(η(X ′)))− Z‖2 + ‖Z − η(X ′′)‖2 + 〈ν(f(η(X ′)))− Z,Z − η(X ′′)〉.

Since X ′ and X ′′ are independent, we may bring the expectation inside the third term:

EX〈ν(f(η(X ′)))− Z,Z − η(X ′′)〉 = 〈EX′ [ν(f(η(X ′)))− Z],EX′′ [Z − η(X ′′)〉]
= 〈EX′ [ν(f(η(X ′)))− Z], 0〉 = 0.

In the case where no normalization is used (i.e., η is the identity function), then Z = p′′Xdeep, the scaling function ν is
multiplication by p′′/p′ = α and this reduces to Proposition 2.

For square-root normalization, the situation is more subtle. To see this, consider a cell i with 10 molecules of gene j, so
Xdeep

ij = 10. Then the appropriate ground-truth Zij(p
′′) is a nonlinear function of p′′: For example, at p′′ = 1 it is

√
10 ≈ 3.16,

at p′′ = 0.1 it is 0.79, and at p′′ = 0.01 it is 0.10. In theory, the appropriate rescaling ν would depend on n, p′, and p′′, but
when p′ is relatively small, i.e., most molecules are not captured, the binomial distribution can be approximated by a Poisson
distribution and the calculation simplifies considerably. If we set

r(x) := E[
√
y|y ∼ Poisson(x)],

then we have ν(x) = r(αr−1(x)). This is the rescaling used to post-process the output of all square-root normalized denoisers
when computing the MCV loss.

Poisson Loss. The Mean-Square Error loss is quite useful, as the corresponding models are easy to fit and its minimizer is the
expected value of the target. However, the Poisson loss is a closer match to the generating process of the data. The log-likelihood
of observing k in a Poisson distribution with mean µ is loglik(µ, k) = µ− k logµ. We use the same notation to describe the total
log-likelihood for a vector or matrix of means and a matrix of counts:

loglik(M,K) :=
∑
i,j

loglik(Mi,j ,Ki,j) =
∑
i,j

Mi,j −Ki,j logMi,j .

Unlike for the MSE, the Poisson version of the MCV loss has no term for the noise variance: the MCV loss is equal in expectation
to the appropriate ground-truth loss.

Proposition 4 (Poisson Loss). Let X ∼ Binomial(Xdeep, p). Fix a validation ratio α, and let X ′, X ′′ be random splits of X
and p′, p′′ be probabilities as in Proposition 1. Let f be an arbitrary denoising function. Then

E [loglik(αf(X ′), X ′′)] = E
[
loglik(αf(X ′), p′′Xdeep)

]
. (4)

Proof. As before, we exploit the independence of X ′ and X ′′. We have

EX [loglik(αf(X ′), X ′′)] = EX′EX′′ [αf(X ′)−X ′′ logαf(X ′)]

= EX′
[
αf(X ′)− p′′Xdeep logαf(X ′)

]
= EX

[
loglik(αf(X ′), p′′Xdeep)

]
.

Since f(X ′) is independent of X ′′, and the Poisson loss is linear in the count variable, the expectation with respect to X ′′ can be
evaluated inside the loss without affecting the other terms.
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More generally, MCV will work for any loss function which is the log-likelihood of an exponential family. This includes
the mean-square error, which is the log-likelihood of a Gaussian, and the Poisson loss, as above, but also the Negative Binomial
distribution. The key observation is that these log-likelihoods are, up to a constant, Bregman Divergences, for which the value of
the mean parameter minimizing the average divergence of a dataset is the mean of that dataset (See Proposition 1 and Section 4.3
of Banerjee et al.29).

Data

Neurons: Data for 1.3 million mouse neurons were downloaded from 10X Genomics (22). We selected cells with at least 20,000
UMIs and subset to the 2000 most variable genes yielding a 4581 × 2000 count matrix. This matrix was subsampled to 3000
UMIs per cell to simulate a low-depth experiment and then processed as described in the Models section below.

Myeloid Bone Marrow: Data for 3072 mouse cells from Paul, Arkin, & Giladi et al. (30) were downloaded from GEO (acces-
sion: GSE72857) based on the ”Unsorted myeloid” label in the experimental design file. The data were filtered to cells with at
least 1000 UMIs and to genes present in at least 10 cells, yielding a 2417 × 10783 count matrix. Hierarchical clustering in Fig.
2a was performed using the Scipy package31 with average linkage and Euclidean distance.

EMT: Data for 7523 cells exhibiting the epithelial-to-mesenchymal transition from van Dijk et al. (19) were downloaded from
the MAGIC Github repository§. The data were filtered to cells with at least 1000 UMIs and to genes in at least 10 cells, yielding
a 7523 × 18259 count matrix. In Figure 3, the data is row-normalized to counts-per-N, where N is the median number of gene
counts per cell.

Simulated Dataset: We create a simulated dataset of 8 classes of 512 cells each, made up of 512 gene features. First we
generate a matrix P of expression “programs” to transform points from an 8-dimensional latent space into 512-dimensional gene
expression space. The class matrix W is defined as a random weighting over programs for each class. Multiplying these matrices
into gene space yields a ground truth expression matrix C (in log space) that reflects the structure of the latent space and the class
relationships. The expression eij for cell i from class j is generated by adding normally distributed noise to the mean expression
of class j.

P ∼ N(0, σ2
p I512)

W ∼ N(0, σ2
w I8)

C = W ·P
eij ∼ N(Cj , I512)

With σ2
p = 9

512 and σ2
w = 9

8 in these simulations. P is 8 × 512, W is 8 × 8, C is 8 × 512, and the expression matrix E is
4096× 512.

UMI counts are sampled from this expression matrix using a variable library size, yielding a count matrix with 38% non-
zero values. This level of sparsity is comparable to that found after restricting a single-cell dataset to deeply sequenced cells and
relatively highly expressed genes. The count matrix is partitioned into two independent samples, and ground truth accuracy is
assessed by comparison to the expected mean counts for each cell based on its library size and expression levels. The code used
for generating simulated scRNA-seq data is available in www.github.com/czbiohub/simscity.

Models

PCA: The rank k matrix which is closest in the sense of mean-square error to a given matrix X is given by projecting X onto
the span of the first k principal components. Concretely, if we write X = UΣV for the singular value decomposition, then the
denoised matrix is defined by fk(X) := UkΣkVk, using the first k columns of U , the first k diagonal elements (singular values)
of Σ, and the first k rows of V . When performing PCA we square-root normalized the UMI count matrix.

Diffusion: We use a simple version of a diffusion model, which effectively averages similar expression vectors together. Con-
cretely, we form a symmetrized 15-nearest neighbor graph G on the set of cells, where the distances used to determine neighbors
are Euclidean distances in the 30-PC projection of the square-root and row-normalized gene expression matrix X . Let W be the
transition matrix of a lazy random walk (go to a random neighbor with probability 0.5 and stay put with probability 0.5). For a

§www.github.com/KrishnaswamyLab/MAGIC/tree/master/data
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given normalization function η and diffusion time t, the output of the denoiser is ft(X) = W tη(X). For mean-square error the
count matrices were square-root normalized before diffusion, while for Poisson loss the raw counts were used.

This is a simplified implementation of the diffusion idea used in MAGIC, which includes adaptive neighborhood sizes,
reweighted edges, and performs the diffusion in PC-space.

Autoencoder: We use a simple autoencoder architecture where the encoder and decoder each have a single hidden layer, and
are connected by a bottleneck layer which forces the autoencoder to compress the data. For the Neuron and Myeloid datasets
the encoder and decoder hidden layers contained 512 nodes, while for the relatively simple simulated data they contained 128
nodes. All layers were fully-connected and used ReLU activation. For mean-square error the count matrices were square-root
normalized, while for Poisson loss the input was log normalized (specifically loge(x+ 1)).

Each network was trained using stochastic gradient descent with aggregated momentum32, with multiple cycles of co-
sine annealing until validation loss stopped improving. For complete details and code see https://www.github.com/
czbiohub/molecular-cross-validation.

We note that training a deep-learning model can involve tuning many hyperparameters beyond the bottleneck size and
network architecture, and while the results shown here illustrate the utility of molecular cross-validation for model selection,
other architecture choices may obscure the relationship between model complexity and the self-supervised loss33. For example,
in this work the autoencoder did not outperform PCA in spite of being a strictly more expressive model, highlighting that the
training process is an integral part of a deep learning model.

References

1. Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–
1323.e30 (2016).

2. Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372
(2018).

3. Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. & Klein, A. M. Lineage tracing on transcriptional landscapes links state
to fate during differentiation. preprint, Systems Biology (2018). URL http://biorxiv.org/lookup/doi/10.
1101/467886.

4. McKenna, A. et al. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907
(2016).

5. Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 360,
eaaq1723 (2018).

6. Wagner, D. E. et al. Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. Science 360,
981–987 (2018).

7. Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nature
neuroscience 21, 120–129 (2018).

8. Macosko, E. et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter
Droplets. Cell 161, 1202–1214 (2015). URL http://www.sciencedirect.com/science/article/pii/
S0092867415005498.

9. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nature Communications 8, 1–12
(2017). URL https://www.nature.com/articles/ncomms14049.

10. Ding, J. et al. Systematic comparative analysis of single cell RNA-sequencing methods. preprint, Genomics (2019). URL
http://biorxiv.org/lookup/doi/10.1101/632216.

11. Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers – the database of key numbers in molecu-
lar and cell biology. Nucleic Acids Research 38, D750–D753 (2010). URL https://academic.oup.com/nar/
article-lookup/doi/10.1093/nar/gkp889.

12. Townes, F. W., Hicks, S. C., Aryee, M. J. & Irizarry, R. A. Feature Selection and Dimension Reduction for Single Cell
RNA-Seq based on a Multinomial Model. preprint, Genomics (2019). URL http://biorxiv.org/lookup/doi/
10.1101/574574.

10

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/786269doi: bioRxiv preprint 

https://www.github.com/czbiohub/molecular-cross-validation
https://www.github.com/czbiohub/molecular-cross-validation
http://biorxiv.org/lookup/doi/10.1101/467886
http://biorxiv.org/lookup/doi/10.1101/467886
http://www.sciencedirect.com/science/article/pii/S0092867415005498
http://www.sciencedirect.com/science/article/pii/S0092867415005498
https://www.nature.com/articles/ncomms14049
http://biorxiv.org/lookup/doi/10.1101/632216
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkp889
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkp889
http://biorxiv.org/lookup/doi/10.1101/574574
http://biorxiv.org/lookup/doi/10.1101/574574
https://doi.org/10.1101/786269
http://creativecommons.org/licenses/by/4.0/


13. Svensson, V. Droplet scRNA-seq is not zero-inflated. bioRxiv 582064 (2019). URL https://www.biorxiv.org/
content/10.1101/582064v1.

14. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis.
Genome Biology 19, 15 (2018). URL https://genomebiology.biomedcentral.com/articles/10.1186/
s13059-017-1382-0.

15. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data.
Nature Biotechnology 33, 495–502 (2015). URL http://www.nature.com/articles/nbt.3192.

16. Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell rna-seq data with
bioconductor. F1000Research 5 (2016).

17. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq denoising using
a deep count autoencoder. Nature Communications 10 (2019). URL http://www.nature.com/articles/
s41467-018-07931-2.

18. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics.
Nature Methods 15, 1053 (2018). URL https://www.nature.com/articles/s41592-018-0229-2.

19. van Dijk, D. et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell 174, 716–729.e27 (2018).
URL https://linkinghub.elsevier.com/retrieve/pii/S0092867418307244.

20. Lehtinen, J. et al. Noise2Noise: Learning Image Restoration without Clean Data. In International Conference on Machine
Learning, 2971–2980 (2018).

21. Batson, J. & Royer, L. Noise2Self: Blind Denoising by Self-Supervision. In Chaudhuri, K. & Salakhutdinov, R. (eds.)
Proceedings of the 36th International Conference on Machine Learning, vol. 97 of Proceedings of Machine Learning Re-
search, 524–533 (PMLR, Long Beach, California, USA, 2019). URL http://proceedings.mlr.press/v97/
batson19a.html.

22. 10X Genomics. 1M neurons - Datasets - Single Cell Gene Expression - Official 10x Genomics Support. URL https:
//support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons.

23. Owen, A. B. & Perry, P. O. Bi-cross-validation of the SVD and the nonnegative matrix factorization. The Annals of Applied
Statistics 3, 564–594 (2009). URL http://projecteuclid.org/euclid.aoas/1245676186.

24. Aparicio, L., Bordyuh, M., Blumberg, A. J. & Rabadan, R. Quasi-universality in single-cell sequencing data. bioRxiv (2018).
URL http://biorxiv.org/lookup/doi/10.1101/426239.

25. Akaike, H. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike, 215–222 (Springer,
1974).

26. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational
and Applied Mathematics 20, 53–65 (1987). URL http://www.sciencedirect.com/science/article/pii/
0377042787901257.

27. Huang, M. et al. SAVER: Gene expression recovery for UMI-based single cell RNA sequencing. preprint, Genomics (2017).
URL http://biorxiv.org/lookup/doi/10.1101/138677.

28. Krull, A., Buchholz, T.-O. & Jug, F. Noise2Void - Learning Denoising from Single Noisy Images. arXiv:1811.10980 [cs]
(2018). URL http://arxiv.org/abs/1811.10980. ArXiv: 1811.10980.

29. Banerjee, A., Merugu, S., Dhillon, I. & Ghosh, J. Clustering with Bregman Divergences. In Proceedings of the 2004
SIAM International Conference on Data Mining, 234–245 (Society for Industrial and Applied Mathematics, 2004). URL
https://epubs.siam.org/doi/10.1137/1.9781611972740.22.

30. Paul, F. et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. Cell 163, 1663–1677 (2015).
URL https://linkinghub.elsevier.com/retrieve/pii/S0092867415014932.

31. Virtanen, P. et al. SciPy 1.0–Fundamental Algorithms for Scientific Computing in Python. arXiv:1907.10121 [physics]
(2019). URL http://arxiv.org/abs/1907.10121. ArXiv: 1907.10121.

32. Lucas, J., Sun, S., Zemel, R. & Grosse, R. Aggregated Momentum: Stability Through Passive Damping. ICLR (2018). URL
https://openreview.net/forum?id=Syxt5oC5YQ.

11

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/786269doi: bioRxiv preprint 

https://www.biorxiv.org/content/10.1101/582064v1
https://www.biorxiv.org/content/10.1101/582064v1
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1382-0
http://www.nature.com/articles/nbt.3192
http://www.nature.com/articles/s41467-018-07931-2
http://www.nature.com/articles/s41467-018-07931-2
https://www.nature.com/articles/s41592-018-0229-2
https://linkinghub.elsevier.com/retrieve/pii/S0092867418307244
http://proceedings.mlr.press/v97/batson19a.html
http://proceedings.mlr.press/v97/batson19a.html
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
http://projecteuclid.org/euclid.aoas/1245676186
http://biorxiv.org/lookup/doi/10.1101/426239
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://www.sciencedirect.com/science/article/pii/0377042787901257
http://biorxiv.org/lookup/doi/10.1101/138677
http://arxiv.org/abs/1811.10980
https://epubs.siam.org/doi/10.1137/1.9781611972740.22
https://linkinghub.elsevier.com/retrieve/pii/S0092867415014932
http://arxiv.org/abs/1907.10121
https://openreview.net/forum?id=Syxt5oC5YQ
https://doi.org/10.1101/786269
http://creativecommons.org/licenses/by/4.0/


33. Hu, Q. & Greene, C. S. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for
single cell RNA transcriptomics. preprint, Bioinformatics (2018). URL http://biorxiv.org/lookup/doi/10.
1101/385534.

12

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 30, 2019. ; https://doi.org/10.1101/786269doi: bioRxiv preprint 

http://biorxiv.org/lookup/doi/10.1101/385534
http://biorxiv.org/lookup/doi/10.1101/385534
https://doi.org/10.1101/786269
http://creativecommons.org/licenses/by/4.0/


0.1

0.2

0.3
R

ec
on

st
ru

ct
io

n 
Lo

ss
PCA Diffusion Autoencoder

0.050

0.051

0.052

M
C

V 
Lo

ss

1 10 20 30 40 50

0.02

0.04

0.06

0.08

G
ro

un
d-

tru
th

 L
os

s

1 2 3 4 5 6 7 8 9 10 1 2 3 4 6 8 12 16 24 32 48 64 96 12
8

Figure S1: Performance of three denoising methods across a range of model parameters on simulated data. Arrows denote
the minima of the MCV and ground-truth loss curves, which coincide. Red arrows denote the global minima among all three
methods. For this dataset, the best model is PCA with 9 principal components.
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Figure S2: Performance of two denoising methods across a range of model parameters, evaluated using a Poisson loss. Arrows
denote the minima of the MCV and ground-truth loss curves, which coincide. Red arrows denote the global minima. (a) On the
Neuron dataset, diffusion with t = 2 performs the best. (b) On the simulated dataset, the autoencoder with bottleneck width 12
performs the best.
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