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Abstract

Droplet-based scRNA-seq assays are known to pro-
duce a significant amount of background RNA counts,
the hallmark of which is non-zero transcript counts
in presumably empty droplets. The presence of back-
ground RNA can lead to systematic biases and batch
effects in various downstream analyses such as dif-
ferential expression and marker gene discovery. In
this paper, we explore the phenomenology and mech-
anisms of background RNA generation in droplet-
based scRNA-seq assays and present a deep gener-
ative model of background-contaminated counts mir-
roring those mechanisms. The model is used for
learning the background RNA profile, distinguish-
ing cell-containing droplets from empty ones, and
retrieving background-free gene expression profiles.
We implement the model along with a fast and scal-
able inference algorithm as the remove-background

module in CellBender, an open-source scRNA-seq
data processing software package. Finally, we present
simulations and investigations of several scRNA-seq
datasets to show that processing raw data using
CellBender significantly boosts the magnitude and
specificity of differential expression across different
cell types.

1 Introduction

Droplet-based assays have enabled transcriptome-
wide quantification of gene expression at the resolu-

tion of single cells [1, 2]. In a typical scRNA-seq ex-
periment, a suspension of cells is prepared and loaded
into individual droplets. Poly(A)-tailed mRNAs in
each droplet are uniquely barcoded and reverse-
transcribed, followed by PCR amplification, library
preparation, and ultimately sequencing. Quantify-
ing gene expression in each cell is achieved by count-
ing the reads from each gene that have a particular
droplet barcode. The differential effects of PCR on
different molecules can be reduced by using unique
molecular identifier barcodes (UMIs), and counting
the number of unique UMIs as a proxy for unique en-
dogenous transcripts. This count information is then
summarized in a count matrix, where counts of each
gene are recorded for each cell barcode. The count
matrix is the starting point of downstream analyses
such as batch correction, clustering, and differential
expression [3].

In an ideal scenario, a cell-free droplet is expected
to be truly devoid of RNA molecules whereas a cell-
containing droplet will yield transcripts originating
only from the encapsulated cell. In reality, however,
neither expectation is met. On the one hand, the cell
suspension contains a low to moderate concentration
of cell-free RNA molecules which leads to non-zero
molecule counts even in cell-free droplets [4]. These
cell-free RNA molecules, also referred to as ambient
RNA molecules, have their origin in either ruptured
cells or exogenous sources such as sample contam-
ination. On the other hand, the shedding of cap-
ture oligos by beads in microfluidic channels as well
as the formation of spurious chimeric molecules dur-
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Figure 1: (a) Schematic diagram of the proposed source of ambient RNA background counts. Cell-free
“ambient” RNAs (curved lines) are present in the cell-containing solution, and these RNAs are packaged
up into the same droplet as a cell (red), or into an otherwise empty droplet that contains only a barcoded
capture oligo bead (green hexagon). (b) Total unique UMI counts per droplet for the publicly available
pbmc8k dataset from 10x Genomics (CellRanger 2.1.0). The x-axis denotes individual droplets sorted by
total UMI count. There are approximately 8000 cells (pale green region). The “ambient plateau” is the
region of the rank-ordered plot with ranked barcode ID greater than 8000 and less than about 80,000 (pale
red region), where there are approximately 100 unique UMI counts per droplet. The tail of the plot contains
barcodes with even fewer UMIs (pale gray region), which are putatively due to uncorrected barcode errors
or impurity in capture oligo beads. (c) Same plot as panel (b), but for a dataset of rat heart nuclei (rat 6k).
The transition between cells and the ambient plateau is much more ambiguous.

ing the bulk mixed-template PCR amplification [5, 6]
effectively lead to “swapping” of transcripts across
droplets. The severity of these problems strongly de-
pends on the tissue isolation protocol, the number of
washing and size selection cycles, and PCR amplifi-
cation conditioning and cycles [7].

The issue of background counts is particularly
problematic in single-nuclei RNA sequencing experi-
ments (snRNA-seq). The harsh nuclear isolation pro-
tocols produce a significant number of ruptured nuclei
and a high concentration of cytoplasmic RNA in the
suspension. In severe cases, the typical total UMI
count distinction between droplets with and without
nuclei nearly disappears and all droplets lie on a con-
tinuum of counts (e.g. see Fig. 1c). In such situations,
successful downstream analysis hinges on our abil-
ity to (1) tell apart empty from non-empty droplets,
and to (2) correctly recover the RNA counts from en-
capsulated cells or nuclei while removing background
RNA counts.

The presence of background counts can reduce
both the magnitude and the specificity of differential
gene expression estimates across different cell types.
In cases where quantitative accuracy is important, for
instance when searching for exclusive marker genes
(such as during drug target discovery) or a small dif-

ferential expression signal in a case / control setting,
background counts can obscure or even completely
mask the signal of interest. In some experiments, ex-
tremely high expression of a particular gene in one
cell type can give rise to a large amount of back-
ground, making it seem as though all cells express
the gene at a low level.

Here we introduce a deep generative model for
inferring empty and cell-containing droplets, learn-
ing the background RNA profile, and retrieving un-
contaminated counts from the non-empty droplets.
Our proposed algorithm operates end-to-end starting
from the raw counts, is fully unsupervised, and re-
quires no assumptions or prior biological knowledge
of either cell types or cell-type-specific gene expres-
sion profiles.

A major challenge in distinguishing background
counts from biological counts for single droplets is
the extreme sparsity of single observations, such that
without a strong informative prior, the data obtained
from a single droplet does not provide sufficient sta-
tistical power to allow inference of background con-
tamination. Here, in analogy to nearest-neighbor
pooling of similar observations, we utilize a neural
network to learn the distribution of gene expressions
across all droplets during the inference process. The
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learned distribution acts as a prior over background-
corrected gene expression that effectively combines
information from similar cells, allowing for signifi-
cantly improved estimation of background contam-
ination. Learning the prior distribution of biologi-
cal counts and estimating the background contami-
nation of individual droplets is performed simultane-
ously and self-consistently within an amortized vari-
ational inference framework.

We present extensive tests of our proposed method
on both simulated and real datasets (whole-cell,
single-nuclei, and mixed-species experiments). We
show that:

• Our method is superior to the currently exist-
ing methods in distinguishing empty and cell-
containing droplets, in particular, in ambiguous
regimes and challenging single-nuclei RNA-seq
datasets (see Sec. 4.2, S.1, S.2 and Fig. 7, S1).

• Our method successfully learns and subtracts
background noise and artifactual counts from
non-empty droplets and leads to significantly in-
creased amplitude and specificity of differential
gene expression (see Sec. 4.3, 4.4 and Fig. 8,
9, 10).

Our proposed method is presented as an easy-to-
use command line tool. We utilize the Pyro proba-
bilistic programming framework for Bayesian infer-
ence. GPU acceleration is necessary for fast op-
eration of this tool. We refer to this method as
remove-background, which constitutes the first com-
putational module in CellBender, an open-source
software package developed by the authors for pre-
processing and quality control of scRNA-seq data.
The current version of remove-background takes the
output of 10x Genomics’ CellRanger v2 or v3 count

pipeline as the input. CellBender modules are avail-
able on Terra [8], a secure open platform for collab-
orative omics analysis, and can be run on the cloud
with zero setup.

This paper is organized as follows: we provide a
more detailed account of the phenomenology of back-
ground RNA in Sec. 2. We present a probabilistic
model for background-contaminated counts in Sec. 3
along with a brief overview of the inference algo-
rithm and implementation in Sec. 3.2. We discuss
the results on simulated and real data in Sec. 4. Fur-
ther discussions and future extensions are discussed
in Sec. 5.

2 The phenomenology of back-
ground RNA counts

In this section, we review the phenomenology of
background RNA by examining three exhibits in
different experiments. Next, we review a number of
mechanisms that satisfactorily explain all aspects of
the phenomenology. Some of these mechanisms have
been noted by other authors, though we provide
them in one place for completeness.

Exhibit 1: Examining the counts of total unique
UMIs per droplet in a typical 10x scRNA-seq
experiment reveals that there are thousands of
high-count droplets followed by a much larger
number of low-count droplets (See Fig. 1b-c and
note the logarithmic scale of the axes). Here, the
word “counts” is used as shorthand for counts of
unique UMIs summed over all genes. The number
of high-count droplets typically agree in order of
magnitude with the expected number of cells given
the protocol [2]. The low-count droplets typically
have tens to hundreds of UMIs each (i.e. far fewer
counts than high-count droplets), and significantly
outnumber the expected number of cells. Therefore,
these droplets are unlikely to have their counts
originating from a physically encapsulated cell.

Exhibit 2: Experiments with mixtures of different
cell types have shown that some of the transcripts in
each droplet do not originate from the cell encapsu-
lated within the droplet. That is, even for droplets
that do contain cells, there is still some exogenous
background noise in the count matrix.

Fig. 2 shows a scRNA-seq dataset generated using
a mixture of human and mouse cells. It is noticed
that for a few percent of the count data, human
transcripts are assigned to a droplet where the vast
majority of transcripts are mouse, and vice-versa.
This mixing can happen when a human cell and a
mouse cell are captured in the same droplet, but
these “doublets” can be easily identified due to the
fact that they have tens of thousands of counts from
each species. Even droplets that do not contain
doublets still have nonzero counts from transcripts
of the other species (see the red inset of Fig. 2, for
example). Droplets with tens of thousands of human
counts typically have a few hundred mouse counts,
and vice-versa.

Exhibit 3: The phenomenon of non-zero RNA
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Figure 2: A view of the public 10x Genomics human-
mouse mixture dataset (hgmm-12k, CellRanger 2.1.0).
Each dot denotes a droplet in the experiment. The
y-axis shows the number of unique UMI counts of
mouse genes in a given droplet, while the x-axis shows
the number of unique UMI counts of human genes.
Axes are plotted using a linear scale, with an inset
zoomed in on mouse cells. The inset (red) shows
that there are several hundred human gene counts
in droplets that contain mouse cells.

counts in empty droplets is even seen in experiments
where the preparation is entirely devoid of cells but
rather contains a high concentration of spike-ins
(e.g. see the publicly available ercc dataset from
10x Genomics [2, 9]). In this experiment, approxi-
mately 1000 droplets were prepared from the same
spike-in soup and used for library production. Quite
curiously, the total counts vs. sorted barcode plot
looks similar to Fig. 1b: a first region including
approximately 1000 high-count droplets, followed
by thousands of droplets with approximately 100
UMIs each. The appearance of the second region
resembling “empty droplets” is unexpected, since all
droplets are filled uniformly with the same amount
of spike-in transcripts.

We argue that the following mechanisms explain
the entire phenomenology of background RNA in
droplet-based scRNA-seq experiments:

Sequencing or synthesis errors in the droplet
barcode– The presence of uncorrected sequencing
errors in droplet barcodes or impurity of synthesized
barcodes on capture beads will result in a spread-

ing of transcripts across droplets. In particular, one
expects a net flow of transcripts from RNA-rich (cell-
containing) droplets to otherwise RNA-free (cell-free)
droplets.

Quantitative estimates of barcode sequencing error
indicate that far more empty droplets are observed
than can be explained by sequencing error alone.
The effective provisions for barcode error-correction
employed by the 10x Genomics scRNA-seq protocol
(using a whitelist, no homo-polymers, and a Ham-
ming distance ≥ 2 between droplet barcodes) allows
most barcode sequencing errors to be corrected.
In our simulations using typical base substitution
and insertion/deletion error rates, we found that at
most 2 percent of erroneous droplet barcodes were
corrected to the wrong barcode. Given that a typical
10x v2 scRNA-seq experiment yields less than 5
percent invalid barcodes, we estimate that at most
1 in 1000 transcripts would be mis-assigned due to
wrong barcode error correction. This rate is 3 orders
of magnitude lower than what is required to produce
non-zero transcript counts in empty droplets as seen
in typical experiments. The presence of error or
impurity in barcode synthesis, however, might still
explain part of the background RNA phenomenology.
Unfortunately, details of the 10x barcode synthesis
protocol are not public.

Presence of ambient RNA in the cell
suspension– Cell-free “ambient” RNA that is
physically present in the cell suspension and is
encapsulated in a droplet will clearly contribute to
the background while generating non-zero transcript
counts in otherwise empty droplets. This mechanism
is shown schematically in Fig. 1a. Cell-free RNA is
present in the aqueous cell suspension, either as a
result of normal biological processes or as a result of
tissue dissociation, cell death, or other stresses expe-
rienced by cells during the isolation protocol which
may cause cells to die or lyse. Such a mechanism has
been proposed by others as well [1, 4, 10].

Barcode swapping and chimera formation–
Swapping of droplet barcode between transcripts dur-
ing mixed-template PCR amplification via formation
of heteroduplex/chimeric molecules [5–7], and/or on
the flowcell during sequencing [11], will spread tran-
scripts across droplets and generate a background.

Chimeric fragments incorporate mRNA sequences
from one original molecule and a droplet barcode
(and UMI) either from a different original molecule
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or from a previously unused barcoded capture oligo.
In the 10x Genomics protocol, there is a large amount
of sequence complementarity, both in the Illumina
primers as well as in the poly(T) region (the means
by which these molecules were captured in the first
place). As PCR progresses through many rounds,
primers are depleted. Eventually, extension could
be primed by (1) incomplete extension products
from other molecules, as suggested by Dixit [6], or
by (2) unused and inadequately washed capture
oligos that were used to capture poly(A)-tailed
mRNAs at the outset. These mechanisms would
both result in transcripts which are assigned to the
wrong droplets. This process of chimera formation is
prone to occur in all mixed-template PCR reactions,
and is not unique to scRNA-seq library preparation
protocols [7].

Cross-contamination of capture oligo beads
on the microfluidic device– The capture oligo
gel beads (referred to as GEMs in the 10x Genomics
scRNA-seq protocol) flow in a microfluidic channel
(see Fig. 1a, green hexagons). The GEMs are tightly
packed in the channel to achieve a precise flow
control that allow their super-Poisson loading into
droplets [2]. Since these gel beads are soluble in cer-
tain conditions in aqueous solution, it is reasonable to
posit that some small number of capture oligos could
be released from the GEM in the channel, leading to
cross-contamination due to “ambient” capture oligos
from other GEMs. Therefore, even if the GEMs
were synthesized with high barcode purity to begin
with, there could be some mixing in the microfluidic
device. The downstream effect is similar to GEM
impurity or barcode error, and produces a back-
ground. The appearance of thousands of low-count
droplets in the spike-in experiment (cf. Exhibit 3
above) is likely to be associated with this mechanism.

We may summarize the above mechanisms in two
main categories:

1. The mRNAs were physically present in the
droplet at the time the droplet was formed. This
is the “soup” or cell-free ambient RNA hypoth-
esis. A small amount of cell-free ambient RNA
was present in solution (due to cell death, lysis,
etc.) at the time the droplets were formed, and
some of this ambient RNA was packaged into
each droplet, along with cells.

2. The mRNAs were not physically present in the
droplet at the time the droplet was formed, but

were later assigned to that droplet. This could
happen in one of two ways: (1) a molecule’s
droplet barcode was physically swapped to a cell-
containing droplet barcode at some point in the
protocol, (2) a molecule was mis-assigned to a
different droplet barcode due to sequencing er-
ror or capture oligo impurity or contamination.

These two explanations could lead to different
“background RNA” profiles. If cell-free ambient RNA
was physically packaged into each droplet, then each
droplet should contain a small sample of this same
RNA profile, which could be related to cell expres-
sion or could be slightly different (for example, it
could in principle incorporate an exogenous contami-
nant or a higher proportion of mitrochondrial mRNA
if the source of cell-free RNA is related to cell death).
If the cause of background RNA is instead barcode
swapping, sequencing error, or capture oligo impu-
rity, then it would be expected that the background
RNA profile would be exactly the average of all the
RNA sequenced in the experiment, because these
mechanisms act at random.

3 A generative model for
scRNA-seq data with back-
ground RNA

Here, we present an unsupervised end-to-end method
for inferring empty and cell-containing droplets,
learning the background RNA profile, and retrieving
uncontaminated counts. This is achieved by mod-
eling the data generation process from first princi-
ples based on the mechanisms of ambient RNA and
chimera formation discussed earlier.

Since the background RNA counts are drawn from
a fixed gene expression distribution, in principle, our
many observations of empty droplets provide infor-
mation that makes it possible to infer that distribu-
tion with high accuracy. However, in order to con-
struct a complete generative model, we must also
model the generation of true signal counts that come
from cells. The challenging issue is our lack of a pri-
ori knowledge of the process that generates true bi-
ological transcript counts in a cell. Furthermore, we
have several cell types in a typical experiment, and
the fraction of transcripts present in cells that we
measure at the end of the protocol is on the order of
10% or less (using 10x Genomics v2 or v3 chemistry,
which generates at most tens of thousands of counts
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per cell). This phenomenon of measuring only a small
fraction of what is present in the cell is sometimes re-
ferred to in the literature as “dropout”. This issue is
further complicated by the presence of true biological
variation such as bursting kinetics.

For these reasons, we would like our algorithm to be
able to allow similar cells to share statistical power in
order to learn the distribution of true biological gene
expression. Grouping of cells into cell-type clusters
in order to share statistical weight could be achieved
in several ways, including a nearest-neighbors clus-
tering or other graph-based diffusion methods. The
methodology here employs a neural network as a flex-
ible and trainable non-parametric distribution to act
as a prior for biological gene expression (see NNχ in
Fig. 3 and the forthcoming section for details).

Here, the successful training of the neural mod-
ule to represent the density of biological gene expres-
sions relies on the validity of of the manifold embed-
ding hypothesis, i.e. the possibility of mapping the
true gene expression profiles of all cells in the ex-
periment to a manifold of much lower dimensional-
ity than the observable gene expression space. For
example, an expression profile for a cell with 30,000
genes might be mapped to a lower-dimensional latent
space of only 20 or 100 dimensions. This is a reason-
able assumption provided that either the notion of
“cell type” is roughly applicable, or otherwise, cells
with continuous states (e.g. immature cells in a devel-
opmental trajectory, immune cells, etc.) can be de-
scribed in terms of the activation of a low-cardinality
set of co-regulated and co-functional gene modules.
The current opinion in biology, as well as previous
experiments with neural auto-encoders in the liter-
ature [12, 13], agree with the manifold embedding
hypothesis.

Dimensionality reduction of scRNA-seq data using
neural auto-encoders has appeared in other proba-
bilistic models for the purpose of batch correction,
visualization, and clustering [12–14]. In the context
of our model, though, the neural network is utilized
for learning the density of true biological gene ex-
pression. The learned density is then used as prior
for sparse and background-corrected counts, and al-
lows accurate estimation of background contamina-
tion fraction without additional regularization or re-
sorting to heuristics.

We note that initially learned biological gene ex-
pression landscape may itself be contaminated with
background RNA counts. However, as the inference
procedure progresses and as the estimate of the back-

ground RNA profile improves, the maximum likeli-
hood principle encourages the neural network to self-
correct in a self-consistent fashion and learn to rep-
resent background-free gene expression profiles.

3.1 Model

The generative model for scRNA-seq count data
that includes ambient RNA and barcode swapping
is shown in Fig. 3. Throughout this section, we use n
and g subscripts to refer to cell and gene indices on
various vector and matrix random variables. zn ∈ RZ
is the latent variable that encodes gene expression in
a lower-dimensional space. χng is the fractional gene
expression for each cell and lives on a (G−1)-simplex
in RG for each n, where G is the dimensionality of the
full gene expression space. A decoder neural network
(shown as the factor NNχ) parameterizes the map-
ping from zn to χng. χ

a
g is the fractional abundance

of ambient RNA (on a simplex), and is a hyperparam-
eter that we optimize over. dcelln is a cell-specific size
factor. ddropn is a droplet-specific size factor for am-
bient counts. yn is a discrete binary random variable
which is 1 if there is a cell in droplet n and 0 other-
wise. ρn is the proportion of reads that are exogenous
to droplet n. Finally, cng is the observed counts of
gene g in cell n. The full model is as follows:

zn ∼ N (0,1)

χng = NNχ(zn)

ddropn ∼ LogNormal(ddropµ , ddropσ )

dcelln ∼ LogNormal(dcellµ , dcellσ )

yn ∼ Bernoulli(p)

ρn ∼ Beta(ρα, ρβ)

Φ ∼ Gamma(φα, φβ)

cng ∼ NegativeBinomial[(1− ρn) (yn d
cell
n χng

+ ddropn χa
g) + ρn (yn d

cell
n + ddropn ) χ̄g,Φ]

(1)

Here, dcellµ , dcellσ , ddropµ , and ddropσ are all fixed hy-
perparameters that are derived automatically from
the provided data. p is the prior probability that any
given droplet contains a cell, and it is derived from
the expected number of cells in the experiment. φα
and φβ are general priors for the over-dispersion of
the negative binomial count distribution1. ρα and
ρβ are general priors for the contamination fraction

1In our parameterization of the negative binomial distribu-
tion NegativeBinomial(µ,Φ), µ denotes the mean and Φ pa-
rameterizes the variance as µ+ Φµ2.
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cng

yn p

ρn ρα
ρβ

χng χa
g

χ̄g

dcellndcellµ

dcellσ

ddropn

ddropµ

ddropσ

Φ

φα φβ

NNχ

zn

Figure 3: Graphical model for RNA expression that
combines ambient RNA and barcode swapping.

ρn. The function NNχ(·) denotes a decoder neural
network that maps the low-dimensional latent gene
expression zn to the full gene expression χng on the
(G−1)-simplex. LogNormal distributions on the scale
factors are justified by the empirical distributions of
cell counts and empty droplet counts.

The specific negative binomial model used for ob-
served counts, cng, requires elucidation. As men-
tioned earlier, the possible processes for background
generation may be grouped into two categories: am-
bient RNA, and (effectively) random barcode swap-
ping. The barcode swapping process results in a cer-
tain fraction of counts in each droplet, ρn ∈ [0, 1],
that actually originated in other droplets. Because
this process is equally likely to swap any two bar-
codes, the net effect is that the swapped molecules in
any given droplet are effectively sampled from the av-
erage measured expression over the entire experiment
(here denoted by χ̄g). Ambient RNA molecules, on
the other hand, may have a distinct composition as
argued earlier and thus, are sampled from a different
profile (denoted by χa

g). Accordingly, we decompose
the mean of the negative binomial in two main parts.
The first part is the counts that physically originate
in droplet n: (1− ρn) (yn d

cell
n χng + ddropn χa

g), which
includes a term for cell counts and a term for ambient
RNA counts. The second part is the counts that did
not physically originate in droplet n, but were erro-
neously assigned there later: ρn (yn d

cell
n + ddropn ) χ̄g.

This expression is the product of three terms: the
contamination fraction ρn, the term in parenthe-

ses that is proportional to the expected number of
molecules physically encapsulated in the droplet, and
finally the average gene expression profile, χ̄g.

The model can be restricted to only ambient RNA
by replacing the mean of the negative binomial with
yn d

cell
n χng + ddropn χa

g. Similarly, the model can
be restricted to only barcode swapping by replac-
ing the mean of the negative binomial with (1 −
ρn) ynd

cell
n χng + (ρn yn d

cell
n + ddropn ) χ̄g. Results of

these different models2 are compared in Section 4.

3.2 Inference

The probabilistic model described in the previous sec-
tion entails several global ( i.e. experiment-wide) and
local (one for each cell) latent variables. Scalable ap-
proximate inference can be achieved using stochastic
variational inference (SVI) [15] and amortization [16].
We provide a brief account of the inference strategy
in this section.

The objective function to be optimized here is the
evidence lower bound (ELBO):

ELBO(X|θ, ϕ) ≡
∫

dZ q(Z|ϕ) log

(
p(X,Z|θ)
q(Z|ϕ)

)
,

(2)
where X = {cng} is the observed data; θ = {χa

g,Wχ}
is the bundle of tunable model hyperparameters,
including the weights of the neural network NNχ

(denoted by Wχ); Z = {ρn, yn, dcelln , ddropn , zn,Φ} is
the bundle of latent variables; and q(Z|ϕ) is the vari-
ational ansatz shown in Fig. 4 and parameterized by
ϕ = {Wy,Wd,Wz, d̂

cell
σ , d̂dropµ , d̂dropσ , ρ̂α, ρ̂β , φ̂α, φ̂β}.

In the SVI methodology, one obtains
argmaxθ,ϕ ELBO(X|θ, ϕ) via successive sub-
sampling of data X and incremental updates of
(θ, ϕ) using a stochastic optimizer. We refer the
reader to Ref. 17 for a recent review.

The faithfulness of the approximate posterior to
the true posterior is ultimately dependent on one’s
choice of the variational ansatz, q(Z|ϕ). Fig. 4 shows
the structure of our proposed ansatz. Generally
speaking, we impose tunable parametric distributions
over global latent variables while we infer local latent
variables using auxiliary neural networks (often re-
ferred to as recognition networks). The latter tech-
nique is referred to as amortization and is the key

2The default mode for remove-background uses the full
model as specified in Eq. (1), but the user can specify the
ambient-only or swapping-only model via command line argu-
ments.
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Figure 4: Graphical model of the proposed amortized
variational posterior.

to scalability of our algorithm to a theoretically un-
bounded number of data points (cells).

The posterior for zn is encoded by a neural net-
work NNz which takes in observed counts cng and
outputs (zn;µ, zn;σ); the latter parameterize the mean
and scale of an assumed Gaussian posterior distribu-
tion for zn:

zn | cng ∼ N (zn;µ, zn;σ). (3)

Note that this encoder network for zn, together with
the decoder network that maps zn to χng, form the
auto-encoder structure mentioned earlier.

The posterior for dcelln , the scale-factor for biolo-
gial counts, is likewise encoded by a neural network
NNd which takes in cng and outputs dcelln;µ, a strictly-
positive scale-factor per droplet. Additionally, we al-
low d̂cellσ to be a tunable parameter to characterize
the spread in sizes of cells. We pose the following
ansatz for the posterior of dcelln :

dcelln | cng ∼ LogNormal(dcelln;µ, d̂
cell
σ ). (4)

In practice, we found it beneficial to further provide
a hand-crafted feature, log(

∑
g cng) (logarithmic to-

tal UMI count) to NNd. Intuitively, this feature gives
a strong signal for inferring the “size” of the encap-
sulated cell along with the droplet-specific transcript
capture efficiency.

The posterior for yn is encoded by a neural network
NNy which takes in cng and χa

g and outputs qn, the
posterior Bernoulli parameter:

yn | cng, χa
g ∼ Bernoulli(qn). (5)

Again, we found it beneficial to provide log(
∑
g cng),

as well as cng/(
∑
g cng) − χa

g (i.e. the näıve
background-corrected counts), as hand-crafted fea-
tures to NNy.

3.2.1 Technical Remarks

The default architecture of the auto-encoder for zn
has one hidden layer of 500 units, and the encoded
dimension of zn is 20. The encoder for dcelln defaults
to three hidden layers of size (5, 2, 2), while the en-
coder for yn defaults to two hidden layers of size (100,
10). Softplus non-linearities are used throughout. In
practice, the algorithm is not very sensitive to the
architecture of NNy and NNd, but the dimension of
the latent zn does influence the results. In general, a
larger latent dimension (up to 200) encourages a more
faithful reconstruction of the data with less imputa-
tion. A smaller latent dimension encourages imputa-
tion and the sharing of gene expression information
across similar cells.3

For numerical stability and to preclude vanishing
gradients, the actual implementation handles proba-
bilities in logit-space. During training, the log proba-
bility of zn is only computed for droplets which have
been found to contain cells (that is, for droplets n
where a sample from yn is 1). The discrete latent
variable yn cannot be re-parameterized, and so we
use complete enumeration over cell / no cell (yn be-
ing 1 or 0) in our variational posterior to reduce vari-
ance. Integration over the continuous latent variables
appearing in the ELBO is done using a single Monte-
Carlo sample as usual.

Training happens in random mini-batches. Each
full epoch trains on a fixed subset of barcodes from
the dataset as well as a randomly-sampled subset of
empty droplet barcodes that changes each epoch (this
is done in order to cover the tens of thousands of
empty droplets without taking excessive computation
time)4.

The training loop converges typically within 100 to
300 epochs. For a typical 10x scRNA-seq experiment
containing 5-10 thousand cells, the total runtime of
the tool ranges between 30 minutes to several hours

3The sizes of the neural network decoder and encoders can
be specified using command line arguments. In our experi-
ments, we found imputation to be minimized or fully elimi-
nated using a high-capacity neural network, e.g. by setting
--z-dim 200 --z-layers 1000.

4The fraction of each minibatch that is composed of these
randomly-sampled empty droplets can be specified using a
command line argument.
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Figure 5: Results of inference on a simulated dataset with three cell types. (a) PCA visualization of the
learned latent gene expression (20 dimensions) shows three clusters that correctly separate the cell types.
(b) Matrix showing cosine distance between the true and learned expression profiles for ambient RNA as
well as cell expression. (c) Same data as in (b), but plotted as a matrix of scatter plots. Each point on each
scatter plot is one gene. Axes are normalized expression in log-space.

using an NVIDIA Tesla K80 GPU, depending on the
size of the dataset and chosen parameters.

3.3 Implementation and Usage

We have implemented the model and the inference
method using the Pyro probabilistic programming
language [18] and PyTorch [19] and presented it as a
user-friendly and stand-alone command line tool. We
refer to this tool as remove-background which consti-
tutes the first computational module in CellBender,
an open-source software package developed by the
authors for pre-processing and quality control of
scRNA-seq data.

CellBender can be obtained from https://

github.com/broadinstitute/CellBender. Addi-
tional documentation is available at https://

cellbender.readthedocs.io. CellBender modules
are also available on Terra [8], a secure open plat-
form for collaborative omics analysis, and can be run
on the cloud with zero setup.

3.3.1 remove-background inputs

The current version of remove-background takes the
raw HDF5 file from 10x Genomics’ CellRanger v2 or
v3 count pipeline as the input. Support for addi-
tional scRNA-seq protocols (e.g. drop-seq) will be
added in the future.

3.3.2 remove-background outputs

The output of CellBender remove background

provides several useful quantities: (1) inferred
background-subtracted count matrix, (2) probabil-
ity that each droplet contains a cell, and (3) low-
dimensional latent representation of gene expression
for each cell. The background-subtracted count ma-
trix is defined as:

ccorr.ng ≡ d̃celln χ̃ng, (6)

where χ̃ng ≡ NNχ(zn;µ) and d̃celln ≡ exp(dcelln;µ +

(d̂cellσ )2/2). Here dcelln;µ and zn;µ are obtained from
the learned encoder networks NNd and NNz, respec-
tively. The probability that each droplet contains a
cell is given by qn, the latent variable encoded by
NNy. The low-dimensional latent representation of
gene expression is given by the encoded zn;µ for each
cell.

Note that ccorr.ng is the approximate MAP estimate
of the negative binomial mean rate parameter µ, as
obtained by replacing ρn → 0 and χag → 0. In other
words, it is the gene expression rate in the absence
of barcode swapping and ambient RNA. Importantly,
this quantity is not quantized and the entries of ccorr.ng

contain a large number of non-zero yet very small
numbers. In order to produce a sparse count ma-
trix, we quantize ccorr.ng as follows: each nonzero entry
in ccorr.ng is truncated to an integer and rounded up
with probability equal to its decimal value (i.e. 1.2 is
rounded up to 2 with probability 0.2).
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4 Results

Here we examine a few datasets in order to demon-
strate the outputs of remove-background and to as-
sess its performance on real data. To validate the
inference procedure, we first examine a simulated
dataset. Next we take a look at cell calling and back-
ground removal in a real dataset where we have some
knowledge of the truth. Finally, we process a real
dataset with remove-background in order to explore
the downstream effects on a standard differential ex-
pression analysis.

4.1 Consistency check on simulated
data

As a check on the inference procedure, we have run
several experiments on simulated data. Datasets were
generated based on expression profiles pulled from
real public 10x Genomics datasets. Fig. 5 shows the
results of inference using a simulated dataset with
30,000 genes, generated according to the ambient
RNA model. The simulated data has 3 “cell types”
with unique underlying expression profiles. While
the expression profiles are different from one another,
they mimic cell clusters in real datasets. This results
in expression profiles that are very similar for most
genes. Two of the cell types have between 400 and
500 cells, while the third type has only 50 cells. Ambi-
ent expression in the simulation is a weighted average
of total expression.

Fig. 5 demonstrates that the latent variable model
is able to learn a decent prior on the true expres-
sion profile of cells, and that the inferred background-
removed expression very closely matches the truth.

4.2 Accurate detection of empty
droplets

The posterior probability qn that droplet n contains
a cell is a direct result of the inference procedure.
While this determination can be trivial in some pris-
tine datasets, complicated experimental factors of-
ten make determination challenging in real datasets.
A variety of heuristics are typically employed in or-
der determine cutoffs for thresholding cells versus
empty droplets. More principled approaches have
recently been developed, including EmptyDrops [10],
which uses statistical tests to ascertain which droplets
have expression profiles significantly different from
empty droplets, and DropEst [20], which distin-
guishes empty and non-empty droplets using a linear
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Figure 6: Result of inference on the 10x Genomics
human-mouse mixture dataset hgmm-12k. (a) Two
plots are overlaid. The black line is the UMI counts
per droplet (barcode), while the red dots with dashed
lines are the probabilities that each droplet contains
a cell. (b) Fraction of unique UMI counts from mito-
chondrial genes. The transition region between cells
and empty droplets has a high fraction of counts from
mitochondrial genes.

classifier trained on features extracted from a set of
a priori known empty and non-empty droplets.

These approaches, however, depend on having
prior knowledge of a range of cell-free droplets (e.g.
being able to discern the empty droplet region in
the ranked barcode plot; see Fig. 1b). As mentioned
in the introductory remarks, this requirement is not
always met in heavily contaminated datasets where
background RNA counts are similar in magnitude to
RNA cell counts. In our proposed algorithm, the
determination of empty vs. non-empty droplet is
a byproduct of inference in the context of our la-
tent variable model, which in principle can learn to
disentangle background RNA counts from cell RNA
counts. As such, while our approach benefits from
a decent initialization from a range of potentially
empty droplets, it is not a necessity.

Fig. 6a shows the posterior cell probabilities for
the first 22,000 droplets of the public 10x Genomics
hgmm-12k human-mouse mixture dataset (v2 chem-
istry, CellRanger 2.1.0). Note that the algorithm
in general identifies cells and empty droplets as ex-
pected, and that the transition between the two is
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Figure 7: Comparing CellBender remove-background cell calling with several existing methods on a chal-
lenging single-nuclei RNA-seq dataset rat 6k. (a) Four panels showing the same UMI curve where cells are
called using four different algorithms: CellRanger 2.1.1 (5000 expected cells), CellRanger 3.0.2 (5000 expected
cells), EmptyDrops (lower UMI count threshold = 100, Bonferroni-corrected FDR < 1%), and CellBender

remove-background (5000 expected cells). (b) A standard analysis of the dataset using scanpy. Cell clusters
are visualized using UMAP in the upper left panel. The three other panels show cells in blue that were called
by CellBender remove-background but excluded by another algorithm. See Table S1 for a quantitative
comparison.

not based on a hard UMI cutoff. Further exploration
of the gene expression profiles of these called cells
is shown in the supplement, Fig. S1. A determina-
tion of cell / no cell can be obtained by thresholding
based on the posterior probability, qn. The algorithm
converges to largely binary probability values, so the
precise choice of threshold value hardly makes a dif-
ference in practice.

As suggested by previous authors [10, 20], other
criteria can be used to post-filter cells, including mi-
tochondrial read fraction. Fig. 6b is a plot of the
fraction of reads per droplet that come from mito-
chondrial genes. It can be clearly seen that many cells
in the transition region exhibit a high fraction of mi-
tochondrial genes (possibly dead or dying cells), and
because they are distinct from empty droplets, they
are determined to have a high probability of contain-
ing cells. After filtering cells based on mitochondrial
gene count, some of these lowest-count cells will be
filtered out. This is the recommended workflow.

Figure 7 shows cell calling on a more challenging
dataset. The dataset corresponds to a single-nuclei
extraction experiment. As mentioned in the intro-
ductory remarks, the harsh nuclear isolation proto-
cols produce a significant number of ruptured nuclei

and a high concentration of cytoplasmic RNA in the
suspension. The rank-ordered total UMI plot of this
dataset is shown in Fig. 1c.

We compare the cell calls made by CellBender

remove-background with three other methods in
common use: CellRanger v2, CellRanger v3, and
EmptyDrops. Panel (a) shows that CellBender

remove-background generally calls more cells com-
pared to CellRanger, many of which lie further down
the UMI curve. The set of cells called by CellBender

remove-background contains all the cells called by
CellRanger v2, v3, and EmptyDrops after the typ-
ical filtering by gene complexity and mitochondrial
fraction. Panel (b) shows that the extra cells called
by CellBender remove-background do in fact clus-
ter together with cells called by the other algorithms,
suggesting that they are legitimate cell calls and are
not empty droplets.

EmptyDrops, when run with the default parameters
(lower UMI threshold set to 100, Bonferroni-corrected
FDR < 1%), calls many low-UMI-count cells that
CellRanger v2 and v3 miss, though, it also curiously
misses a large number of relatively high-UMI-count
droplets along the rank-ordered UMI plot. We notice
that the most populous clusters are also the most
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enriched in cell calls missed by EmptyDrops (Clusters
0, 1, 2; see Table S1).

We hypothesize that the issue originates from the
frequentist approach used in EmptyDrops. Since the
background profile indeed resembles the gene expres-
sion profile of the most abundant and transcript-rich
cell types, the expression profiles of these cells are
accidentally compatible with the background. There-
fore, the Dirichlet-Multinomial p-values obtained on
a single-droplet basis may not reach statistical signif-
icance for droplets that contain one of the major cell
types, in particular, if the background pseudo-count
scale α (a model parameter in EmptyDrops) is deter-
mined to be too large. By default, EmptyDrops de-
termines α via a maximum likelihood procedure. We
found that overriding α manually and using a smaller
value generates more statistically significant cell calls,
as expected. Checking the soundness of these extra
cell calls is beyond the scope of this work.

We remark that CellBender remove-background

does not suffer from this caveat since it effectively
performs Bayesian model comparison using informa-
tive priors for both hypotheses (empty model yn = 0,
non-empty model yn = 1; see Eq. 1). The expres-
sion profile and the expected UMI count of the abun-
dant cell types (and the background) are initially
learned from the low- and high-count droplets, this
prior information is used in comparing the two mod-
els, and the priors and posteriors are updated until
a self-consistent solution is achieved. Further anal-
ysis and discussions are provided in supplementary
Section S.2.

4.3 Decreased magnitude of cross-
species transcripts in barnyard ex-
periments

A useful benchmark dataset for removal of back-
ground RNA is a mixed-species (“barnyard”) dataset,
where two cell lines from different species are com-
bined and run through the experiment together. This
would ideally result in droplets containing exclusively
counts from one genome or the other, but due to the
presence of background RNA, this is not the case.
Here we use the public 10x Genomics human-mouse
mixture dataset hgmm-12k. The raw UMI counts per
droplet were shown earlier in Fig. 2.

The output of CellBender remove-background is
shown in Figure 8. Ideally, what we would expect is
that human counts are removed from the mouse cell
population, and that mouse counts are removed from

the human cell population. This is in fact what we
observe, as shown using different models in orange,
green, and red. The different models are those de-
scribed in Sec. 3. By default, remove-background

runs the full model, shown as the red data points.
The number of cross-species background counts is

reduced by more than an order of magnitude, from
a few hundred per droplet to tens of counts or fewer
per droplet. It is worth re-emphasizing that this is a
completely unsupervised approach, and that the al-
gorithm does not know anything about human genes
or mouse genes, or that this is a mixture experiment.

4.4 Increased specificity of differential
expression

To demonstrate the effect of background RNA re-
moval on downstream analyses, a standard analysis
workflow was carried out on the public 10x Genomics
pbmc8k dataset (v2 chemistry, CellRanger 2.1.0) us-
ing Seurat v3 [3]. The results of the exact same
analysis, with and without remove-background pre-
processing, are shown in Fig. 9.

Cells were determined using qn > 0.9, and these
cells were used in both analyses. Cells were further
filtered using cutoffs for number of nonzero genes,
percent mitochondrial reads, and an upper limit for
UMI counts. The resolution parameter of Seurat’s
FindClusters method was chosen so that the raw
data and the remove-background pre-processed data
would exhibit the same number of clusters. Notably,
the same cell clusters can be recovered using the exact
same Seurat analysis, and there is less background
RNA obscuring the differential expression signal. In
panel (d), the genes CST3 and LYZ in particular have
noticeably reduced expression in several clusters, as
compared to panel (c). Fig. 10 shows the effect on
LYZ expression across clusters in more detail.

Table 1: Differential expression effect size (log fold
change) between “CD14+ Monocytes” and “B cells”

Before After
remove-background remove-background

LYZ 3.68 4.82
CST3 2.86 3.37

Table 1 shows the differential expression for LYZ
and CST3 between CD14+ monocytes (where expres-
sion is expected) and B cells (where expression is not

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 3, 2019. ; https://doi.org/10.1101/791699doi: bioRxiv preprint 

https://doi.org/10.1101/791699
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 200 400 600
Human gene counts

0

10

20

30

M
ou

se
 g

en
e 

co
un

ts
 (x

 1
00

0)

a
raw data
- ambient
- swapping
- both

0 20 40
Human gene counts (x 1000)

0

100

200

300

400

500

M
ou

se
 g

en
e 

co
un

ts

b
raw data
- ambient
- swapping
- both

Figure 8: The result of processing the hgmm-12k 10x Genomics public dataset using CellBender

remove-background. Each dot is a droplet in the experiment. Blue is the raw data, while the other
colors are the results of background removal. The y-axis shows the number of unique UMI counts of mouse
genes in a given droplet, while the x-axis shows the number of unique UMI counts of human genes. (a)
Magnified x-axis, showing removal of human genes from mouse cells. (b) Magnified y-axis, showing removal
of mouse genes from human cells.

expected), calculated in Seurat as the average log fold
change by FindMarkers (using the bimod likelihood
ratio test). The differential expression increases sub-
stantially after subtracting background RNA.

Finally, the low-dimensional latent repre-
sentation of true gene expression inferred by
remove-background, zn, is also interesting to
examine. UMAP [21] is used to project the 200-
dimensional latent space into a 2-dimensional view
in Figure 11a. All the expected cell types show
up as clusters in the latent space. An additional
cluster shows up in between several of the other large
clusters (colored purple), which may correspond
to doublets. The UMI counts per cluster, shown
in Fig. 11b, seem consistent with the hypothesis
that the purple cluster may in fact be doublets,
as does the gene expression profile of the cluster
in Fig. 11c. This cluster formation in the latent
space is quite robust to the choice of the number of
latent dimensions as well as to downsampling of the
dataset.

5 Discussion

The CellBender remove-background tool is pre-
sented here as a method for removing background
noise from droplet-based scRNA-seq count matrices.

remove-background can be used as a pre-processing
step in any scRNA-seq analysis pipeline and is espe-
cially helpful for datasets with a lot of ambient RNA
or barcode swapping. Ambient RNA can be an issue
for snRNA-seq data in particular, due to the difficult
nature of nuclear isolation protocols.

To the best of our knowledge, CellBender

remove-background is the first unsupervised method
for modeling and removing background RNA counts
from scRNA-seq datasets. There has been previous
work addressing the removal of background RNA, in-
cluding SoupX [4] for removal of ambient RNA, and
methods for attenuating background counts due to
chimeric molecules [6]. In practice, the operation
of SoupX is largely manual and relies on the user’s
prior knowledge of cell-type-specific gene expression,
as well as providing a list of genes for estimating
background RNA fraction in cells. The method in-
troduced in Ref. 6, while being effective at reducing
the number of chimeric molecules, does not include
provisions for the removal of physically encapsulated
ambient transcripts.
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Figure 9: Analyses in Seurat using the publicly-available 10x Genomics dataset pbmc8k, CellRanger
2.1.0. UMAP visualizations of (a) the original dataset and (b) the dataset processed with CellBender

remove-background. The same clusters were obtained using the same value for Seurat’s FindClusters res-
olution parameter (0.18). The dot plots display a standard visualization of pre-defined marker genes for these
cell types for (c) the original dataset and (d) the dataset processed with CellBender remove-background.
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Figure 10: Same analysis as in Fig 9, here showing violin plots of the expression of the gene LYZ in each cell
cluster. y-axes are unique UMI counts per cell. Background counts of LYZ decrease between (a) the original
data, and (b) the data pre-processed with CellBender remove-background. This improves the differential
expression signal.
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Figure 11: Analysis of the 10x Genomics pbmc8k dataset using Seurat, but using the inferred latent rep-
resentation for gene expression, zn, instead of the typical normalization, variable gene selection, and PCA
workflow. (a) Latent gene expression projected into two dimensions using UMAP (arbitrary scale). The
clusters that naturally form in latent space can be seen to correspond to real cell types. (b) The UMI counts
per cell for each cluster, where purple is a possible doublet cluster. (c) Dot plot showing gene expression of
pre-defined marker genes. Putative doublet cluster has a mix of gene expression.
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S Supplementary Material

S.1 Cell calling in the difficult transition region

remove-background performs probabilistic cell calling, i.e. determining which droplets are empty and which
are not. The decision about cell / no cell is made on the basis of both UMI counts and the gene expression
profile. In the full model (Eqn. 1), the total observed RNA count is drawn from a negative binomial distri-
bution whose mean includes a term for cell expression, if a cell is present, and an ever-present contribution
from ambient RNA and random barcode swaps. The size of the background contribution must be consistent
with the measured ambient RNA plateau in empty droplets. Additionally, the ambient RNA is drawn from
an ambient RNA profile that is a global value for the whole dataset. If the gene expression in a droplet
differs significantly from the ambient RNA profile, even if the total UMI counts are similar, this difference
will be the basis for determining that a droplet is not ambient background alone.

The most difficult cells to call are those in the “transition” region in the rank-ordered total UMI plot.
Cell calls for the 10x Genomics hgmm-12k dataset are shown in Fig. S1. Panel (a) shows which droplets
were determined to have cells. The difficult transition region, where the calls are not obvious, are labelled
“ambiguous”. Cell calls from this region are shown in green, while empty droplets are shown in red. The
“ambiguous” region was found to consist of 451 cells and 4329 empty droplets. Fig. S1b shows the normalized
gene expression profiles of different groups of droplets as scatter plots against one another. The lower left
panel shows that cells called in the ambiguous region have gene expression that largely correlates with that of
obvious cells. Likewise, the upper right panel shows that those droplets from the ambiguous region that were
determined to be empty have expression profiles that match the profile of obviously empty droplets. Finally,
plotting the expression of ambiguous empty droplets vs. obvious cells (upper left panel) and ambiguous cells
vs. obvious empty droplets (lower right panel) shows a significantly weaker correlation.

This example demonstrates that as expected, remove-background utilizes both the total UMI count as
well as the observed gene expression in cell-calling.

��

:
:

:
:

Figure S 1: Determination of cells versus empty droplets in the hgmm-12k public dataset from 10x Genomics
(v2 chemistry, CellRanger 2.1.0). (a) Cells called by remove-background. “Ambiguous” here refers to
difficult-to-call droplets in the transition region. Each droplet has been labelled cell or empty. (b) Normalized
gene expression profiles from the droplets shown in (a). Expression is summed over 400 droplets in the case
of cells, or 4000 droplets in the case of empties. Each dot on each scatter plot is one gene. Human genes
are in blue; mouse genes in red. Note that remove-background correctly calls cell-containing and empty
droplets with very similar UMI counts in the transition region on the basis of gene expression.
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S.2 Cell calling for a dataset of single-nuclei extraction

We run CellBender remove-background, CellRanger v2.1.1, CellRanger v3.0.2, and EmptyDrops (as
in Bioconductor v3.9) with the default arguments on the dataset (see the caption of Fig. 7 for details). We
removed all droplets outside of the union of cell calls made by the four methods. Next, we ran a standard
scanpy analysis to cluster the cells and to find marker genes. Cells with mitochondrial read fraction greater
than 1% (after CellBender remove-background correction) have been removed, as well as cells with fewer
than 200 unique genes expressed at nonzero levels. Cells with unusually high numbers of unique genes
expressed at nonzero levels, as well as with unusually high UMI counts, are also eliminated. The cutoff for
“unusually high” is the 75th percentile of the distribution, plus the inter-quartile range. These filters are
commonly employed to remove outliers and doublets from the analysis.

Figure S2 shows a UMAP plot displaying the clusters (same data as in Figure 7b) on the left. All cells are
in gray, and the cell calls unique to CellBender remove-background are highlighted in blue. Also shown
is a dotplot containing the marker genes for each cluster on the right. Table S1 shows the number of cells
called by the four methods aggregated per cluster.

We notice that (1) CellBender remove-background calls more cells than CellRanger or EmptyDrops, and
(2) CellBender remove-background does not miss any of the cells called by the other methods. We argue
below that (1) the extra calls made by CellBender remove-background are valid, and (2) excluding these
cells implies discarding a significant, and biased, slice of the dataset.

On the one hand, we notice that the extra cell calls made by CellBender remove-background are dis-
tributed essentially uniformly across the eight clusters. Crucially, the extra cell calls do not form a cluster
of their own: had these extra cells been actually empty droplets, we would expect their expression profile to
regress toward the background profile and cluster together. Even for clusters enriched with extra calls by
CellBender remove-background (e.g. cluster 3), we find very specific marker genes. Again, this would not
be expected if CellBender remove-background were erroneously identifying empty droplets (which would
not be marked by unique marker genes that are absent from the other cell clusters).

On the other hand, we notice that the other methods, in particular EmptyDrops, fail to call a large frac-
tion of cells in the most populous clusters. For instance, EmptyDrops has detected 8 cells in Cluster 2 (after
quality-controlling cells as described above), compared to 861 cells called by CellBender remove-background

(see Table S 1). This cluster, which can be identified as cardiomyocytes, is populous while also producing
disproportionately more transcripts per nucleus. This implies that the ambient background profile is likely
to closely resemble that of cardiomyocytes. As such, the Dirichlet-Multinomial likelihood model employed
in EmptyDrops does not yield a statistically significant probability of being non-empty for cardiomyocyte-
containing droplets. In contrast, CellBender remove-background learns the expression profile of cardiomy-
octyes from high-count droplets and is not impacted by this phenomenon.

Table S 1: Cells called by various methods for rat 6k single-nuclei RNA-seq dataset.

Detected Cells (per cluster)
Method 0 1 2 3 4 5 6 Total
Union 2041 1901 861 598 442 358 198 6399
CellRanger 2.1.1 1409 1410 778 245 217 224 106 4389
CellRanger 3.0.2 1418 1417 779 246 216 225 106 4407
EmptyDrops 47 227 8 208 418 140 30 1078
CellBender 2041 1901 861 598 442 358 198 6399
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Figure S 2: Clusters identified using a standard scanpy analysis using the Louvain clustering algorithm with
resolution parameter 1.0. Blue marks cells called only by CellBender remove-background. Marker genes
for each cluster (Wilcoxon rank-sum test) are displayed in a dot plot. This plot demonstrates that even
for cluster 3, which has a high number of cells called only by CellBender remove-background, there are
identifiable marker genes that are largely cluster-specific. These extra cells are not background.
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