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Abstract

Horizontal integration of summary statistics from different GWAS traits can be used to evaluate

evidence for their shared genetic causality. One popular method to do this is a Bayesian method,

coloc, which is attractive in requiring only GWAS summary statistics and no linkage disequilibrium

estimates and is now being used routinely to perform thousands of comparisons between traits.

Here we show that while most users do not adjust default software values, misspecification of prior

parameters can substantially alter posterior inference. We suggest data driven methods to derive

sensible prior values, and demonstrate how sensitivity analysis can be used to assess robustness of

posterior inference.

The flexibility of coloc comes at the expense of an unrealistic assumption of a single causal variant

per trait. This assumption can be relaxed by stepwise conditioning, but this requires external

software and an LD matrix aligned to study alleles. We have now implemented conditioning

within coloc, and propose a new alternative method, masking, that does not require LD and

approximates conditioning when causal variants are independent. Importantly, masking can be

used in combination with conditioning where allelically aligned LD estimates are available for only

a single trait.

We have implemented these developments in a new version of coloc which we hope will enable more

informed choice of priors and overcome the restriction of the single causal variant assumptions in

coloc analysis.

Author Summary

Determining whether two traits share a genetic cause can be helpful to identify mechanisms un-

derlying genetically-influenced risk of disease or other traits. One method for doing this is “coloc”,

which updates prior knowledge about the chance of two traits sharing a causal variant with observed

genetic association data in a Bayesian statistical framework. To do this using only summary genetic
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association data that is commonly shared, the method makes certain assumptions, in particular

about the number of genetic causal variants that may underly each measured trait in a genomic

region.

We walk through several data-driven approaches to summarise the prior knowledge required for

this technique, and propose sensitivity analysis as a means of checking that inference is robust

to uncertainty about that prior knowledge. We also show how the assumptions about number of

causal variants in a region may be relaxed, and that this improves inferential accuracy.
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Introduction

As genome-wide association studies (GWAS) have considered a greater diversity of traits in greater

numbers of samples, comparative analyses of GWAS results have become a useful tool to explore

the aetiological connections between different traits. For example, estimates of genetic correla-

tion obtained via LD score regression quantify the average proportion of genetic variance of two

traits that is shared across the genome,1 although typically large sample sizes are required in both

trait studies for accuracy.2 Linking traits through genetics overcomes at least one major challenge

of observational studies, reverse causality, and with careful design, can also address confounding.

Epidemiologists have developed and widely deployed the technique of Mendelian randomization

(MR),3 which has been used, for example, to establish causal effects of factors such as alcohol

intake on aspects of health.4 The method uses a genetic variant or variants with established effects

on one trait, and assesses whether a second trait is (proportionally) associated with these instru-

mental variables. Assuming certain assumptions hold true,5 this provides evidence that the first

trait is somehow causal for the second. MR has been extended to routinely assess the potential

for one GWAS trait to mediate another.6 However, the ubiquity of genetic effects on some measur-

able aspect of human physiology or health, concordant with an omnigenic model,7 raise concerns

that LD between causal variants can violate the MR assumption that the instrumental variable is

only associated with the outcome through the “mediating” trait.8 This can be addressed through

alternative approaches that focus not on whether one trait is causal for another, but whether two

traits share the same causal variants in a single, LD-defined, genetic region, termed colocalisation.

One such method is built on MR: SMR/HEIDI9 is a two-stage approach for when genetic instru-

ments are not known from indepedent data. For example, testing first for joint association of a

SNP to gene expression and a GWAS trait, then for heterogeneity in the estimated proportional

effect across multiple SNPs in the region to assess whether the causal variant(s) for the two traits

colocalise or are merely in LD.

Another popular colocalisation method, coloc,10 enumerates every possible configuration of causal

variants for each of two traits, and calculates the support for that causal model in the form of a Bayes
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factor, under an assumption that at most one causal variant per trait exists in the region. Each

configuration corresponds to exactly one of five mututally exclusive hypotheses about association

and genetic sharing in the region :

H0 : no association

H1 : association to trait 1 only

H2 : association to trait 2 only

H3 : association to both traits, distinct causal variants

H4 : association to both traits, shared causal variant

The coloc approach has also been extended beyond pairs of traits, although computational efficiency

scales poorly with numbers of traits11,12 unless decisions are binarised13 and to deal with GWAS

data that share controls, though at the expense of requiring raw genotype data.11

As a Bayesian method, coloc requires specification of three informative prior probabilities: p1, p2,

p12 are, respectively, the prior probabilities that any random SNP in the region is associated with

exactly trait 1, trait 2, or both traits (Figure 1). Although values for these were suggested in the

initial proposal,12 appropriate values should depend on specific datasets used, particularly for p12,

and no specific guidance on how this choice should be made was given.

One of the strengths of coloc is the simplicity of data required. The assumption of at most one causal

variant per trait allows inference to be made through reconstructing joint models across all SNPs

from univariate (single SNP) GWAS summary data.14,15 Importantly, this requires no reference

LD matrix and allows combining data from traits studied in differently structured populations.

Further, p-values will suffice if internal or external estimates of minor allele frequency (MAF)

are available, so that (unsigned) effect estimates and their standard errors can be re-constructed.

However, the single causal variant assumption is convenient rather than realistic and when it does

not hold colocalisation effectively tests whether the strongest signals for the two traits colocalise10

which has been shown to be conservative.16
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hyp configuration num prior

H0 ×1

. . .

H1 ×n
p1

p1

. . .

H2 ×n
p2

p2

. . .

H3 ×n(n− 1)

p1p2

p1p2

. . .

H4 ×n
p12

p12

Figure 1: Each hypothesis for coloc analysis H0 . . . H4 may be enumerated by configurations, one
configuration per row shown grouped by hypothesis. Each circle in this figure represents one of
n genetic variants, and is shaded orange if causal for trait 1, blue if causal for trait 2. There are
different numbers of configurations for each hypothesis, depending on the number of SNPs in a
region, and the prior is set according to three prior probabilities so that all configurations within a
hypothesis are equally likely.

e-CAVIAR17 removes the assumption of a single causal variant per trait by integrating over the fine

mapping posteriors for two traits, but requires signed effect estimates that are aligned to a reference

LD matrix, that the traits are studied in the same population, and does not allow using any prior

knowledge that shared causal variants are more or less likely than distinct variants. Perhaps the

most challenging of these is the alignment of signed effect estimates to a reference LD matrix. This

can be impossible in the case that signed estimates are not provided due to privacy concerns,18

or that alleles are not provided. Even where alleles are available, palindromic SNPs (A/T, C/G)

cannot be aligned unambiguously particularly for MAF ≈ 0.5.
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The assumption of a single causal variant in coloc may be relaxed by successively conditioning

on the most significant variants for each trait, and testing for colocalisation between each pair of

conditioned signals, although this requires either complete genotype data or use of external software

such as CoJo19 together with signed and LD-aligned effect estimates to allow reconstruction of

conditional regression effect estimates.

To support more accurate coloc analyses, we explored a variety of data-driven approaches to inform

prior choice across a range of traits and developed a framework to explore sensitivity of conclusions

to the priors used. Further, we implemented an existing conditioning approach in the coloc package,

but also developed an alternative approach to conditioning which does not require aligned LD

and effect estimates, to offer an option to deal with multiple causal variants which preserves the

simplicity of the data required for coloc analyses.

Results

We used Scopus to identify 60 papers which cited coloc10 and were published in 2018 and extracted

the subset of 25 applied papers for which full text could be accessed (Supp Table 1). The studies

covered a variety of trait pairs, generally integrating a disease GWAS with molecular quantitative

trait loci (QTL) data,20–39 but also comparing pairs of disease GWAS,40 eQTL and pQTL41,42 or

eQTL and other molecular traits.43,44 Conditioning was used to allow for multiple causal variants

in only one study40 and 22 out of 25 studies used the software default priors across this diverse

range of trait pairs.

Given that it is likely that the prior probability of colocalisation will depend on the trait pairs

under consideration, we decided to evaluate the effect of mis-specifying prior parameters and/or

not conditioning when multiple causal variants exist.
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The importance and elicitation of prior parameter values

Before examining the robustness of inference to changes in prior values, we elucidate some properties

of prior parameters. While priors are expressed per SNP, our hypotheses and posterior relate to a

region - a set of n neighbouring SNPs. The prior that one SNP in the region is causally associated

with trait 1 is ≈ np1 (and similarly np2 for trait 2, np12 for colocalisation). All these scale with

the number of SNPs - the larger the set of SNPs we consider, the greater the chance one of them is

causal for any trait. Despite this, the prior odds for H4/H1 - colocalisation compared to association

of a trait 1 only - remains constant at p12/p1,

The prior for H3 (two distinct variants for the two traits) is ≈ n(n− 1)p1p2 which scales with the

square of n. This means that prior odds of the two hypotheses of greatest interest, H4/H3, depends

not only on the per SNP prior of causality for one or other trait, but also on the number of SNPs

in a region, to the extent that the same p1, p2, p12 may favour either H3 or H4 as larger regions are

considered (Figure 2). This effect can be understood by assuming we know that two traits have

a causal variant in a region (so either H3 or H4 is true). Simple combinatorics implies that it is

more likely that the same SNP associates with both traits as the number of SNPs in the region

decreases.

Marginal priors

To elicit values for p1, p2, we reparameterise, focusing on the possible marginal events for any SNP:

A1 : SNP is causally associated to trait 1 Prob q1 = p1 + p12

A2 : SNP is causally associated to trait 2 Prob q2 = p2 + p12

Note that in this notation, A1 and A2 are not mutually exclusive, so that colocalisation is A1 ∩A2.

q1, q2 can be estimated empirically by considering evidence from the wealth of single trait association

data that already exists. For eQTLs, we use GTeX data45 and find that q. is dependent on the
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Figure 2: Effects of varying p12 on the prior for H4 (coloured lines) compared to H3 (dashed line)
as a function of the number of SNPs in the region. For all plots p1 = p2 = 10−4 is constant. The
coloured squares highlight points P (H3) = P (H4) for different p12.

MAF of SNPs considered, which reflects variable power with fewer true eQTL variants detectable

at lower MAF, and search window around the gene considered as previously noted, tending to 10−4

for common SNPs and windows ∼1 mb (Figure 3).

The GWAS Catalog46 enables us to consider something similar by aggregating over 5000 GWAS

studies. We find, as expected, and again as previously noted,47 that the number of hits per study

increases steadily with increasing sample size (Figure 3), but that the count also depends on the

class of trait considered, with “harder” endpoints such as breast cancer and heel bone mineral

density identifying orders of magnitude more associations compared to “weaker” endpoints such as

tendency to strenuous sports or activity levels. The largest studies find ∼ 100–1000 hits out of ∼ 2

million common SNPs leading to estimates that 5 in 10,000–100,000 common SNPs are detectably

causal for these traits which corresponds to q. = 5× 10−5 −−5× 10−4.
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Figure 3: Determining plausible priors q1, q2. a q. estimated for eQTLs as the ratio of estimated
number of LD-independent significant eQTL variants divided by number of SNPs considered for an
eQTL analysis in GTeX whole blood samples in successively larger windows around a gene TSS.
Separate lines show findings in 5 equal groups of MAF, with the top and bottom groups labelled.
b The number of hits claimed per study according to the GWAS catalog. q. could be estimated as
number of hits / number of common SNPs (∼ 2, 000, 000). c Posterior probability of association at a
single SNP as a function of -log10 p values for varying values of q.. We considered both case/control
and quantitative trait designs, and a range of MAF (0.05-0.5) and sample size (2000,5000,10000).
The relationship between -log10 p (x axis) and posterior probability of association (y axis) is
consistent across all designs, affected only by the prior probability of association (q1, q2). The
vertical line indicates p = 5×10−8, the conventional genome-wide significance threshold in European
populations.
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An alternative approach is to choose the prior according to the p-value that we would consider

significant. The threshold of p < 5 × 10−8 has been widely adopted as “genome-wide significant”

for GWAS studies in European populations. Across a range of designs (case/control or quantitative

trait, with varying MAF and sample size), we see that a prior of q. = 10−4 gives a strong posterior

probability of association (≈ 0.94) .

The default coloc marginal prior of q1 = q2 = 10−4+p12 ≈ 10−4 is thus supported by the convergence

of these three approaches to values of the order of 10−4.

Prior probability of joint or conditional causality

q1 and q2 themselves place some constraints on p12. On the one hand, the chance of joint causality

cannot be greater than the chance of causal association with either trait. One the other hand, if

traits were independent, then causal variants for each trait would happen to co-occur at the same

location with probability q1 × q2. However, simulations show that the distribution of expected

posterior probabilities vary considerably with p12 over this range (Figure 4), indicating that we

need to make some effort to elicit plausible values. The results suggest that the coloc default of

p12= = 10−5 may be overly liberal, with data simulated under H3 having posterior support for H4,

particularly for smaller samples, and that p12 = 5× 10−5 may be a more generally robust choice.

We consider different approaches to determine data-driven estimation of p12. First, we can set a

lower bound if we take into account that not all of the genome is understood to be functional.

Estimates of the functional proportion vary considerably, from 25%48 –80%.49 Even for traits that

are genetically independent, knowing that a SNP is causal for one trait implies it is functional,

and thus more likely to be causal for another trait then a random SNP that may or may not be

functional. Assuming the proportion of genetic variants that are functional is f , the probability of

co-occurence by chance alone is q1q2/f (see Appendix).

In the case of comparing two GWAS studies, it may be possible to estimate the genetic correlation,
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Figure 4: Distribution of expected posterior probabilities across a wide range of simulated data.
In all analyses we fixed p2 = p1 = 10−4 and varied p12. Coloured bar heights represent the average
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rg. We show in the appendix that, when shared variants do not have any systematically different

distribution of allele frequencies or effects compared to non-shared variants,

|rg| ≤
n12√

(n12 + n1)(n12 + n2)
=

p12√
q1q2

where n12, n1, n2 are the number of variants shared, distinct to trait 1 and distinct to trait 2.

Putting these together, we find

q1q2
f

< p12, |rg|
√
q1q2 < p12, p12 < min(q1, q2).

Second, where studies of both traits are well powered, then methods for joint analysis of trait pairs

may be informative. For example, gwas-pw50 extends the original coloc by using empirical Bayes to

estimate per-hypothesis priors via joint analysis of all regions genomewide. However, this comes at

a cost of ignoring the dependence of per-hypothesis priors on the number of SNPs in a region, and

even in simulated data did not generate consistent estimates. This latter may reflect the limited

information that exists in any pair of GWAS (the number of regions where detectable signals exist

for both traits). Nonetheless, such an approach can probably give a useful order of magnitude

estimate for p12.

Finally, in the absence of data about joint trait association at the genome-wide level, it is necessary

to rely more on investigator judgement, and here it may helpful to consider conditional probabilities

p12 = P (A1 ∩A2) = P (A1 ∩A2|A2)× P (A2) = q1|2 × q2

The term q1|2 represents the probability that a SNP, already known to be causal for trait 2, is also

causal for trait 1. In asymetric analysis such as GWAS and eQTL, it may be simpler to condition

on one event rather than the other - does the investigator have a clearer idea of the chance that a

SNP that causally regulates gene expression in a given tissue is causally associated with a disease

or the chance that a SNP that is causally associated with a disease does so via transcriptional
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regulation in that same tissue?

To aid translation of priors between the two parameterisations discussed here, we have created an

online tool “coloc explorer” at https://chr1swallace.shinyapps.io/coloc-priors.

Sensitivity analysis

In the expected case that an investigator does not have a strong prior belief in a single value for p12

we can use sensitivity analysis to consider whether conclusions are robust over a range of plausible

values. Helpfully, it is not necessary to reanalyse the complete dataset multiple times. Given that

P (Hi|D,π) ∝ BFi × P (Hi|π) =
P (D|Hi)

P (D|H0)
× P (Hi|π)

where D represents study data and π = (p1, p2, p12) is the prior parameter vector used for analysis,

we can derive posterior probabilities under an alternative prior parameter π∗ as

P (Hi|D,π∗) ∝ P (Hi|D,π)× P (Hi|π∗)
P (Hi|π

and so we can rapidly explore sensitivity of inference to changes to p12. Figure 5 shows an example

where conclusions depend heavily on the relative prior belief in H3 and H4 and a conclusion of

colocalisation by a decision rule of P (H4|D,π) > 0.5 is only valid if prior beliefs are that H4 is at

least as likely as H3. An alternative example where results are robust over a wide range of p12 is

shown in Figure S1.

Conditioning and masking to allow for multiple causal variants

In order to deal with multiple causal variants in a region, we implemented the CoJo approach19

within the coloc package. We also propose an alternative to conditioning which does not depend

on allelic alignment and can be used with p-values alone: masking. Stepwise regression proceeds
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Figure 5: Example of sensitivity analysis on a dataset which shows evidence for colocalisation at a
predefined rule of posterior P (H4) > 0.5 only when the prior belief in H3 and H4 are approximately
equal. The left hand panels show local Manhattan plots for the two traits, while the right hand
panels show prior and posterior probabilities for H0-H4 as a function of p12. H0 is omitted from
the prior plot to enable the relative difference for the other hypotheses to be seen.
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by identifying the top SNP, and then re-estimating association statistics across all other SNPs to

test whether they provide any additional information to infer the trait of interest. Conditional

effect estimates at SNPs in LD with the top SNP(s) differ from their unconditional values, so

that they capture the residual evidence for association, but conditional and unconditional effect

estimates are (effectively) the same at SNPs independent from the top SNP(s). Our proposed

masking algorithm relaxes the assumption of a single causal variant by instead assuming that if

multiple causal variants exist for any individual trait, they are unlinked. It therefore first identifies

lead SNPs, then successively masks all SNPs in LD with the top signals(s), testing for significant

association in the remainder, and adding SNPs sequentially while residual association remains

(Figure 6). When colocalising, each lead SNP is taken in turn, and any SNPs in LD with any other

lead SNP is masked, by setting the log Bayes factor to -3 for any SNP-specific hypothesis relating

to that SNP/trait pair. We have implemented both approaches in the development version of the

coloc package, https://github.com/chr1swallace/coloc/tree/condmask.

We compared conditioning and masking to single coloc analysis across a variety of simulated

datasets (Figure 7, 8). A single coloc comparison generally relates to the strongest signals for

each of the two traits, as previously reported,10 which can miss colocalising signals that are sec-

ondary to a primary independent signal (Figure 7, row 3) or that have differently ordered effect

sizes (Figure 8, row 5). Conditioning allows more distinct comparisons and shows a marked im-

provement on single coloc, in particular being able to identify a greater proportion of the truly

colocalising signals. Masking increases the number of comparisons compared to single coloc, but

is less informative than conditioning. In particular, the number of comparisons that cannot be

clearly assigned to a specific causal variant pair (at least one lead SNP does not have r2 > 0.8 with

a causal variant) increases when multiple causal variants are in LD (r2 >, Figures S2, S3) and this

fraction of comparisons are often inaccurate, finding posterior support for H3 when H4 is true.
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Raw data, violates single causal variant assumption

Algorithm: Find lead SNPs

S ← ∅, T ← {all SNPs in region}
while TRUE do

for all t ∈ T do
Fit a model S + t

s← best SNP ∈ T
if s is significant then
S ← S + s
T ← T − s

else
return S

Algorithm: Find lead SNPs

S ← ∅, T ← {all SNPs in region}
while TRUE do

for all t ∈ T do
Fit a model t

s← best SNP ∈ T
if s is significant then
S ← S + s
T ← T − {t : r2(s, t) > α}

else
return S

Conditioning Masking

Right signal identified

Right signal conditioned out, coloc run again

Right signal identified

Right signal masked, coloc run again

Figure 6: Masking as an alternative strategy to conditioning when attempting to colocalise trait
signals with multiple causal variants in a region. Top panel: input local Manhattan plots, with
causal variants for each trait highlighted in red. We can use conditioning (left column) to per-
form multiple colocalisation analyses in a region. First, lead SNPs for each signal are identified
through successively conditioning on selected SNPs and adding the most significant SNP out of the
remainder, until some significance threshold is no longer reached. Then we condition on all but
one lead SNP for each parallel coloc analysis. Note that when multiple lead SNPs are identified
for each trait, eg n and m for traits 1 and 2 respectively, then n×m coloc analyses are performed.
When an allele-aligned LD matrix is not available, an alternative is masking (right column) which
differs by successively restricting the search space to SNPs not in LD with any lead SNPs instead
of conditioning. Multiple coloc analyses are again performed, but setting to 1 the Bayes factor for
hypotheses containing SNPs in LD with any but one of the lead SNPs. Note that for convenience
of display, all SNPs in r2 > α with the lead SNP are assumed to be in a contiguous block, shaded
gray.
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Figure 7: Average posterior probabilities for each hypothesis under different analysis strategies
when trait 1 has two causal variants, A and B, and trait 2 has just one. The left column shows the
identity of causal variants for each trait and their relative effect sizes under four different models.
The right column shows the average posterior that can be assigned to specific comparisons for of
variants for trait 1 : trait 2. We exploit our knowledge of the identity of the causal variants in
simulated data to label each comparison according to LD between the lead SNP for each trait and
the simulated causal variants. When labels cannot be unambiguously assigned (r2 < 0.8 with any
causal variant) we use “?”.
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Figure 8: Average posterior probabilities for each hypothesis under different analysis strategies
when both traits have two causal variants. Information is displayed as described in Figure 7.
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Discussion

This paper has focused on two practical aspects of Bayesian colocalisation analysis that hitherto

have not received detailed attention. The ability of Bayesian methods to incorporate prior knowl-

edge and beliefs is a strength of the coloc approach, but also places onus on a researcher to evaluate

their prior beliefs. Elicitation of informative priors is a subject that has received much attention

in the statistical literature51 but rather less within the genetics community. Nonetheless, the use

of Bayesian methods in genomics is growing in popularity, as a natural way to fit joint models

to large and complex data sets and to enable integrative analysis over different traits or datasets.

When data are large, and the number of events are also large, then empirical Bayes can enable an

analyst to learn the prior from the same data used for testing. However, in the case of smaller

studies or less common events, the wealth of existing information from other large studies as well

as investigators’ own beliefs can be used.

For coloc, the choice of marginal prior parameter values can be readily informed in this way. For

joint causality this is harder and while we suggest and walk through several alternative ways of

doing this the conclusions we draw are not universally applicable; each investigator should use

both available data and their own judgement to elicit their own prior beliefs and those of their co

investigators. Perhaps the most widely applicable are the results of simulations, that suggest values

of the order p12 ≈ 5× 10−6 lead to robust inference over a range of scenarios, but the adoption of

sensitivity analysis will help evalutate robustness of inference to changes in prior parameter values.

Attempts to colocalise disease and eQTL signals have ranged from underwhelming52 to positive.53

One key difference between outcomes is the disease-specific relevance of the cell types considered,

which is consistent with variable chromatin state enrichment in different GWAS according to cell

type.54 For example, studies considering the overlap of open chromatin and GWAS signals have

convincingly shown that tissue relevance varies by up to 10 fold,55 with pancreatic islets of greatest

relevance for traits like insulin sensitivity and immune cells for immune-mediated diseases.54 This

suggests that p12 should depend explicitly on the specific pair of traits under consideration, including
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cell type in the case of eQTL or chromatin mark studies. One avenue for future exploration is

whether fold change in enrichment of open chromatin/GWAS signal overlap between cell types

could be used to modulate p12 and select larger values for more a priori relevant tissues.

The other focus of this paper is on dealing with multiple causal variants for single traits in a single

region. Single coloc can be misleading when there are completely shared causal variants in the

two traits, but with different effect sizes, such that colocalisation concludes there are single effects

in each trait, different to each other (e.g. row 5 of Figure 8). Inference is much improved with

conditioning, and we hope that by including the conditioning method within coloc we will enable

more widespread use of this step. Note that if the two traits are measured in different populations,

then colocalisation can still be performed, with a separate LD matrix for each. However, if the

summary statistics from a single trait are the results of meta analysis of different populations, then

conditioning needs to be performed in each population separately.

One advantage of coloc has been the minimal amount of data pre-processing required. In partic-

ular, there is no need to harmonize alleles between the two datasets or to some reference dataset.

However, harmonization cannot be avoided if multiple causal variants are to be dealt with via con-

ditioning. Although masking loses accuracy in comparison to conditioning, it improves on single

coloc, and importantly doesn’t appear to lead to erroneous positive conclusions for H4 when H3 is

true, although the reverse - supporting H3 for a secondary comparison when H4 is true - can occur

when causal variants are themselves in LD. Therefore secondary H3 conclusions should be treated

with some caution, but secondary H4 conclusions may signal true colocalisations that would have

otherwise been missed. Often a researcher may be colocalising results from one dataset for which

they have complete information (e.g. because it was generated in their lab) with a public disease

GWAS with less information, and here we recommend the hybrid strategy of conditioning in the

dataset with full information and masking in the public dataset.

While we have discussed the thought process required to consider prior parameter values, thought is

also required to interpret partially colocalising signals (i.e. a convincing mixture of one colocalising

and one non-colocalising variant). When the two datasets are different disease GWAS, it may be
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reasonable that they share only one signal, with the alternate signal operating through a different

mechanism. But if there are two signals for an eQTL only one of which colocalises with a disease

signal, then this should be interpreted with greater caution than complete colocalisation. It suggests

that there are two ways of modifying expression of a gene but that only one of those ways is also

associated with variable disease risk. This might mean that the right gene has been identified in

the wrong tissue, given the overlap in eQTL signals between tissues,45 but it might also indicate

incidental colocalisation. Similarly, lack of colocalisation may indicate only that the correct tissue

or state has not been assayed. We anticipate that systematic analysis of multiple tissues and genes

with a single disease may lead to a set of posterior probabilities that are jointly more amenable to

interpretable than a single isolated analysis. However, colocalisation will always be limited by its

basis in analysis of observational data, and experimental manipulation through CRISPR or through

genotype-targeted assays will be required to establish causality.

Materials and Methods

Code to run the simulations and analyses described below is available at https://github.com/

chr1swallace/coloc-mask-paper.

Simulations

We evaluated different prior parameter settings, sensitivity analysis, or strategies for dealing with

multiple causal variants by simulation. In each case, we simulated GWAS data by sampling 2N hap-

lotypes of length M SNPs for N individuals from 1000 Genomes samples (either EUR or YRI), and

selected one or two causal variants at random from amongst common SNPs (MAF>5%) according

to the question being addressed.

Effect estimates at each variant were sampled from the set {0.17, 0.33, 0.50, 0.67, 0.83, 1.00, 1.17,

1.33, 1.50}, sample sizes N from the set {100, 200, 500, 1000, 2000, 5000, 10000} and number of
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SNPs M from {250, 500, 750}. Quantitative traits with residual standard deviation 1 were then

simulated according to linear models, i.e. as

Y =
∑
i

biGi + e

where i indexes causal variants, bi and Gi the effect estimate and genotype at variant i, and

e ∼ N(0, 1).

For all analyses, we used p1 = p2 = 10−4 and varied p12 as described in the text.

GTEx analysis

We used GTEx data to estimate the probability that a random SNP could be causally associ-

ated with the expression of a gene within some bp-defined window. We analysed GTEx v7 Whole

Blood significant eQTLs, downloaded from https://storage.googleapis.com/gtex_analysis_

v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz on 25 June 2019. We used mask-

ing to define independent signals within this set for each gene (r2 < 0.01) using 1000 Genomes EUR

samples to estimate LD. We estimated q as the ratio of the number of significant lead eQTLs in

multiples of 100 kb windows around the TSS to the number of SNPs in 1000 Genomes with SNPs

grouped by MAF into 5 groups: [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5].

GWAS catalog analysis

We used the GWAS summaries in the GWAS catalog (https://www.ebi.ac.uk/gwas/api/search/

downloads/full, download date: 12 June 2019) to estimate the proportion of common SNPs that

were independently associated with any given case/control or quantitative trait and examined how

this varied according to reported sample size.
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