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Abstract 30 

Aims: To introduce REMOS, a new iterative reallocation method (with two variants) for 31 

vegetation classification, and to compare its performance with OPTSIL. We test (1) how 32 

effectively REMOS and OPTSIL maximize mean silhouette width and minimize the number 33 

of negative silhouette widths when run on classifications with different structure; (2) how 34 

these three methods differ in runtime with different sample sizes; and (3) if classifications by 35 

the three reallocation methods differ in the number of diagnostic species, a surrogate for 36 

interpretability. 37 

Study area: Simulation; example data sets from grasslands in Hungary and forests in 38 

Wyoming and Utah, USA. 39 

Methods: We classified random subsets of simulated data with the flexible-beta algorithm for 40 

different values of beta.  These classifications were subsequently optimized by REMOS and 41 

OPTSIL and compared for mean silhouette widths and proportion of negative silhouette 42 

widths. Then, we classified three vegetation data sets of different sizes from two to ten 43 

clusters, optimized them with the reallocation methods, and compared their runtimes, mean 44 

silhouette widths, numbers of negative silhouette widths, and the number of diagnostic 45 

species.  46 

Results: In terms of mean silhouette width, OPTSIL performed the best when the initial 47 

classifications already had high mean silhouette width. REMOS algorithms had slightly lower 48 

mean silhouette width than what was maximally achievable with OPTSIL but their efficiency 49 

was consistent across different initial classifications; thus REMOS was significantly superior 50 

to OPTSIL when the initial classification had low mean silhouette width. REMOS resulted in 51 

zero or a negligible number of negative silhouette widths across all classifications. OPTSIL 52 

performed similarly when the initial classification was effective but could not reach as low 53 

proportion of misclassified objects when the initial classification was inefficient. REMOS 54 

algorithms were typically more than an order of magnitude faster to calculate than OPTSIL. 55 

There was no clear difference between REMOS and OPTSIL in the number of diagnostic 56 

species. 57 

Conclusions: REMOS algorithms may be preferable to OPTSIL when (1) the primary 58 

objective is to reduce or eliminate negative silhouette widths in a classification, (2) the initial 59 

classification has low mean silhouette width, or (3) when the time efficiency of the algorithm 60 

is important because of the size of the data set or the high number of clusters. 61 

 62 

Keywords 63 

Flexible-beta; classification; clustering; iterative; OPTIMCLASS; optimization; OPTSIL; 64 

REMOS; silhouette; validation 65 

 66 

Abbreviations 67 

MSW = mean silhouette width; MR = misclassification rate 68 

 69 

Introduction 70 
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Numerical classification methods are essential data analytical tools in vegetation ecology and 71 

several other scientific fields, including genomics, psychology, or sociology. Basically, 72 

classification algorithms can be divided into two groups. Hierarchical algorithms produce a 73 

perfectly nested hierarchy of clusters of objects, while the output of non-hierarchical methods 74 

is a partition in which each classified object is assigned exclusively to one cluster (or, in the 75 

special case of fuzzy clustering methods, non-exclusively to several clusters using fuzzy 76 

membership weights) at the same level. Hierarchical methods can be subdivided into 77 

agglomerative and divisive methods based on whether they initiate the clustering algorithm 78 

from treating each single object as a separate cluster, and then merge them until all objects are 79 

included in a single cluster at the highest hierarchical level, or they proceed in the opposite 80 

direction by dividing the entire sample iteratively into smaller and smaller subsets in a nested 81 

way. The diversity of numerical classification methods is reviewed by several authors, e.g. 82 

Kaufman & Rousseeuw (1990), Podani (2000), Peet & Roberts (2013), Legendre & Legendre 83 

(2012). 84 

The advantage of hierarchical methods is that they do not need a pre-defined cluster number; 85 

however, if a single-level classification is the objective, as is generally the case, a hierarchical 86 

classification requires a post-hoc assessment for choosing the ‘best’ number of clusters. 87 

Moreover, a disadvantage of hierarchical methods is that earlier steps (either merging or 88 

division) constrain further ones, hence the final solution may be suboptimal. In such a case the 89 

a posteriori reallocation of misclassified objects might be necessary. 90 

Recently Roberts (2015) introduced two reallocation-based methods which can be used for 91 

improving already existing classifications by optimizing a pre-selected goodness-of-clustering 92 

criterion. One of these two, called OPTSIL, optimizes the silhouette width which is a widely 93 

used index for evaluating classifications and identifying ‘core’ and misclassified objects 94 

individually (Rousseeuw 1987, Kaufman & Rousseeuw 1997). Let i be a focal object 95 

belonging to cluster A. Let C be a cluster not containing i. a(i) is defined as the average 96 

dissimilarity between i and all other objects in A, while c(i,C) is the average dissimilarity 97 

between i and all objects in C. 98 
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That is, b(i) is the average dissimilarity between i and the members of its closest neighbour 99 

cluster. The silhouette width, S(i), is defined as: 100 
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S(i) ranges between -1 and +1. Values near +1 indicate that object i is much closer to other 101 

objects in its assigned cluster than to objects of the closest other cluster, implying a correct 102 

classification. If S(i) is near 0, the correct classification of the focal object is doubtful, thus 103 

suggesting intermediate position between two clusters. S(i) values < 0 indicate poor fit, and 104 

such objects are often considered ‘misclassified’ (Rousseeuw 1987). In each iteration, 105 

OPTSIL evaluates how much the reallocation of any single object in the classification 106 

increases the sample-wise mean of silhouette width. It is done by re-assigning each object 107 

from its current cluster to every other cluster, and then re-calculating the silhouette widths for 108 

all objects. The reallocation which causes the highest increase in the sample-wise mean 109 

silhouette is accepted in each step, until no further improvement is possible. Roberts (2015) 110 

concluded that OPTSIL is able to significantly improve the initial classification; however, it is 111 

slow to converge, and thus recommended for ‘polishing’ of classifications made by other 112 

methods. 113 
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We present two new silhouette-based reallocation algorithms, called REMOS (reallocation of 114 

Misclassified Objects based on Silhouette width). Using artificial and real data sets, we 115 

compare them with OPTSIL in terms of three criteria: optimization success, time efficiency, 116 

and interpretability. 117 

 118 

Materials and Methods 119 

The REMOS algorithms 120 

Instead of evaluating the effect of the reallocation of each object (typically sample unit) on the 121 

mean silhouette width, REMOS algorithms simply reallocate one or all of the objects which 122 

have negative silhouette width. According to how objects to reallocate are selected, we 123 

introduce two versions of REMOS. REMOS1 reallocates only the object with the most 124 

negative silhouette width (i.e., the ‘worst classified’ object), while REMOS2 reallocates all 125 

objects with negative silhouette width (i.e., all misclassified objects). Both algorithms stop if 126 

the lowest silhouette width reaches a threshold L, or if no further improvement is possible. By 127 

default L is 0; however, using different values between -1 and 0 can control tolerance towards 128 

misclassifications. The steps of the algorithms are presented below: 129 

(1) Calculating the silhouette widths, S(i), for the classified objects; 130 

(2) Are there any objects with S(i) < L? 131 

 2a. If no, then go to (5) 132 

 2b. If yes, go to (3) 133 

(3) Updating the classification by reallocating objects: 134 

 REMOS1: reallocate only the object with the most negative silhouette width to its 135 

neighbour cluster; 136 

 REMOS2: reallocate all the objects with S(i) < L to their respective neighbour clusters; 137 

(4) Go to (1). 138 

(5) End – no further optimization is possible 139 

Our preliminary runs showed that both REMOS algorithms frequently converge into loops 140 

where the iteration proceeds repeatedly over a finite number of suboptimal solutions without 141 

finding any of them as a final solution. To break such a loop, the algorithm checks for 142 

repetitions and stops if two identical solutions occur. In this case the solution with the lowest 143 

number of negative silhouette widths is selected from the previous iterations. In case of tied 144 

minimum of negative silhouette widths, the solution giving the higher absolute sum of 145 

negative silhouette widths (a surrogate for smaller ‘classification error’) is chosen as final. 146 

Not surprisingly, in most cases REMOS1 requires many more iterations than REMOS2. 147 

According to our pilot analyses with differently sized data matrices and different initial 148 

classifications, this can extend the computation time of REMOS1 in comparison with 149 

REMOS2. It is possible to set an upper limit to the number of iterations; however, as there is 150 

no standard value for this threshold, the default setting is infinity (that is, no limit). 151 

An R script of the REMOS algorithms is provided in the Electronic Supplement. 152 

 153 
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Data sets 154 

We compared the performance of the REMOS1, REMOS2 and the OPTSIL algorithms on 155 

three real and one artificial data set. The Shoshone data set is a random subset comprising 150 156 

plots selected from a larger forest inventory database. This data set represents coniferous 157 

forests of Shoshone National Forests (WY, USA). In the plots vascular species were recorded 158 

using an ordinal scale. The Bryce data set was sampled in the Bryce Canyon National Park 159 

(UT, USA; Roberts 1992). It includes 160 circular plots of ~404.7 m2 (0.1 acre) where the 160 

cover of 169 vascular species (except trees) were recorded on ordinal scale. The Grasslands 161 

data set is a subset of a larger sample of mesic grasslands of northern Hungary (Lengyel et al. 162 

2016). The size of the matrix is 55 plots by 269 species. Abundances are coded on a 163 

percentage scale. As artificial data, we employed a simulated data set of 400 points in two 164 

dimensions. The points are aggregated into eight fuzzy clusters (Fig. 1). For different test 165 

scenarios, random subsets of different size were used. 166 

 167 

Data analysis 168 

The performance of the REMOS and OPTSIL algorithms was evaluated from three aspects: 169 

optimization success on different initial classifications of artificial and real data, dependence 170 

of computation time on sample size with artificial data, and interpretability of the optimized 171 

classification of real data based on indicator species. 172 

For testing optimization success, initial classifications of random subsamples of the artificial 173 

data set containing 200 points were prepared using the flexible-beta classification algorithm 174 

(Lance & Williams 1966). This method uses a parameter called beta which enables producing 175 

classifications with different sensitivity of ‘chaining’ vs. ‘grouping’ effect. The beta is 176 

adjustable between -1 and +1. With lower values the grouping effect is emphasized, while 177 

higher beta gives more weight to chaining. With beta = -1 flexible-beta clustering is identical 178 

with the complete linkage method, with beta = 0 it agrees with the average linkage 179 

(UPGMA), with beta = +1 it is the same as single linkage. Several authors reported that the 180 

flexible clustering method provides the most satisfactory classifications using beta = -0.25. In 181 

this analysis, values of beta were changed between -1 and +1 in steps by 0.25 in between. The 182 

hierarchical classifications were cut at the 8-cluster level. The procedure was repeated 5 times 183 

resulting in 5 × 9 = 45 initial classifications. Each of them was optimized using the REMOS1, 184 

REMOS2, and OPTSIL algorithms. We compared the change of mean silhouette widths 185 

(MSW) and misclassification rate (that is, the proportion of negative silhouette widths; MR) 186 

across beta values between the optimized classifications and the initial classification. In the 187 

Electronic Supplement we show some exemplary classifications. 188 

For comparing time efficiency, we drew subsamples containing 50, 100, 200, and 300 points 189 

of the artificial data set in 20 repeats, and additionally, used also the entire sample of 400 190 

points. Each of them were classified to 8 clusters using the flexible-beta algorithm with beta = 191 

-0.25, resulting in 81 initial classifications. These were optimized using REMOS1, REMOS2, 192 

and OPTSIL, and the time elapsed during the optimization process was compared between the 193 

three algorithms. 194 

Real data sets were classified to 2 to 20 clusters using the flexible-beta algorithm (Lance & 195 

Williams 1966) where beta = -0.25. For all real data sets and both classifications, the 196 

dissimilarity measure was Sörensen index. Each partition was optimized using the REMOS1, 197 

REMOS2, and OPTSIL methods. To assess differences in optimization success, mean 198 
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silhouette width and misclassification rate were calculated and compared between reallocation 199 

methods, the original classification, and across numbers of clusters.  200 

Lötter et al. (2013) argued that species fidelity should be a leading criterion in the evaluation 201 

of vegetation classifications. Therefore, we used the Optimclass 1 index as a proxy for 202 

interpretability of classifications (Tichý et al. 2010) that is the total number of faithful species 203 

across all clusters. Faithful species were determined using Fisher’s exact test and a p=0.001 204 

threshold for supporting the null hypothesis that the species shows random distribution across 205 

clusters (Chytrý et al. 2002). Hence, we also compared flexible-beta classifications optimized 206 

by REMOS1, REMOS2, and OPTSIL, as well as the initial classifications in terms of the 207 

number of faithful species across number of clusters. 208 

The data analysis was carried out in the R software environment (R Core Team 2017) using 209 

the cluster (Maechler et al. 2018) package. Source code for REMOS1 and REMOS2 is 210 

supplied in the Electronic Supplement S3. OPTSIL was calculated using the optpart package 211 

(Roberts 2016).  212 

 213 

Results 214 

When comparing optimization success, the REMOS and OPTSIL algorithms differed 215 

markedly in MSW values they reached at different values for beta (Fig. 2). With beta <= 0 the 216 

mean silhouette width of the initial classification was already high (MSW > 0.60), yet all 217 

three optimization methods achieved minor improvement. Within this range of beta, the 218 

largest increment in MSW was made by OPTSIL (+0.0134), less by REMOS2 (+0.0105) and 219 

REMOS1 (+0.0118) (Table 1). On average, OPTSIL was superior to all other methods in this 220 

respect, although differences were very slight (|0.0013| to |0.0029|) between OPTSIL, 221 

REMOS1, and REMOS2. From beta = 0.25 and higher, initial classifications showed a 222 

dramatic decline in MSW; with beta = 0.5 and higher, MSW dropped below 0. OPTSIL was 223 

able to optimize these initial classifications only to a limited degree: MSW ranged between 224 

0.45 and 0.69 with beta = 0.25, and between 0.12 and 0.45 with higher beta. On the contrary, 225 

REMOS1 and REMOS2 performed well, achieving a lowest median MSW of 0.599 with beta 226 

= 0.75; even the minima were near 0.5. A very similar pattern was detectable with 227 

misclassification rates. MR was near 0 with beta <= 0 for both optimization methods (Fig. 3). 228 

Within this range, REMOS1 reached the lowest MR on average but its advantage over 229 

REMOS2 was minimal (|0.0002| difference; Table 2). REMOS1 and REMOS2 had slightly 230 

lower MR than OPTSIL (|0.0034| and |0.0032| differences, respectively). All optimization 231 

methods decreased MR in comparison with the initial classification (REMOS1: -0.0187, 232 

REMOS2: -0.0185, OPTSIL: -0.0153). With increasing beta, especially with beta >= 0.5, 233 

REMOS1 and REMOS2 kept MR at the same level, while OPTSIL resulted in gradually 234 

higher values reaching medians over 0.1.  235 

The number of iterations for REMOS1 were between 2 and 234, for REMOS2 between 2 and 236 

53, and for OPTSIL between 0 and 67. Not surprisingly, from less efficient initial 237 

classifications more iterations were necessary to reach a final solution; however, the upper 238 

limit of number of iterations was never reached. 239 

Visual checking of the classifications showed that with beta = 0 or lower all classifications 240 

mirrored the a priori point aggregations efficiently (Figures S4-1 to S4-4). Classifications 241 

differed mostly in the assignments of transitional points. With beta > 0 initial classifications 242 

tended not to distinguish point aggregations as separate clusters. OPTSIL classification tended 243 

to delimit one (or a few) heterogeneous clusters including several aggregations of many points 244 
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in a single cluster and several clusters with very few points distant from each other (see Fig. 245 

S4-7). Additionally, OPTSIL tended to eliminate clusters completely, thus often keeping only 246 

2 to 7 clusters from the initial eight (see Fig. S4-5 to S4-7). In a few cases REMOS2 also 247 

eliminated one or two clusters but REMOS algorithms were rather consistent in delineating 248 

point aggregations rather independently of the beta value. 249 

There was a significant difference in the relationship between sample size and computation 250 

time among the three optimization methods (Fig. 4). Considering average runtimes with 50 251 

points REMOS2 was the fastest (0.0006 s), followed closely by REMOS1 (0.0010), while 252 

OPTSIL ran approximately three times longer (0.0254 s). For larger samples, REMOS2 was 253 

the fastest, completing classifications in 0.0008 s, 0.0010 s, 0.0018 s, and 0.0010 s, with 100, 254 

200, 300, and 400 objects, respectively. However, its advance over REMOS1 was minimal, 255 

which needed 0.0015 s, 0.0025 s, 0.0051 s, 0.0030 s on average. The lag of OPTSIL was even 256 

more significant at these sample sizes: average runtimes were 0.2556 s, 3.7027 s, 13.7790 s, 257 

and 24.4539 s with 100, 200, 300, and 400 objects. 258 

On the Grasslands data set OPTSIL reached the highest MSW at all but two examined cluster 259 

levels (Fig. 5). With 6 and 10 clusters REMOS1 performed the best and it was only slightly 260 

worse than OPTSIL in all other cases. Interestingly, REMOS2 gave the same MSW values 261 

with 2 to 5 clusters (likely due to identical final solutions), but at finer resolutions it was much 262 

poorer. With 6, 7 and 9 clusters REMOS2 even decreased the MSW of the initial 263 

classification. Regarding misclassification rate, REMOS1 performed the best with no negative 264 

silhouette width values over all runs. As with MSW, from 2 to 5 clusters REMOS2 gave the 265 

same result, but the weak performance with 6 or more clusters was visible here, too. OPTSIL 266 

solutions ranked in intermediate position between REMOS1 and the initial classification, the 267 

latter being the worst in all but two cases. These differences were not observable with 268 

diagnostic species. Between 2 to 7 clusters all methods (including the initial classification) 269 

showed similar numbers of diagnostic species, while at finer resolutions REMOS2 was the 270 

best. Nevertheless, the Grassland data set is small, thus at this level the sizes of clusters are so 271 

small and the number of diagnostic species so low that these differences are probably not 272 

relevant.  273 

With the Bryce data set OPTSIL produced the highest MSW at most cluster levels (Fig. 5). 274 

REMOS1 and REMOS2 had very similar, often identical performance. With a minimal 275 

difference they outperformed OPTSIL at two clusters. At 3 and 4 clusters they were slightly 276 

worse than OPTSIL but this difference increased with the number of clusters, and became 277 

striking from 7 and more clusters. The initial classification had the lowest MSW across the 278 

tested numbers of clusters. REMOS1 and REMOS2 provided solutions with the lowest MR, 279 

most often with no negative silhouette widths at all. OPTSIL had MR between 0.02 and 0.07, 280 

while the initial classification had the highest MR in at all cluster numbers (MR between 281 

0.048 and 0.15). OPTSIL performed the best in terms of diagnostic species at 3, as well as at 282 

6 and more clusters. Interestingly, at 4 clusters the initial classification had the most 283 

diagnostic species, while at 2 and 5 clusters REMOS algorithms reached the highest values.  284 

On the Shoshone data set, OPTSIL reached the highest MSW across all cluster numbers, 285 

REMOS1 was the second best, showing similar (in a few cases identical) MSW values with 286 

REMOS2, and the worst was the initial classification (Fig. 6). REMOS1 had the lowest MR 287 

again. This position was shared with REMOS2 between 2 and 5 clusters when both 288 

algorithms provided no misclassifications. OPTSIL had MR between 0.04 and 0.07, which 289 

positioned it behind REMOS2 in all but two cluster numbers. The initial classification had the 290 

highest MR (between 0.15 and 0.27). Regarding the number of diagnostic species, the picture 291 

was different. REMOS1 gained the highest numbers, again in a few cases together with 292 
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REMOS2, while OPTSIL was always inferior. The initial classification was again the worst in 293 

all cases, except for the 10-cluster level, where REMOS2 had the fewest diagnostic species. 294 

 295 

Discussion 296 

In this paper we introduced the REMOS algorithms which can be used for improving already 297 

existing classifications by reallocating misclassified objects using the silhouette criterion. 298 

Two versions are available: REMOS1 reallocates only the single object with the lowest 299 

silhouette width, while REMOS2 re-assigns all objects with negative silhouette width to their 300 

respective closest neighbour cluster. We provide evidence on the high optimization success 301 

and time efficiency of the new algorithms. 302 

Our tests showed that the efficiency of the tested reallocation algorithms (REMOS1, 303 

REMOS2 and OPTSIL) has different degrees of dependence on the initial classification. 304 

Regarding MSW, the optimization success of OPTSIL is higher than REMOS algorithms’ 305 

when the initial classification already has rather high MSW; although, the difference is 306 

usually small. Since mean silhouette width prefers spherical cluster shapes (Rousseeuw 1987), 307 

it is typically high for classifications produced by group-forming methods, e.g. flexible-beta 308 

with beta <= 0, and similar behaviour can be expected when applied to average linkage, 309 

complete linkage, Ward’s method, K-means, or PAM classifications. However, with chaining 310 

algorithms, e.g. beta > 0, REMOS1 and REMOS2 outperform OPTSIL. Chaining algorithms 311 

optimize on criteria emphasising nearest neighbour distances which are not well reflected by 312 

the traditional form of silhouette width also applied here (but see Lengyel & Botta-Dukát in 313 

press), resulting in non-spherical clusters and low MSW. Using such classifications as input, 314 

OPTSIL frequently converges into local optima, while REMOS algorithms provide more 315 

robust optimization and reach high MSW. As it was shown by our examples, OPTSIL 316 

solutions in these situations often fail to mirror the original cluster structure of the data set. In 317 

concurrence with Roberts (2015), we suggest classifying the data set by a grouping method 318 

first, and then optimizing the result with OPTSIL in order to reach the highest possible MSW. 319 

Alternatively, REMOS algorithms seem more effective with other types of initial 320 

classifications, although, their final MSW might be slightly lower than what is maximally 321 

possible with OPTSIL.   322 

Regarding misclassification rate, REMOS1 performed the best. In many cases REMOS2 led 323 

to exactly the same solution containing no negative silhouette width values at all; however, 324 

with the real data examples and higher number of clusters REMOS2 tended not to reach such 325 

efficiency. The sensitivity to the initial classification of OPTSIL was visible also on the 326 

presence of negative silhouette widths: OPTSIL had significantly higher MR than REMOS 327 

algorithms when initiated from classifications with a chained structure. It must be noted that 328 

different algorithms may reach the same value for MR, while their final solutions are not 329 

necessarily identical. It occurred in some times with REMOS1 and REMOS2 that their final 330 

solutions contained no, or only very few misclassified objects, while their classifications were 331 

different. Even the number of clusters can differ between REMOS1 and REMOS2 despite 332 

equal MR (e.g., Fig. S4-4). Such agreement in MSW is less probable due to its continuous 333 

scale. 334 

In general, optimizing a single criterion results in trade-offs for other criteria, and OPTSIL 335 

and REMOS demonstrate this clearly.  It is not surprising that OPTSIL reached the highest 336 

MSW values, while REMOS outperformed OPTSIL in terms of MR.  When comparing the 337 

optimization success of OPTSIL and REMOS on MSW and MR, it must be noted that 338 

OPTSIL directly maximizes MSW, a ‘global’ criterion of classification efficiency.  REMOS, 339 
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on the other hand, has a more local perspective on classification efficiency, and focuses on 340 

neighbourhoods of adjacent clusters.  Surely, MSW and MR correlate strongly, and in general 341 

optimizing MR will lead to high, although not necessarily optimal, MSW. In addition, 342 

REMOS implicitly minimizes the absolute value of the sum of negative silhouette widths.  In 343 

our tests, this criterion behaved very similarly to MR, thus we present its results only in the 344 

Electronic Supplement 5. 345 

OPTSIL employs an anticipatory algorithm that tentatively reallocates an object to another 346 

cluster, but then calculates the consequences of doing so before making the reallocation 347 

effective. As a result, the trace of the optimization criterion is strictly monotonic increasing.  348 

REMOS, on the other hand, identifies candidate objects to reallocate and makes the 349 

reallocation effective immediately. In some cases this causes objects in the target cluster to 350 

exhibit newly negative silhouette widths in the next iteration, and subsequent reallocations 351 

must undo the negative consequences of a previous reallocation. As a result, the trace of the 352 

optimization criterion shows non-monotonic behaviour, and in some cases oscillates or 353 

exhibits cycles. While in general this behaviour is undesirable it may help avoid local optima 354 

in a manner similar to genetic algorithms. 355 

The difference between ‘global’ vs ‘local’ perspective can be seen on the classifications of the 356 

artificial data sets (see the Electronic Supplement). OPTSIL solutions initiated from less 357 

efficient classifications often contained one or more clusters with a single object, or a few 358 

objects which were distant from each other (e.g., Figure S4-7). Such solutions are presumed 359 

to have the highest possible MSW from the respective initial classification with the cost of a 360 

few very heterogeneous or overlapping clusters and misclassified objects. 361 

From the perspective of optimizing silhouette width, it is not correct to say that an object with 362 

negative silhouette width is misclassified if reallocating it to its nearest neighbour cluster 363 

decreases MSW. Rather, a misclassification is an assignment that lowers mean silhouette 364 

width. However, as noted above, MSW cannot be high with many negative silhouette widths. 365 

Alternatively, the viewpoint that correct classification reflects strictly positive silhouette 366 

widths for as many objects as possible might be more straightforward than an ‘on-average 367 

correct’ solution. This requires a decision from the investigator before choosing between these 368 

methods. 369 

An important property of REMOS2 and OPTSIL is that they are able to eliminate complete 370 

clusters from the initial classification, thus the final number of clusters becomes lower than 371 

the initial. This can be useful if the initial classification has more clusters than is optimal. 372 

However, our simulation examples showed that the number of clusters by these methods, but 373 

especially OPTSIL, can decrease even if the initial classification is not effective, despite its 374 

cluster number corresponds to the number of point aggregations.  375 

We found clear difference in computation time between the three methods. REMOS 376 

algorithms were magnitudes faster than OPTSIL. This is not surprising considering that in 377 

every iteration of the OPTSIL algorithm all possible reallocations of all objects to each cluster 378 

are recalculated and only the one bringing the highest increment in MSW is accepted. In our 379 

tests for computation time we used rather small data sets (i.e., containing max. 400 objects) 380 

with clear cluster structure, and optimized initial classifications with relatively high MSW. 381 

Presumably, such classifications would be faster to optimize than real data sets. Therefore, 382 

our measured runtimes are likely to be shorter than what we can expect for larger and more 383 

complicated data sets, less efficient classifications or more clusters. If time efficiency of the 384 

analysis is crucial and the small difference in optimization success can be neglected, 385 

REMOS1 or REMOS2 should be considered instead of OPTSIL. 386 
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Although we found OPTSIL sensitive to the initial classification, we must note that OPTSIL 387 

performed poorly in situations which are scarcely realistic, since chaining algorithms are 388 

rarely used in practice. If high silhouette width is a desired outcome it makes little sense to 389 

begin with a classification emphasizing connectivity (e.g. single linkage or flexible-beta with 390 

beta > 0), and classifications emphasizing cluster disjunction (e.g. complete linkage or 391 

flexible-beta with beta < 0) should be preferred.  In vegetation science, group-forming 392 

methods are much more popular and straightforward, thus these drawbacks of OPTSIL may 393 

not obtain in practice.  394 

Tests on real data showed that OPTSIL combined with flexible-beta (beta = -0.25) is more 395 

efficient than REMOS algorithms in terms of MSW, although, the difference is often small. 396 

As a contrast, with respect to minimizing the proportion of negative silhouette widths 397 

REMOS1 provided consistently the best classifications. However, these differences may not 398 

affect interpretability the same way since we could not detect consistent difference between 399 

OPTSIL and REMOS algorithms in the number of diagnostic species. We suggest considering 400 

which cluster validity measure fits the research question the best, and then decide between the 401 

methods discussed above. 402 

 403 

Conclusions 404 

We present REMOS1 and REMOS2 as new reallocation methods for the optimization of 405 

classifications and compare them with the related OPTSIL algorithm. When the initial 406 

classification is already relatively efficient, most frequently OPTSIL gives the highest final 407 

mean silhouette width; however, REMOS solutions are often only slightly worse. When the 408 

initial classification has low mean silhouette width, OPTSIL performs poorly, while REMOS 409 

algorithms are similarly straightforward as with more efficient initial classifications. With 410 

respect to the proportion of misclassified objects, REMOS algorithms, especially REMOS1, 411 

provided better classifications than OPTSIL, and this difference increased toward less 412 

efficient initial classifications. REMOS algorithms are much time efficient to compute than 413 

OPTSIL. We found no systematic difference in the number of diagnostic species between 414 

vegetation classifications obtained by OPTSIL and REMOS algorithms. 415 

 416 
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Table 1. Differences between the (unoptimized) initial classification, REMOS1, REMOS2, 468 

and OPTSIL solutions when the beta = 0 or lower in the flexible-beta classification. In the 469 

cells are averages of differences calculated for each run as [MSW by the method in the row] – 470 

[MSW by the method in the column].  471 

 Initial REMOS1 REMOS2 OPTSIL 
Initial 0 -0.0105 -0.0118 -0.0134 
REMOS1 0.0105 0 -0.0013 -0.0029 
REMOS2 0.0118 0.0013 0 -0.0016 
OPTSIL 0.0134 0.0029 0.0016 0 
 472 

  473 
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Table 2. Differences between the (unoptimized) initial classification, REMOS1, REMOS2, 474 

and OPTSIL solutions when the beta = 0 or lower in the flexible-beta classification. In the 475 

cells are averages of differences calculated for each run as [MR by the method in the row] – 476 

[MR by the method in the column].  477 

 Initial REMOS1 REMOS2 OPTSIL 
Initial 0 0.0187 0.0185 0.0153 
REMOS1 -0.0187 0 -0.0002 -0.0034 
REMOS2 -0.0185 0.0002 0 -0.0032 
OPTSIL -0.0153 0.0034 0.0032 0 
 478 

  479 
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Fig. 1. The simulated data set containing 400 points in eight aggregations 480 

 481 
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Fig. 2. Comparison of the initial classification (without optimization), REMOS1, REMOS2, 483 

and OPTSIL across different beta values of the flexible-beta classification based on mean 484 

silhouette width. 485 

 486 

 487 
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Fig. 3. Comparison of the initial classification (without optimization), REMOS1, REMOS2, 489 

and OPTSIL across different beta values of the flexible-beta classification based on 490 

misclassification rate. 491 

 492 

 493 
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Fig. 4. Computation times with different sample sizes by REMOS1, REMOS2, and OPTSIL. 494 

Shortest computation times are truncated and replaced by 0.0001 s. 495 

 496 

 497 
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Fig. 5. Comparison of the initial classification (without optimization), REMOS1, REMOS2, 499 

and OPTSIL solutions in terms of the change of mean silhouette width and number of 500 

diagnostic species across the number of clusters on the Grassland data set. The initial 501 

classification was produced by the flexible-beta method (beta = -0.25). To avoid overlap, 502 

points are jittered in the horizontal direction on the graph. Colour code: red – REMOS1, green 503 

– REMOS2, blue – OPTSIL, black – initial classification. 504 

 505 
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Fig. 5. Comparison of the initial classification (without optimization), REMOS1, REMOS2, 509 

and OPTSIL solutions in terms of the change of mean silhouette width and number of 510 

diagnostic species across the number of clusters on the Bryce data set. The initial 511 

classification was produced by the flexible-beta method (beta = -0.25). To avoid overlap, 512 

points are jittered in horizontal direction on the graph. Colour code: red – REMOS1, green – 513 

REMOS2, blue – OPTSIL, black – initial classification. 514 
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Fig. 6. Comparison of the initial (without optimization) classification, REMOS1, REMOS2, 517 

and OPTSIL solutions in terms of the change of mean silhouette width and number of 518 

diagnostic species across the number of clusters on the Shoshone data set. The initial 519 

classification was produced by the flexible-beta method (beta = -0.25). To avoid overlap, 520 

points are jittered in horizontal direction on the graph. Colour code: red – REMOS1, green – 521 

REMOS2, blue – OPTSIL, black – initial classification. 522 
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