bioRxiv preprint doi: https://doi.org/10.1101/2020.01.05.895441; this version posted January 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

PROBABILISTIC GENE EXPRESSION SIGNATURES IDENTIFY
CELL-TYPES FROM SINGLE CELL RNA-SEQ DATA

A PREPRINT
Isabella N. Grabski Rafael A. Irizarry
Department of Biostatistics, Harvard University =~ Department of Data Sciences, Dana-Farber Cancer Institute
isabellagrabski@g.harvard.edu Department of Biostatistics, Harvard University

rafael_irizarry@dfci.harvard.edu

January 5, 2020

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) quantifies the gene expression of individual cells in a
sample, which allows distinct cell-type populations to be identified and characterized. An important
step in many scRNA-seq analysis pipelines is the classification of cells into known cell-types. While
this can be achieved using experimental techniques, such as fluorescence-activated cell sorting, these
approaches are impractical for large numbers of cells. This motivates the development of data-driven
cell-type identification methods. We find limitations with current approaches due to the reliance
on known marker genes and sensitivity to the quality of reference samples. Here we present a
computationally light statistical approach, based on Naive Bayes, that leverages public datasets
to combine information across thousands of genes and probabilistically assign cell-type identity.
Using datasets ranging across species and tissue types, we demonstrate that our approach is robust to
low-quality reference data and produces more accurate cell-type identification than current methods.

Keywords Single cell RNA-Seq, Empirical Bayes Models

1 Introduction

Single-cell RNA sequencing (scRNA-seq) quantifies gene expression at the level of individual cells, rather than
measuring the aggregated gene expression in a biological sample containing millions of cells, as is done with bulk
RNA-sequencing. This improved granularity permits the identification or discovery of distinct populations of cell-types
within the tissues under study. To effectively accomplish this, it is important to classify cells reliably into known
cell-types, in particular cells that are present in many tissues such as immune system cells. Fluorescence-activated cell
sorting (FACS) can be used prior to the sequencing step to physically sort cells from a mixed sample into their cell-type
populations. While generally regarded as highly accurate, FACS-sorting has limited throughput, and thus is impractical
when sequencing large numbers of cells. As a result, there is a need for data-driven approaches to identify cell-types.

Current methods fall into one of two categories, which we will refer to as clustering-based and reference-based. In
clustering-based methods, the target cells are first grouped using an unsupervised clustering algorithm (for example,
[LL 124 135 14]). Next, differential expression analysis is used to identify genes that are uniquely expressed in each group
and compared to known cell-specific marker genes to annotate the group as a particular cell-type. Although any
clustering algorithm can be used in this type of method, we focus primarily on Seurat’s clustering algorithm [4], since it
is popularly used in this way for cell-type identification.

Reference-based methods (for example, [5. 16} (7, 18, 9]]) use supervised learning approaches in which the target cells are
compared to reliably annotated, such as FACS-sorted, reference data for each cell-type of interest, and each target cell
is annotated using the closest match. Approaches to defining closest match vary. Many of these supervised methods are
based on complex machine learning algorithms, such as Xgboost [[7]] and deep neural networks [[10], which are prone to
over-fitting. In addition, some of the most popular methods rely on marker genes to guide the determination of the
closest match [6, 15]].
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We find that methods using marker genes are limited by the sparsity of sScRNA-seq data. Specifically, in a typical
scRNA-seq experiment using unique molecular identifiers (UMIs), between roughly 50% and 100% of genes report 0
counts in an individual cell. This has been shown to be a result of technological limitations rather than biologically
driven [11]. Here, we demonstrate that the probability of observing a non-zero count for a gene that is actually expressed
can be substantially smaller than 1; for instance, in CD4 cells, the markers had non-zero counts in anywhere from
0% to 38% of the cells. As a result, many marker genes that have been established as reliable indicators of cell-type
on the bulk level are no longer adequate on the single cell level. This implies that methods relying on them can be
highly sensitive to the choice of marker genes. Furthermore, for less-studied or rare cell-types, there are often no
well-established marker genes suitable for the single cell resolution.

In this work, to minimize over-fitting and avoid reliance on marker genes, we apply a version of one of the simplest
machine learning algorithms, Naive Bayes [[12], that defines a conditional distribution for each target cell by estimating
a cell-type-specific expression rate for each gene. To overcome the problem where the estimated rates are zero for
hundreds of genes due to the sparsity of the data, we use a hierarchical model that defines a cell-type-specific distribution
for each gene, with the hierarchical aspect providing statistical power in the presence of said sparsity. We describe the
datasets used to build and assess our method, show the limitations of existing approaches, provide a detailed description
of our approach, and finally demonstrate its advantages.

2 Results

2.1 Datasets

To benchmark our approach against existing methods, we used three datasets. We chose these datasets by identifying
publicly available data satisfying four requirements: (1) the data consisted of UMI counts, (2) the cell-types were
FACS-sorted, (3) the donors were healthy and untreated, and (4) we were able to find at least one other UMI count,
FACS-sorted, healthy-donor dataset for the same cell-types from a different study that could be used as a test dataset.
These requirements greatly limited the number of datasets available but it permitted us to assess the algorithms in a
real-world setting and explicitly check for over-training. Specifically, we constructed two test sets for each dataset:
one constructed in the traditional way of withholding a subset of the original dataset, and the other by using a dataset
generated in a completely different study. We refer to these two as the withheld test set and the external test set,
respectively. Note that over-training, a concern for supervised methods such as the reference-based ones, will result in
better performance in the withheld test set compared to the external test set.

The first dataset was constructed from four different FACS-sorted human peripheral blood mononuclear cell (PBMC)
datasets from 10X Genomics. In particular, we combined 11,113 CD4 cells, 10,109 CD8 cells, 2,512 CD14 cells, and
8,285 NK cells [13]]. We refer to this dataset as the PBMC dataset. For the withheld test set, we withheld 100 cells of
each of the four cell-types. To construct the external test set, we combined 425 FACS-sorted CD14 cells each from two
different donors [[14].

The second dataset was created from three FACS-sorted cell-types from different human tissues: 32,841 prostate cells
[15], 9,900 brain microglia cells [16], and 2,512 CD14 PBMC:s [13]]. These are three clearly distinct tissues, and so, in
principle, these cell-types should be easy to distinguish. We refer to this dataset as the Tissues dataset. To form the
withheld test set, we withheld 100 prostate and CD14 cells, and 34 brain cells. The external test was formed from
independent FACS-sorted data from other studies. Specifically, we used 425 cells each of prostate primary epithelial
cells [[17], brain microglial cells [18]], and CD14 cells [14].

The third dataset was created from FACS-sorted mouse CD4 Treg and Tmem cells from four different tissues each:
3,883 Treg spleen cells, 4,496 Tmem spleen cells, 4,805 Treg brachial lymph node cells, 3,108 Tmem brachial lymph
node cells, 2,982 Treg colon cells, 3,737 Tmem colon cells, 156 Treg skin cells, and 166 Tmem skin cells [[19]. This
dataset, which we call the Treg/Tmem dataset, represents a challenging case of many similar cell-types. The withheld
dataset was formed from 100 withheld cells of each cell-type, except for skin cells due to their low number of cells. The
external test set combined two independent experiments that sequenced FACS-sorted Treg spleen cells; one experiment
is from [20]], and the other is unpublished data made available by Dr. Zikai Zhou’s laboratory.

2.2 Clustering-based approaches artificially identify more cell-types with increasing dataset size

We used the PBMC dataset to investigate the relationship between the number of clusters and the dataset size when
clustering with Seurat [4]. In particular, we applied the clustering algorithm implemented in Seurat v3, which uses
a graph-based approach with the Louvain algorithm [21]], to successively subsetted versions of this dataset, ranging
from a total of 80 cells (20 per cell-type) to a total of 2,000 cells (500 per cell-type). Although there are four cell-types
represented in this dataset, the number of clusters found ranges from three to six, with a general increasing trend with
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dataset size (Figure[Th). Only a narrow window of dataset size (roughly between 500 and 1,000 total cells) corresponds
to the correct number of cell-types.

We further examined the six clusters found in the case with the largest dataset size, and the extra clusters found do
not appear reflective of biological ground truth. In particular, there does not seem to be strong separation among the
clusters identified (Figure[Ip). Furthermore, the clusters are hierarchically related in ways that do not correlate with the
true cell-type identities of the cells within those clusters (Figure[Tk). For example, clusters 2 and 5 represent a division
from a larger group, but in fact, nearly every cell in both of those clusters is a CD4 cell. Note that clusters 0, 3, and 4
are all closely related, but the cells in cluster O are denoted as nearly half CD8 and half CD14 by FACS-sorting, with
almost all in the cells in cluster 3 corresponding to CD8 cells and almost all the cells in cluster 4 corresponding to
CD14 cells. Hence, these extra divisions cannot be simply interpreted as the result of identifying sub-types within larger
categories of cell-types. Only cluster 1, which consists almost entirely of NK cells, corresponds to a single cell-type
with specificity. These findings suggest that the identity assigned to a given cell depends on the size of the dataset, in a
way that is not representative of the actual cell-types in the data.

(@ (b) (0

...................... 1, T

Figure 1: Applying Seurat clustering to successive subsets containing equal amounts of each of the same four cell types
(CD4 T-cells, CD14 T-cells, CD8 T-cells, and NK cells) from the PBMC reference data incorrectly identifies more
cell-types with increasing dataset size. (a) Number of clusters identified by Seurat plotted against the number of cells
included in the analysis. The red line denotes the true number of cell-types. (b) tSNE plot of the six clusters, denoted
with different colors, identified in the largest dataset size, which consisted of 2,000 cells. (c) Dendrogram of the six
clusters identified in the largest dataset size, constructed using the "average" cell of each cluster. The leaf labels denote
the cluster numbers.
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2.3 Most marker genes are unlikely to be observed

To demonstrate the unreliability of marker genes in sScCRNA-Seq data, we use a subset of the reference PBMC dataset
as an example and look at the counts for externally validated marker genes for each cell type. Specifically, we
selected marker genes for CD4 (IL7R, CD4, CTLA4, FOXP3, IL2RA, PTPRC), CD14 (CD14, LYZ, FCGR3A, CD68,
S100A12), CD8 (CD8A, CRTAM, NCR3, CD3D), and NK cells (GNLY, NKG7, PRR5L, SIPR5, NCAM1) that have
been curated and well-established in the literature as discriminating among cell types [22| 23| |4]]. This list of marker
genes is representative of what is likely to be chosen by a user applying a marker-based method to a PBMC dataset.

Among these genes, GNLY and NKG7 are highly sensitive and highly specific to NK cells, as is LYZ for CD14 cells
(Figure [2). However, we observe 0 cells with non-zero counts even for marker genes that are known to be expressed
(Figure|2). Specifically, both CD14 and CD4 cells had markers with non-zero counts in 0% of cells, and the remaining
two cell-types, NK and CD8, both had markers with non-zero counts in as low as 4% of cells. Among CD4 cells in
particular, the highest proportion of non-zero counts for any of its markers was only 38% (Figure [2).

2.4 Our approach yields model-based probabilistic classifications

We present a statistical approach, based on Naive Bayes, that defines a cell-type-specific distribution for every gene,
by fitting a hierarchical mixture model for each cell-type using FACS-sorted reference datasets for each cell-type of
interest. Specifically, if Z; is an indicator variable that can represent any of the cell-types &k, we compute the conditional
probability Pr(Z; = k | Y;) of each cell-type k given the data Y; = (Yi1,...,Y:s) ', with Y;; the count for gene j in
cell 7. To keep the approach simple, we assume independence,

J
j=1
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Figure 2: PBMCs data from 20 canonical marker genes show that they are unlikely to be observed. (a) UMI counts,
shown in shades of blue, for marker genes in 50 randomly selected cells from each pertinent cell-type. (b) Proportion of
non-zero UMI counts for the same canonical marker genes and each cell-type, which is denoted with color.

and Poisson probability model

Yi; | Z; = k ~ Poisson (N; A1)

with Ay, the rate for gene j in cell-type k and IN; the total UMI counts in cell ¢. We explicitly include the total number
of observed transcripts N; to account for the varying coverage across cells [24]. Note that the vector (A1g, ..., A Jk;)—r
can be considered the expression profile that defines cell-type k.

Assuming that the prior probability of a cell belonging to any particular cell-type is uniform, the Naive Bayes procedure
is defined by picking the class k that maximizes the posterior probability:

Pr(Y; | Z, = k)
S Pr(Y | Zi = k)

if there are K total cell-types. Note that this approach allows the certainty of the classification to be directly quantified.
For example, if a target cell has a relatively low probability of belonging to any of the reference cell-types, this might
indicate contamination or potentially a novel cell-type population.

To implement this model in practice, we need to estimate the A;i in a training set. The data sparsity presented a
challenge because standard estimates, such as maximum likelihood estimtes (MLE), can produce rates of 0 for thousands
of expressed genes (Figure [2), which in turn made the Naive Bayes approach too sensitive to expressed genes with low
expression. We therefore used a hierarchical model with prior distributions on A that shrunk estimates away from O.
As done by [25] in the bulk setting, we modeled the )\, parameters as coming from a mixture of cell-type-specific
distributions, corresponding to unexpressed (off) genes and expressed (on) genes.
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To motivate the model choice for the on and off distribution in scRNA-seq, we used the microarray barcode [23] to
obtain independent calls of which genes were off and on in each tissue type. The empirical distributions from these two
groups suggest that two distributions are needed to describe the off genes (Figure [3p). This result motivated modeling
the rates \;j, as a mixture of a zero-inflated exponential and log-normal distribution for genes that are not expressed,
and a log-normal distribution for expressed genes. Sectiond]provides details.

Additionally, we found that off genes may still have non-zero counts, and on genes may have low rates. Our model fits
the data (Figure [3p) and provides a statistical explanation for this observation. Furthermore, by hierarchically modeling
the gene- and cell-type-specific rate parameters as coming from a mixture of distributions, we are able to increase power
despite the high sparsity observed in UMI count data. For example, a key advantage of our approach is that we are able
to recover non-zero rate estimates for genes with 0 counts in the reference sample, which would not be possible in a
simplified approach that only uses, e.g., MLE from a non-hierarchical Poisson model.

(a) (b)
500
0.06-
B Expressed
400 B Unexpressed
300 0.04-
200
0.02-
100
0 W 0.00-
0 15 0 10 15

5
Log2(Summed UMI Counts)

5 10
Log2(Summed UMI Counts)

Figure 3: Histograms of log-transformed CD4 cell UMI counts from the PBMC reference data, summed for each gene
across all cells in the dataset, excluding genes whose total summed counts are 0. (a) The red histogram shows genes that
the microarray barcode reports as expressed in at least 75% of samples, and the blue histogram shows genes that are not
expressed in at least 75% of samples. (b) The histogram is overlaid with densities from simulating under the fitted on
and off distributions, similarly conditional on observing non-zero total counts. These densities use the posterior mean
parameters, and are scaled appropriately for the total number of transcripts across all cells.

After fitting these distributions for the reference datasets for each cell-type, we can use the posterior mean of each Ay,
and compute the posterior probability of observing the target cell under the distributions for each cell-type.

A key advantage of our approach is that these probabilistic classifications are made on the basis of the thousands of
genes available, rather than relying largely or exclusively on a subset of marker genes. For example, in the PBMC
dataset, a large number of genes can be seen to have very different posterior mean rates between CD4 cells and the
other three cell-types (Figure [). Furthermore, the six canonical CD4 marker genes discussed in subsection [2.3]do not
appear useful on their own in distinguishing these cell-types, which handicaps methods that are reliant on such marker
genes. By using all genes available in the reference sample, our approach circumvents these marker gene limitations.

2.5 Our approach improves current reference-based methods

We used the datasets described in section [2.1]to compare our approach to six current reference-based methods. In each
of the three sets (PBMC, Tissues, and Treg/Tmem), we use two types of test sets, which we refer to as withheld and
external respectively. The withheld test set consists of cells from the same experiment as the reference sample, and the
external test set consists of cells from an entirely different study.

The current methods we evaluated were scVI [10], CHETAH [9], scmap [8]], CaSTLe [7]], Garnett [6], and CellAssign
[5]. For each of these methods, we processed the reference and test datasets as recommended in their respective
documentations, and for the methods requiring markers (Garnett and CellAssign), we identified five markers for each
cell-type using scran [26] on the reference dataset, as recommended in the CellAssign documentation. This was done
out of consistency, since not every cell-type under consideration here has readily available, independently verified
marker genes.

Our approach compares favorably to current methods across all datasets (Table [T). In particular, our approach
outperformed other methods in the external test sets. In the PBMC dataset, all methods performed almost perfectly in
both withheld and external test sets, except CellAssign, which had low performance across all datasets. In the Tissues
and Treg/Tmem datasets, our method greatly outperformed all other methods in the external test set. scVI and CaSTLe
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Figure 4: Log-transformed posterior mean rates (in counts per 10,000) for each gene, compared between CD4 cells and
each of the other three cell-types in the PBMCs reference dataset (CD14, CDS, and NK cells). The red line indicates
the identity line, and the blue points are the six canonical CD4 marker genes (IL7R, CD4, CTLA4, FOXP3, IL2RA,
PTPRC).
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Figure 5: Total UMI counts per cell in each reference sample and corresponding external test dataset.

outperformed our method in the withheld datasets, but their performance in the external set was substantially worse,
which is consistent with over-training. A possible explanation for the over-training is the fact that many of the cells
in the external set had higher coverage than the reference samples (Figure[5). It should be noted that for the external
Treg/Tmem test set, which consisted of two separate experiments, our approach greatly outperformed all other methods
on one of the experiments, but had similar performance as CaSTLe on the other.

3 Discussion

Currently, cell-type identification in sSCRNA-seq datasets is typically done with either clustering-based or reference-
based methods. We showed with the example of Seurat, one of the most popular clustering-based methods, that such
methods can artificially identify more cell-types as the dataset size increases, without reflecting biological ground
truth. Moreover, clustering-based methods can depend on arbitrary user decisions. For example, many cell-types do
not have well-established and widely-accepted marker genes, so different users examining the same clusters might
draw two different conclusions about the cell-type identities. This method of direct annotation by a user also implies
that probabilistic classification is not possible; a given target cell is assigned to some particular cell-type without any
information about the certainty of this assignment. Furthermore, there is no way to specify the desired granularity of
the cell-types. Since clusters are identified in an unsupervised manner, there is no differentiation between, for instance,
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PBMC Tissues Treg/Tmem
Withheld | External | Withheld | External | Withheld | External
Our approach 0.98 0.98 0.96 0.80 0.77 0.54
scVI 1.00 0.98 1.00 0.66 0.92 0.31
CHETAH 0.95 0.97 0.17 0.36 0.66 0.30
scmap 0.71 0.75 0.85 0.61 0.15 0.01
CaSTLe 0.99 0.99 1.00 0.36 0.79 0.31
Garnett 0.86 1.00 0.00 0.00 0.30 0.22
CellAssign 0.25 0.00 0.44 0.33 0.17 0.00
Table 1: Accuracy of cell-type assignment for each test dataset, in our approach as well as six current reference-based

methods.

a use case where it is enough to identify cells as "T-cells" and a use case where identification at the level of T-cell
subtypes is needed.

Reference-based methods can avoid many of the pitfalls of cluster-based methods. The supervised approach means
that the desired granularity can be controlled with the choice of reference data, and the number of distinct cell-types
identified should not grow with increasing dataset size. Nevertheless, we showed that the currently available algorithms
are susceptible to over-training. Many continue to rely on marker genes for their classifications [6} 5], which we
demonstrated can be problematic even for cell-types with well-defined marker genes, let alone for rare or poorly-
characterized cell-types. In addition, while most quantify the certainty of their match with some metric, these often do
not have direct interpretations as probabilities, so they still do not address the need for probabilistic classifications.

We also showed that existing methods are not robust to reference and test data with varying coverage, or to datasets
with very similar cell-types. While most methods performed well on the PBMCs dataset, we considered the Tissues
and Treg/Tmem datasets to be the most challenging. In the Tissues reference dataset, the brain microglia data have an
especially high rate of zero counts compared to the other two cell-types, which makes generalizing to the external test
set difficult. In the Treg/Tmem dataset, the cell-types are very similar to each other, which also makes classification
challenging.

We showed that our approach outperformed existing methods on these external test sets, which suggests that our
approach is more robust both to low-quality reference data and to very similar cell-types. Overall, our approach was
more successful at generalizing to external test sets than the other methods. We attribute the poor performance of
CellAssign and Garnett to their reliance on marker genes. While scVI and CaSTLe both perform strongly on withheld
test sets, they are substantially weaker on the external test sets when the reference and test sets have different coverage.
This is consistent with overtraining, and may also be attributed to the fact that both methods downsample the number of
genes. We note that cell-type identification is a use case but not the primary purpose of scmap and scVI, which may
explain their suboptimal performances.

The strength of our approach lies in leveraging thousands of genes to make the identifications. We explicitly model
the cell-type-specific probability distributions of these genes with a hierarchical approach that increases power in the
presence of sparsity. We directly account for coverage in our model, and we employ the comparatively simple Naive
Bayes approach to identify each cell. This yields probabilistic classifications for each cell in a way that is robust to
varying quality between the reference and test data.

Note that we consider our approach a first attempt at developing a robust stand-alone classification method. To avoid
over-training, we kept the model simple by assuming conditional independence between genes and a Poisson model
with no over-dispersion. Although these assumptions result in a method that outperforms current more complicated
methods, we conjecture that improvements can be achieved by relaxing these assumptions.

4 Methods

4.1 Model

Our model defines a cell-type-specific distribution for every gene using a hierarchical mixture model. For each cell-type
k, we model the UMI counts Y, for gene j in cell 4 as

Yk ~ Poisson(f;jk),
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with ;5% = N;\ji, where N; is the total number of UMI counts observed in cell 7 and ), defines the gene expression
profile for cell-type k and gene j. We assume A, follows a mixture distribution with components representing genes
that are unexpressed (off) and expressed (on). Specifically, we assume that

Ak ~ pofok + (1 —po) 1k

with fo 1, and f; j representing the off and on distribution for cell-type &, respectively defined as

for = po.olo + po.1 - Exp(ar) + (1 = poo — po,1) - LogNormal (g 1, 05 1.)

where [, represents a point mass at 0, and

fik = LOgNOI'mal(H:l,ka U%,k)'

Hence, the gene-specific rate parameters for UMI counts come from a mixture of three cell-type-specific distributions
and a zero-inflation component.

4.2 Fitting the Model

To avoid arriving at nonsensical solutions, we impose certain context-driven constraints. First, we force p1,5 > o, k-
Second, we constrain zero-valued UMI counts to come from either the zero-inflation or the Exponential component.
Finally, we permit the non-zero-valued UMI counts to come from any component except the zero-inflation.

We use Gibbs sampling to fit the model using the following prior distributions to allow estimation:

oy ~ Gamma(1,1)
to,; ~ Normal(0, 1)
oop ~ Beta(1,1)
p1,k ~ Truncated Normal(,,, , +)(0,1)
o1, ~ Beta(1,1)

The conjugate priors for o, and 1o, were used for computational efficiency. The other priors were chosen to enforce
the remaining constraints we place on our model. Namely, the prior distribution for 11 j is truncated from below so that
the mean of the on Log-Normal distribution is larger than the mean of the off Log-Normal distribution. Further, the
Beta priors on o, ,3 and oy ,z ensure that the variances of the Log-Normal distributions are greater than 1.

To fit this model for each cell-type k, we take the portion of the reference dataset with cells corresponding to that
cell-type and sum up their UMI counts for each gene. Estimation is done using the R package rjags [27]. We run
the sampler for 7,000 iterations and treated the first 5,000 as burn-in, unless lack of convergence necessitates more
burn-in iterations. Furthermore, we fit the model without marginalizing component assignments, i.e. we infer discrete
assignments for each gene to each mixture component at every iteration. To facilitate this, we initialize every non-zero
gene above the 75th percentile of counts as belonging to the on distribution, every non-zero gene below the 25th
percentile of counts as belonging to the off Exponential distribution, and the remaining non-zero genes as belonging to
the off Log-Normal distribution. The genes with all zero counts are randomly initialized as either belonging to the zero
point mass or the off Exponential distribution.

4.3 Cell-Type Assignments using Naive Bayes

Once we fit the model for each cell-type k, to identify the cell-types of each target cell, we set the rate parameter 5\j k
for gene j in cell-type k as the posterior mean over the 2,000 post-burn-in iterations. For each test cell, we can compute
the probability of observing its UMI counts under cell-type identity k using Bayes rule. Specifically, if we define Z; as
an indicator variable that can be any of the cell-types k, then for each cell profile Y;;, the conditional distribution for
this vector is defined by

Yi; | Z; = k ~ Poisson (Nij\jk) ,
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where N; is the total UMI counts observed in cell 3.

We then use this to compute the conditional probability of each class k given the data Y;;. Specifically, if we define
Y; = (Yi1,...,Y;s)", with J the total number of genes, we can use the above result to compute the conditional
probability of the observed data y;, = (yi1,...,%i7) " :

J
Pr(Y; =y | Zi = k) = [[ Pr(Viy = iy | Zi = k).
j=1
Assuming that the prior probability of a cell belonging to any particular cell-type is uniform, the Naive Bayes procedure
is defined by picking the class k that maximizes the posterior probability:

Pr(Z; = k|Y;) = l;r(Yi | 2k = k) ,
2= Pr(YilZi = k)

if there are K total cell-types.
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