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Abstract 

Genome-wide association studies (GWAS) have uncovered pervasive genetic overlap 

between common clinically related immune-mediated diseases (IMD). To distinguish axes of 

IMD risk, and extend genetic knowledge of rare IMDs and subtypes, we developed a 

Bayesian shrinkage approach to perform a disease-focused decomposition of IMD GWAS 

summary statistics. We derive 13 components which summarise the multidimensional 

patterns of IMD genetic risk including those related to raised eosinophil count and serum 

IP-10. Projection of UK Biobank data demonstrated the IMD-specificity and accuracy of our 

reduced dimension basis in independent datasets. By projecting 22 rare IMD or IMD 

subtypes onto the basis we were able to identify disease-discriminating components and 

suggest novel associations. Requiring only summary level data, our approach allows the 

genetic architectures across any range of clinically-related traits to be characterised in fewer 

dimensions, facilitating the analysis of studies with modest sample size, where classical 

GWAS approaches are challenging.  
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Genome-wide association studies (GWAS) have elucidated the polygenic component of 

common human diseases​1​ and comparative studies of summary GWAS results have 

highlighted sharing of genetic variants between different diseases with related aetiology, for 

example the collection of immune-mediated diseases (IMD)​2​. However, comprehensive 

overviews of sharing between multiple diseases are made difficult by the dimension of these 

statistics (100,000s of SNPs) and the complex patterns that exist. Such analyses have 

typically been approached from one of two angles: a variant-by-variant analysis across 

multiple diseases focusing on individual variants in turn,​3,4​ or pairwise analysis of diseases 

across multiple variants at a regional or genome-wide level.​5,6​ Both approaches have 

limitations. Different patterns of sharing identified at different variants make generalisations 

about inter-disease relationships difficult. On the other hand, disease-pairwise approaches 

make comparison of more than two diseases challenging. Thus, a need exists to represent a 

multi-dimensional view of shared genetic architectures between multiple diseases. 

 

The GWAS approach explicitly accounts for the number of tests (SNPs) by requiring 

successively larger samples, of the order of tens of thousands of cases and healthy controls, 

to identify variants which cumulatively explain greater proportions of disease heritability. 

Large samples present an insurmountable barrier for rare diseases, where effort has instead 

been generally directed to searching for rare variants of high penetrance through whole 

exome ​7​ or whole genome ​8,9​ sequencing studies. Despite this, moderate sized GWAS-style 

studies of rare diseases find not only polygenic association with common variants​9,10​ but also 

evidence for differential genetic associations between clinical subtypes within these rare 

diseases, despite the challenges presented by division of already small sample sizes.​11​ A 

need also exists to democratise GWAS to less common diseases, which may be enabled by 

considering them in the context of more common diseases with related aetiology.  

 

We propose studying multifactorial genetic risks of related diseases in an informed 

dimension-reduction approach based on matrix decomposition. Matrix decomposition, for 

example via principal component analysis (PCA), expresses a matrix as the product of two 

smaller matrices, and has been used extensively in genetics, for example to summarise 

population structure and address its confounding effects in association studies.​12​ It has also 

been used to explore structure in genetic association with multiple traits, either through 

aggregated signals across SNPs according to physical proximity to genes​13​ or using a 

linkage disequilibrium (LD) independent subset of SNPs.​14​ In either case, the reduced 

dimensional space was used to explore the same datasets as used to define it, with two 
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implications. First, GWAS summary statistics are a composite of biological signal, technical 

noise, and sampling variation. Decomposition aims to find axes that maximise variance 

explained in the input datasets, and cannot distinguish between these three sources of 

variability. We therefore expect it to magnify technical and random differences as well as 

biological, a problem related to over-fitting in high-dimensional datasets. Second, there is no 

treatment of uncertainty in the reduced dimension space, meaning we can measure the 

distance between diseases, but not test whether that difference is non-zero.  

 

Here we build a genetic basis for IMD, using PCA of GWAS summary statistics augmented 

by a Bayesian shrinkage approach that mitigates overfitting. Our central aim is to define a 

reduced dimension space, with axes that describe different patterns of IMD genetic 

susceptibility corresponding to underlying biological risk factors. In a transfer learning 

paradigm, we project independent datasets into this space, allowing us to study the distinct 

and shared genetic contributions to related diseases, and use standard statistical techniques 

to test for genetic association of rare diseases or genetic differences between disease 

subtypes. 

 

Results 

A genetic basis for immune mediated diseases  

 

We used well powered, publicly available case/control GWAS summary statistics (estimated 

log odds ratios, ) across 13 IMD (Supplementary Table 1) to derive a principal componentβ̂  

basis​. Studies were chosen to balance the competing aims of maximising the number of 

studies, the number of SNPs common to all studies, and the number of samples in each 

study (to minimise noise in ). We excluded all variants within the MHC (GRCh37β̂  

Chr6:20-40Mb) due to its long and complex LD structure, and because SNPs in the MHC 

have a profound involvement in IMD susceptibility; such large effects have the capacity to 

overwhelm more modest signals, such that MHC variants would dominate the basis.  As in 

conventional PCA, this basis consists of orthogonal principal components (PCs), constructed 

as linear combinations of input , which together provide a lower dimensionalβ̂  

representation of genetic associations with IMD.  
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To increase the disease-relevance of the basis, we wanted to preferentially use information 

from truly associated SNPs, while avoiding double counting evidence from SNPs in LD. 

DeGAs​14​ deals with this by thinning SNPs by LD and hard thresholding, replacing  by Zβ̂  

scores, setting these to 0 when the associated p > 0.001. As Z scores are standardised ,β̂  

this has the effect of shrinking  towards 0 when uncertainty is high, such as when allele orβ̂  

disease frequencies are low, which means information from more common diseases will 

dominate. We chose instead to only partially standardise (for the effects of allele frequency), 

and to deal with LD and remaining noise simultaneously via regularization, adopting ideas 

from Bayesian fine mapping which jointly models association across neighbouring SNPs. 

This allowed us to define a continuous weight which adaptively shrinks  towards 0 (Fig. 1,β̂  

Methods).  Finally, we report projected results as , the difference between the projected  δ
︿

β̂  

and a projected synthetic control with all entries 0, which allows us to make statistical 

inference about whether its estimand, , differs from control.δ  

 

[ Figure1 about here ] 
 

To illustrate the importance of our informed shrinkage procedure, we built four bases​, ​with 

GWAS summary statistics for the 13 IMDs shrunk differently in each case. We assessed 

their relative performance by projection of matching self-reported diseases (SRD) from UK 

BioBank (UKBB)​15​ using summary statistics from a compendium provided by the Neale lab 

[​http://www.nealelab.is/uk-biobank/​]. While all bases found structure in the input data, in 

the basis without shrinkage (Fig. 2a), the UKBB SRD clustered with each other rather than 

their GWAS comparator, suggesting that the structure identified related to between study 

differences other than disease. In hard-thresholded, LD-thinned bases using either Z scores 

(Fig. 2b) or  (Fig. 2c), some of the structure identified was disease related for the largerβ̂  

GWAS of more common traits (asthma, multiple sclerosis [MS], Crohn’s disease, ulcerative 

colitis [UC]). In contrast, in the basis created with continuous shrinkage (Fig. 2d), the UKBB 

SRD clearly clustered with their GWAS comparators, suggesting that the structure captured 

is disease-relevant, such that UKBB data from relatively infrequent diseases such as type 1 

diabetes (T1D) (318 cases) and vitiligo (105 cases) are projected onto the same vectors as 

their larger comparator GWAS studies. The basis generated is naturally sparse 

(Supplementary Fig. 1), enabling us to identify 107-373 “driver SNPs” that are required to 

capture genetic associations on any individual component.  
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[ Figure 2 about here ] 

We projected data from three classes of study onto the IMD basis with shrinkage. First, we 

used all self-reported disease and cancer traits from UKBB to characterise the basis 

components, to examine specificity to IMD, and to assess power as a function of sample 

size: case numbers for UKBB self reported IMD range from 41,000 (asthma) to 105 (vitiligo). 

Second, we identified IMD GWAS with smaller sample sizes than used in basis construction, 

focusing on diseases related to basis traits or studied in different ancestral backgrounds 

(e.g. ankylosing spondylitis). Third, we identified studies of IMD that are too rare (e.g. 

eosinophilic granulomatosis with polyangiitis, EGPA - a rare form of vasculitis) or clinically 

heterogeneous (e.g. juvenile idiopathic arthritis, JIA) to build large GWAS cohorts.  

 

Genetic analysis of IMD in reduced dimensions 

Across all 312 projected UKBB traits (Supplementary Table 2), 27 had significantly non-zero 

 (FDR < 1%). These were overwhelmingly immune-related traits (Supplementary Fig. 2):δ
︿

 

no significance was observed for traits such as coronary artery disease, stroke, or 

obstructive sleep apnea, confirming the immune-mediated specificity of our basis. 

Significant results were detected with as few as 105 cases for vitiligo, emphasising the 

potential of this approach to unlock the genetics of rare IMD GWAS.  

 

Of 28 traits from target (non-UKBB) IMD GWAS, including JIA, neuromyelitis optica (NMO), 

vasculitis and their clinical subtypes, 16 were significant (FDR < 1%, Supplementary Table 3, 

Supplementary Fig. 3-15). We clustered all 28, together with significant UKBB diseases to 

generate a visual overview of IMD and associated traits (Fig. 3).  This highlighted two small 

groups, inflammatory bowel disease (IBD) and EGPA, and two larger groups, one 

comprising autoimmune diseases and the other a heterogeneous cluster containing 

subgroups centred on MS, ankylosing spondylitis (AS), atopy, and traits with only weak or 

non-significant signals. Notably, three studies of AS all clustered together, despite only one 

having sufficient sample size for significant results and the three studies representing 

different ancestries (UK-European, International and Turkish/Iranian). A broader examination 

of projecting non-European samples found that projections are generally attenuated but 

consistent with projections of European samples (Supplementary Fig. 16, Supplementary 

Note). 

6 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 17, 2020. ; https://doi.org/10.1101/2020.01.14.905869doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.14.905869
http://creativecommons.org/licenses/by/4.0/


 

[ Figure 3 about here ] 
 

Some individual components could be biologically interpreted due to their pattern of disease 

or other trait associations. ​PC1 ​(Fig. 4), which explained the greatest variation in the training 

datasets, appears to represent an autoimmune/(auto)inflammatory axis​16​, also characterised 

by whether diseases are considered antibody ‘seropositive’ / ‘seronegative’, contrasting IBD, 

AS, primary sclerosing cholangitis (PSC), and IgA nephropathy with rheumatoid arthritis 

(RA), autoimmune thyroid disease (ATD), Sjörgen’s disease, systemic lupus erythematosus 

(SLE), vitiligo and autoimmune diabetes. On the inflammatory/seronegative side, we also 

saw weaker but still significant signals for atopy, basal cell carcinoma and malignant 

melanoma. Both malignant melanoma and non-melanoma skin cancer incidence is 

increased in IBD, but the relative role of treatment or IBD itself in driving this is hard to 

determine.​17,18​ On the seropositive side, we saw significant results for pernicious anemia, a 

disease strongly associated with anti-gastric parietal cell and anti-Intrinsic Factor antibodies, 

as well as with autoimmune thyroiditis, T1D and vitiligo.​19 

 

To help characterise the biology captured by individual components we projected additional 

datasets: blood counts,​20​ immune cell counts​21​ and serum cytokine concentrations​22 

(Supplementary Tables 5, 6 and 7). We  expect that significant results will occur when the 

projected score is a composite of many small effects working in consistent directions. 

However, false positives could also result if a single SNP with a large weight in the basis is 

in LD with a SNP with a large effect on the projected trait due to chance. To guard against 

this, we used Spearman rank correlation which is robust to such outlier observations to test 

the "consistency" of each projection (Supplementary Note).  We found, reassuringly, that 

amongst disease traits, increasing deviation from control correlated with increasing 

consistency (Supplementary Fig. 17). Similar results were seen for both serum cytokine 

concentrations and immune cell counts but in the blood count data, which had been 

generated from a much larger sample, we found highly significant projected results could 

occur without any evidence for consistency, and so we additionally filtered on consistency in 

that dataset.  These data aided interpretation of two further components. 

 

PC13​ was striking for the general association of many diseases across all four main clusters 

in a concordant direction, and was the only component for which any projected trait was 

more extreme than any original basis trait (Fig. 5).  EGPA, which showed the most extreme 
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projected values on this component of any diseases, is classified as an eosinophilic form of 

anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) and both asthma 

and raised eosinophil count are included in its diagnostic criteria. We found PC13 was 

strongly associated with higher eosinophil counts in a population cohort ​20​ (FDR<10 ​-200​), 

suggesting that this component describes eosinophilic involvement in IMDs. Mendelian 

Randomization (MR) analysis of blood cell traits with six IMDs had previously associated 

eosinophils with RA, celiac disease (CEL), asthma and T1D.​20​ We conducted MR analysis 

twice, first selecting SNPs according to significant association with eosinophil count and 

second using the driver SNPs for PC13. Results were similar, although estimates using 

PC13 driver SNPs tended to be larger, which suggests some heterogeneity, for example that 

only a subset of eosinophil-associated SNPs also associated with IMD risk.  Our analysis 

thus confirms earlier findings, and extends the list of IMD with genetically supported 

involvement of eosinophils to include EGPA, JIA subtypes, AS, ATD, MS, hayfever and 

eczema.  

 

PC3 ​(Fig. 6)​ ​was the only component which showed a significant relationship with any serum 

cytokine concentration. Higher concentrations of CXCL9 (MIG) and CXCL10 (IP-10), Th1 

chemoattractants and ligands to the regulator of leukocyte trafficking CXCR3, were both 

significant in the same direction as several autoimmune diseases, with strongest signals for 

myasthenia gravis, several JIA subtypes, as well as IBD, CEL, AS and sarcoidosis. In MR 

analysis, while PC3 driver SNPs predicted association of IP-10 and MIG with these IMDs, 

SNPs selected by significant association to cytokine levels themselves did not. This 

suggests that raised serum IP-10 and MIG are not themselves causally associated with IMD 

risk, but that these driver SNPs mark a risk factor that contributes to serum IP-10 and MIG.  

Genetic distinctions within clinically heterogeneous and rare immune-mediated 

diseases. 

Our basis has only 13 dimensions. If the genetic susceptibility of rare IMD and IMD subtypes 

overlaps that of common IMD, we can increase power by focusing on these dimensions. Of 

22 diseases or disease subtypes with < 1000 cases, 12 were significant (FDR<1%), even 

with as few as 132 cases (NMO IgGPos).  

 

Most disease subtypes clustered together, even when not significant (Fig. 3).  For example, 

myasthenia gravis, a chronic, autoimmune, neuromuscular disease characterized by muscle 
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weakness, has been shown to have a bimodal incidence pattern by age, and some genetic 

associations have been identified only for the late onset subtype.​23​  However, within the 

basis, both subtypes fall in very similar locations across all components, and cluster together 

along with several subtypes of JIA. 

 

EGPA is a rare form of AAV (annual incidence 1-2 cases per million) for which genetic 

differences relating to autoantibody status have been identified.​11​ We included both 

myeloperoxidase (MPO) ANCA+ and ANCA- cases, as well as a study of non-eosinophilic 

MPO+ ANCA-associated vasculitis.​24​ While all forms of vasculitis fell on the adaptive 

immunity side on PC1, the EGPA subtypes typically resembled each other much more 

closely than the MPO+ EGPA resembled MPO+ ANCA-associated vasculitis, with EGPA 

showing a particularly strong signal on PC13, consistent with the diagnostic criteria which 

include overt eosinophilia ​. 

 

For two other diseases, however, subtypes did not consistently cluster together. ​NMO is a 

rare (prevalence 0.03–0.4:10,000) disease affecting the optic nerve and spinal cord, for 

which HLA association is established ​9​ and which can be divided according to aquaporin 4 

autoantibody seropositivity status (IgG+ or IgG-).​ The projections of seropositive and 

seronegative NMO showed non-significant differences on several components, leading to 

differential clustering. While seropositive NMO clustered with the classical autoimmune 

diseases, most closely with SLE and Sjögren’s disease, IgG- NMO clustered away from the 

classic seropositive diseases, most closely with MS. This finding mirrors analysis which 

directly compared NMO subtypes to each of SLE and MS via polygenic scores​9​, and 

strengthens the findings by specifically identifying SLE and MS as the nearest neighbours of 

IgG+ and IgG- NMO respectively, out of 60 IMDs considered for clustering. 

 

JIA is a heterogeneous paediatric disease, with an overall childhood prevalence in Europe of 

20:10,000 ​25​, and with seven recognised subtypes.​26​ While studies have begun to identify 

distinct genetics of the systemic subtype ​27​ and have shown subtype-specific differences in 

the MHC,​28​ systematic comparison between subtypes has been underpowered.  Although, 

the systemic and enthesitis-related arthritis (ERA) subtypes were not significant despite 

relatively moderate sample sizes (219 and 267 cases respectively), they clustered together 

with MS and AS respectively, apart from the other JIA subtypes which clustered with the 

other autoimmune diseases.  
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Mapping component-level associations to SNPs 

 

Given that most of the IMD and subtypes with small GWAS studies have only a few 

established genetic associations, we sought to exploit the component-level associations 

above to detect new disease associations. We found a strong enrichment for small GWAS p 

values at driver SNPs on trait-significant components (Supplementary Fig. 18). Using  a 

“subset-selected” FDR approach,​29​ we analysed driver SNPs for 22 significant 

trait-component pairs (12 unique traits), and identified 25 trait-SNP associations 

(subset-selected FDR < 1%, Table 1) after pruning SNPs in LD.  Twelve of these were 

genome-wide significant (p < 5x10 ​-8​) either in this study (4 associations) or in other published 

data (8 associations) and a further five were significant in other published analysis that 

levered external data. These included, for example, the non-synonymous ​PTPN22​ SNP 

rs2476601 which was associated with myasthenia gravis (overall and the late onset subset) 

by subset-selected FDR < 0.01. This SNP was previously associated with myasthenia gravis 

in a different study,​30​ and lack of clear replication in the data analysed here (SNP P=6x10 ​-5​) 

was attributed to differences in population structure.  Eight associations (five variants) were 

not previously reported to our knowledge, including associations near​ IRF1/IL5​ for 

myasthenia gravis, near ​TNFSF11​ for rheumatoid factor negative (RF-) JIA and near 

CD2/CD2​8 for EGPA. 

 

Discussion  

Our motivation in this work was threefold. First, to overcome the problems of dimensionality 

to allow an overview of genetic association patterns from multiple related diseases without 

over-simplification. While previous efforts to relate different traits through GWAS statistics 

have focused on large studies of a wide variety of diseases, and shown that they can 

distinguish broad classes of IMD, cardiovascular and metabolic diseases,​5,13​ we have tackled 

the problem of finding structure ​within​ a single class of diseases. Unlike other applications of 

PCA to genetics, we split our datasets into “training” and “test” sets, enabling standard 

statistical hypothesis testing and providing robustness against overfitting.  

 

Our second motivation was to extract different axes underlying IMD genetic risk. Work in 

metabolic​31​ and psychiatric​32​ diseases have taken related approaches to attempt to learn 

composite factors underlying risk of these related diseases through deeper phenotyping of 
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patients before testing these factors for genetic association. Alternatively, decomposition of 

estimated effects at 94 type 2 diabetes risk variants, together with their effects on 46 

metabolic traits was used to cluster these variants into 5 groups, three focused on insulin 

resistance and two on beta cell function.​33​ Here, we hoped to learn the same sorts of factors 

by decomposing only summary GWAS data on clinical disease endpoints. Our continuous 

shrinkage weight learnt across all 13 training datasets appears to enable us to extract 

disease-relevant structure, with projected traits lying close to their training data counterparts, 

something achieved with disease-specific hard thresholded weights​14​ for only the largest 

datasets.  

 

Three factors we identified had clear interpretations. The autoimmune/(auto-)inflammatory 

axis in IMD represented by PC1 is well documented, with the gradient along PC1 

corresponding to a shift from auto-antibody seronegative to seropositive diseases. The 

exception is vitiligo, in which, despite strong evidence of T cell autoimmunity, autoantibodies 

are reported but are not consistent features of disease.​34​ Weaker but significant association 

of Psoriatic arthritis (PsA) among the other seropositive IMD is also consistent with a recent 

report of novel pathogenic antibodies in PsA.​35 

 

Our basis offered alternative viewpoints of this collection of diseases. For example, 

significant IMD on the MIG/IP-10-associated PC3 included both ‘seropositive’ and 

‘seronegative’ diseases, although not atopy, while all three groups were represented on the 

eosinophil associated PC13. Eosinophils are pro-inflammatory leukocytes with an 

established role in atopic diseases such as asthma ​36​ and inflammatory diseases such as 

IBD.​37​ The PC13-associated IMD we identify include these, as well as autoimmune diseases 

which have been previously noted to have an eosinophil relationship, such as RA.​38​ Our 

results suggest eosinophilic involvement in a wide variety of autoimmune diseases, in 

addition to inflammatory diseases, in agreement with other recent findings.​39  

 

IP-10 and MIG are chemokines, secreted by epithelial and dendritic cells (amongst others), 

which act as chemoattractants for immune cells which express the receptor CXCR3, 

including Th1 cells. Both MIG and IP-10 expression at the site of autoimmune target have 

been implicated in the development of autoimmunity​40,41​ and IP-10 has been observed to be 

upregulated in follicular cells of patients with myasthenia gravis.​42​ Serum IP-10 has also 

been found to be raised in patients with recent onset T1D,​43,44​ and Graves’ disease 

(hyperthyroidism)​41​ and to correlate with increased disease activity in SLE​45​ and AS.​46​ While 
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these observations support a link between certain IMD and serum cytokine levels, our 

results do not directly implicate these cytokines as causal. Both cytokines and blood count 

data were measured in unselected population cohorts which will include individuals with 

IMD, such that the association with IMD may be causal or consequential. We suggest that 

PC3 represents an IMD-related process that contributes to serum cytokine levels. 

Nonetheless, clinical efficacy of MDX1100, a monoclonal antibody to IP-10, has been 

demonstrated in RA​47​ and a dose-response relationship observed in UC​48​ and our results 

suggest IP-10 blockade might also be considered in patients with myasthenia gravis, JIA, 

AS, CEL and sarcoidosis. 

 

Our final motivation was to exploit the lower dimensional representation to generate new 

knowledge in rare IMDs. The number of polymorphic human genetic variants together with 

our understanding that genetic effects on human disease are generally modest has lead to 

massive GWAS in order to overcome the penalty that must be applied for multiple testing. 

This is simply not possible for rare diseases. One of the tools which has enhanced rare 

disease GWAS is the borrowing of information from larger GWAS of aetiologically related 

diseases​11​ and our basis serves a similar function here, by levering information about a 

SNP’s potential to be IMD-associated through both the regularization and the PCA, we can 

both increase genetic discovery and place less common diseases in the context of their 

more prevalent counterparts. More generally, studies of SRD are being enabled on massive 

scale by UKBB​49​ and 23andMe,​50​ although studies of such cohorts tend to focus on the more 

common diseases such as type 2 diabetes and coronary heart disease. Our results provide 

reassurance that SRD associations are consistent with those from targeted GWAS studies, 

and extend their utility to IMD and other diseases which are generally found at a lower 

frequency.  

 

While we have focused on IMD, this approach has potential to be applied to other groups of 

clinically related traits, such as metabolic or psychiatric, and may increase understanding of 

both the underlying components of disease risk as well as placing lower prevalence 

diseases in context of their related common diseases. 
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Methods 

Summary statistic datasets 

We constructed a compendium of publicly available GWAS summary statistics across a wide 

range of traits including UKBB traits (​http://www.nealelab.is/uk-biobank​, 

http://geneatlas.roslin.ed.ac.uk/​ - Supplementary Tables 2 and 4), IMD relevant GWAS 

studies (Supplementary Table 3), and GWAS of quantitative measures from blood count 

data ​20​, immune cell counts​21​ and cytokine levels​22​ (Supplementary tables 5, 6 and 7). 

Disease GWAS data were obtained from the URL given in Supplementary Tables 1, 3, or via 

request to study authors, with the exception of those listed below. 

Vasculitis GWAS analysis 

AAV belongs to a group of IMD characterised by inflammation of the small and 

medium-sized blood vessels with evidence of circulating pathogenic autoantibodies. It 

comprises three main syndromes: granulomatosis with polyangiitis (GPA), microscopic 

polyangiitis (MPA) and EGPA. The two primary antigenic targets of ANCA are proteinase 3 

(PR3) and myeloperoxidase (MPO). Although PR3-ANCA is the predominant serotype in 

GPA and MPO-ANCA is more commonly found in MPA, there is a significant overlap 

between these syndromes. 

The vasculitis cohort used to construct the basis was part of the discovery cohort from the 

AAV GWAS performed by the European Vasculitis Genetics Consortium,​24​ comprising 478 

PR3-AAV cases, 264 MPO-AAV and 5,259 controls from the Wellcome Trust Case Control 

Consortium. All cases had a clinical diagnosis of either GPA or MPA according to the 

European Medicines Agency algorithm, supported by a positive ANCA assay. The 

genotyping, calling and data QC have been previously described.​24​. Briefly, the genotyping 

was performed by AROS Applied Biotechnology (Arthus, Denmark) using the Affymetrix 

SNP6 platform. Pre-phasing and genome-wide SNP imputation were performed using 

Eagle2 and Minimac3 respectively on the Michigan Imputation Server v1.0.3 that facilitates 

access to the HRC reference panel (HRC version r1.1 2016).​51​ Post-imputation, SNPs with 

MAF < 0.01 or r​2​ < 0.3 were removed from dataset using BCFtools version 1.2, leaving a 

total of 7,656,576 SNPs available for case-control association testing using a linear mixed 

model with BOLT-LMM software v2.3.2.​52,53 
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JIA and PsA GWAS analysis 

The JIA and PsA GWAS datasets were generated and QC’d using the same strategies. 

 

Genotyping and statistical quality control:​ JIA and PsA DNA samples were genotyped on the 

Illumina Infinium CoreExome genotyping array in accordance to the manufacturer’s 

instructions at the Centre for Genetics and Genomics Versus Arthritis (The University of 

Manchester). Genotype calling was performed by the GenCall algorithm in the 

GenomeStudio Data Analysis software platform (Genotyping Module v1.8.4). Preliminary 

genotype clustering was performed using the default Illumina cluster file to identify poor 

quality samples (call rate < 0.90). Following exclusion of low quality samples automated 

reclustering was performed to calibrate genotype clusters based on the study samples. 

Sample-level quality control (QC) was performed based on the following exclusion criteria: 

final call rate < 0.98, outlier based on autosomal heterozygosity (2 standard deviations from 

the mean) and discrepancy between genetically inferred sex and database records. SNPs 

were excluded if they were non-autosomal, call rate < 0.98 or a minor allele frequency < 

0.01. PsA was compared with 4596 controls from the WTCCC2 study (REF). 

 JIA was compared with 9,965 population controls from the UK Household Longitudinal 

Study (https://www.understandingsociety.ac.uk/) accessed via the European 

Genotype-phenome Archive. Samples were genotyped at the Wellcome Trust Sanger 

Institute using the Illumina Infinium CoreExome genotyping array. Sample and SNP QC is 

consistent with that described above for case samples. 

 

Case and control datasets were combined retaining the intersection of SNPs. 

Identity-by-descent was used to identify related individuals (kinship coefficient > 0.0884) 

across all study samples performed with the KING software package (version 1.9). For each 

related pair the sample with the highest call rate was preferentially retained. Individuals were 

excluded if they were identified as outliers based on ancestry using principal component 

analysis (PCA) performed with the flashpca software package (version 2.0) where outliers 

were identified using aberrant R library (version 1.0). 

 

Imputation: ​Prior to imputation SNPs with ambiguous alleles (C/G and A/T) were excluded 

and remaining SNPs were aligned to the Haplotype Reference Consortium (HRC) panel 

(version 1.1) using the HRC imputation preparation tool 

(https://www.well.ox.ac.uk/~wrayner/tools/). Imputation was performed using the Michigan 
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Imputation server where phasing was performed with Shapeit2 and the HRC panel. 

Following imputation SNPs were excluded based on a MAF < 0.01 and imputation accuracy 

(r​2​) < 0.4. 

 

Association testing, PsA:​ case-control association testing was performed using the 

SNPTEST software package (version 2.5.2) using the score method to account for 

imputation uncertainty. Three principal components, calculated as described above, were 

included as covariates to account for any residual population structure.  

 

Association testing, JIA:​ case-control association testing was performed using the 

snp.rhs.estimates function in the R package SnpStats, comparing in turn overall, or JIA 

subtypes to the control group. Three principal components, calculated as described above, 

were included as covariates to account for any residual population structure.  

 

Construction of basis 

 

There are three particular challenges with performing PCA on GWAS summary statistics. 

First, the SNP effect estimates  must be on the same scale; second, we must deal with 

variable correlation between input dimensions (SNPs) due to LD; and third, while all SNPs 

are expected to show small deviations between studies due to random noise, different 

genotyping platforms and data processing decisions, only a minority of SNPs will be truly 

related to the diseases of interest. 

 

The uncertainty attached to  depends on both study sample size and SNP minor alleleβ
︿

 

frequency (MAF). We adjusted for the variance due to MAF, , as this varies betweenσ2
MAF

  

SNPs, but not variance due to sample size, as this would overly shrink smaller studies 

relative to larger. We dealt with the second two challenges simultaneously, using a Bayesian 

fine mapping technique which calculates the posterior probability that each SNP is causal for 

each trait, under the assumption that at most one causal variant exists in each 

recombination hotspot-defined block of SNPs ​54,55​.  At each SNP, we computed a weighted 

average of the posterior probabilities across input studies to create an overall weight for that 

SNP, . ​ will be close to zero when there is no association in a region, limiting the effectsw w  

of technical noise between studies, and will otherwise act to weight associated SNPs 
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according to the extent of LD in a region.  The final input for basis creation is a matrix of 

.β/σγ︿= w
︿

MAF  

 

We identified 13 IMD GWAS studies with >6,000 samples of European ancestry  for which 

full summary statistics were publicly available (Supplementary Table 1). We selected SNPs 

present in all 13 studies, with MAF>1% in the 1000 Genomes Phase 3 EUR data. 

Additionally we excluded SNPs overlapping the MHC region (GrCh37 Chr6:20-40Mb) or for 

which the unambiguous assignment of the effect allele was impossible (e.g. palindromic 

SNPs). We harmonised all effect estimates to be with respect to the alternative allele relative 

to the reference allele as defined by the 1000 genome reference genotype panel.  After 

filtering, harmonised effect estimates were available for 265,887 SNPs across all 13 selected 

`basis’ traits. In order to provide a baseline for subsequent analyses we created an 

additional synthetic `control’ trait, for which effect sizes across all traits were set to zero. We 

used these to construct two matrices and where elements reflect raw ( ) and shrunkM M ′ β̂  

effect sizes (  respectively, such that, rows and columns reflect traits (n=14)β/σ )γ︿= w
︿

MAF  

and SNPs (p=265,887). After mean centring columns we used the R command ​prcomp​ to 

carry out PCA of both and  to generate naive and “shrunk” IMD  bases, retainingM M ′  

m=n-​1=13 components, which corresponded to the fewest components needed to minimise 

the mean squared reconstruction error (Supplementary Fig 19). 

 

We noted that the majority of entries in the ​p ​x​ m ​ PCA rotation matrix, ​R​, were close to 0, 

and chose to hard threshold these to 0 for computational efficiency and to identify which 

driver SNPs​ were relevant to each component.  To do this, using ​R​k​ ​ ​to represent the ​k​th 

column of ​R, ​we define R​k​(𝛼)=R​k​ x I(|R​k​|>𝛼) where I() is an indicator function and “x” 

represents element-wise multiplication.  We quantify the distance between projection with ​R​k 

and ​R​k​(​𝛼) by  

D​k​(𝛼) = 1 - cor(M R​k​, M R​k​(𝛼))​.  

 

We chose the threshold for each component, 𝛼​k​, as the largest value 𝛼 such that D​k​(𝛼) < 

0.001.  Finally, we defined the sparse basis rotation matrix Q as the matrix constructed from 

the column vectors R​k​, k=1,...,m. This identified both driver SNPs which define the support 

for each component, and enabled computationally efficient examination of many traits in the 

reduced dimension space defined. 
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Projection 

Prior to projection, effect alleles were aligned to the 1000 genome reference genotype panel. 

For traits sensitive to missing data (studies of NMO​9​ and PsA by Aterido,​56​ see 

Supplementary Note), we imputed missing variants using ssimp ​57​ (v 0.5.6 ----ref 1KG/EUR 

--impute.maf 0.01), otherwise we set effect estimates to zero.  Data were then shrunk as for 

the basis traits (multiplying by ), and projected into basis space by multiplying by the/σw MAF  

sparse basis rotation matrix Q.  The locations of all basis and projected traits in this space 

are reported as , ie relative to the location of a synthetic “control” trait vector of ​0​ alsoδ
︿

 

projected into the space.  We calculated variance of the projected values (Supplementary 

Note) and quantified consistency using a weighted Spearman rank correlation on a subset of 

driver SNPs in low LD (r​2​<0.01), with weights  and significance determined by/σw MAF  

permuting the projected values (Supplementary Note). All projected values are given in 

Supplementary Table 8. 

 

We used the ​hclust()​ function in R to cluster diseases in the basis using agglomerative 

hierarchical clustering according to Ward’s criterion (method=”Ward.D2”) on the Euclidean 

distance between projected locations of each disease in the basis. 

 

We calculated p values for null hypotheses that the vector  across all 13 componentsδ = 0  

using a chisq test  (Supplementary Note). We called significant associations according to 

FDR < 0.01, calculated using the Benjamini-Hochberg approach, and run independently 

within the broad categories: primary analysis (UKBB self reported disease and cancer, plus 

IMD-relevant GWAS); blood cell counts; cytokines; immune cell counts.  This was our 

primary measure of significance.  We took the same strategy to independently calculate FDR 

for each component individually for additional annotation, and traits were considered 

“component-significant” if they were significant on that component ​and​ overall. 

 

Classification of diseases according to autoantibody status was performed by a specialist 

clinician using available medical literature. This assignment was blinded to the PC1 results. 

Proportionality of effects across different datasets for the same trait 

We tested the null hypothesis of proportionality using the coloc.test function in the coloc 

package ​58​ which takes into account the uncertainty in the projection estimate, assuming 

different PCs are independent.  Small p values in this test correspond to the observed data 
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being unlikely under the null of proportionality, and would suggest that studies of the same 

disease in different populations were not comparable. 

Candidate significant driver SNPs 

For each of 10 diseases or subtypes with < 2000 cases and significant on at least one 

component (Myasthenia gravis, late onset; EGPA, MPO+, ANCA- and combined; JIA, 

extended oligo (EO), persistent oligo (PO), RF-, and RF+), we selected all driver SNPs on 

any significant component, and calculated the FDR within this set of SNPs as a 

subset-selected FDR.​29​  We ordered SNPs by increasing values of ssFDR, and deleted any 

SNPs in the list that were in LD (r​2​>0.1) with a higher placed SNP, leaving a set of unlinked 

SNPs associated with each trait shown in Table 1. These were annotated through literature 

searches. 

 

Code availability 

 
An R implementation of the method is available from​  ​https://github.com/ollyburren/​cupcake ​. 
Code to run the analyses presented here is available from 

https://github.com/ollyburren/imd-basis​. ​An online tool to allow projection and exploration of 

additional data into the basis is available at​ ​https://grealesm.shinyapps.io/IMDbasisApp/ ​.  
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Table 1: Disease-associated SNPs identified through subset-selected FDR (ssFDR) < 0.01 amongst driver SNPs belonging to 
disease-significant components.  Genes listed are nearby genes previously mentioned in the literature for the listed disease or basis diseases 
associated to this SNP, and are intended to indicate location; no evidence for gene causality has been assessed here. Where no basis 
diseases are associated with the SNP at genome-wide significant threshold (GWsig, p<5x10 ​-8​), the strongest association and its p value are 
shown. 
 
Disease SNP Chrm Position P FDR Genes Basis diseases Notes 

Genome-wide significant (4) 

JIA RF- rs2476601 1 114377568 2.34E-13 7.68E-11 PTPN22 
CD RA SLE 
T1D VIT  

EGPA combined rs13405741 2 111913056 2.89E-09 1.07E-06 BCL2L11 PSC  

EGPA ANCA- rs11745587 5 131796922 3.59E-08 1.33E-05 IRF1/IL5 asthma CD  

JIA RF- rs11065987 12 112072424 1.87E-08 2.81E-06 SH2B3 PBC T1D VIT  

Genome-wide significant in another subtype or study (7) 

JIA PO rs2476601 1 114377568 7.59E-06 3.65E-03 PTPN22 
CD RA SLE 
T1D VIT RF- subtype of JIA 

Myasthenia 
gravis combined rs2476601 1 114377568 6.62E-05 2.61E-03 PTPN22 

CD RA SLE 
T1D VIT Myasthenia gravis​30 

EGPA ANCA- rs13405741 2 111913056 1.33E-06 2.46E-04 BCL2L11 PSC EGPA combined 

JIA EO rs7574865 2 191964633 7.77E-07 1.24E-04 STAT4 PBC RA SLE JIA combined 

Myasthenia 
gravis combined rs231804 2 204708646 8.57E-07 1.69E-04 CTLA4 RA T1D 

r​2 ​>0.5 with non driver SNP rs231770, 
P=3.98E-08 

Myasthenia 
gravis late onset rs231804 2 204708646 1.18E-05 2.33E-03 CTLA4 RA T1D 

r​2 ​>0.5 with non driver SNP rs231770, 
P=3.98E-08 

JIA RF- rs1893217 18 12809340 1.69E-06 1.10E-04 PTPN2 CD RA T1D JIA combined 

Supported by other evidence in another study (5) 
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EGPA combined rs11745587 5 131796922 3.44E-07 6.38E-05 IRF1, IL5 asthma CD GWsig conditional on asthma GWAS​11 

EGPA combined rs6454802 6 90814199 8.73E-06 6.48E-04 BACH2 
asthma T1D 
VIT 

GWsig conditional on eosinophil count 
GWAS​11 

EGPA ANCA- rs6454802 6 90814199 1.23E-05 1.52E-03 BACH2 
asthma T1D 
VIT 

GWsig conditional on eosinophil count 
GWAS​11 

EGPA combined rs8179 7 92236164 6.05E-06 5.61E-04 CDK6 RA 4.3e-07 
GWsig conditional on eosinophil count 
GWAS​11 

EGPA ANCA- rs8179 7 92236164 5.51E-05 3.34E-03 CDK6 RA 4.3e-07 
GWsig conditional on eosinophil count 
GWAS​11 

JIA RF- rs9594746 13 42989660 1.06E-05 4.91E-04 TNFSF11 PBC 4.7e-07 r​2 ​=0.9 with rs34132030 (p=2x10 ​-7 ​)​ 61 

Not previously reported (8) 

EGPA combined rs12405671 1 117263868 2.99E-06 3.70E-04 CD2, CD28 RA 1e-07  

EGPA ANCA- rs12405671 1 117263868 4.06E-05 3.04E-03 CD2, CD28 RA 1e-07  

EGPA combined rs1457115 5 110567598 3.21E-05 1.98E-03 
TSLP, WDR36, 
CAMK4 asthma Unlinked to rs1837253 ​11 ​ (r​2 ​=0.01) 

EGPA ANCA- rs1457115 5 110567598 2.16E-04 8.01E-03 
TSLP, WDR36, 
CAMK4 asthma Unlinked to rs1837253 ​11 ​ (r​2 ​=0.01) 

Myasthenia 
gravis combined rs2188962 5 131770805 3.78E-05 2.61E-03 IRF1, IL5 asthma CD  

Myasthenia 
gravis late onset rs2188962 5 131770805 6.01E-05 5.95E-03 IRF1, IL5 asthma CD  

EGPA combined rs10876864 12 56401085 1.19E-04 4.42E-03 SUOX, IKZF4 T1D VIT  
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Figure 1: Schematic of basis creation and projection. Basis creation: GWAS summary statistics for
related traits are combined to create a matrix, M (n x m), of harmonised effect sizes (β̂) and a learned
vector of shrinkage values for each SNP. After multiplying each row of M by the shrinkage vector, PCA
is used to decompose M into component and loading matrices. Basis projection: External trait effects
are harmonised with respect to the basis, shrinkage applied and the resultant vector is multiplied by the
basis loading matrix to obtain component scores which can then be used for further analyses.
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Figure 2: Hierarchical clustering of basis diseases and their UKBB counterparts in basis space a un-
weighted basis constructed using β̂ b hard-thresholded, LD-thinned basis constructed using Z scores c
hard-thresholded, LD-thinned basis constructed using β̂ d basis constructed using continuous shrink-
age applied to β̂. Heatmaps indicate projected δ̂ for each disease on each component PC1-PC13, with
grey indicating 0 (no difference from control), and darker shades of blue or magenta showing departure
from controls in one direction or the other. GWAS datasets: T1D = type 1 diabetes, CEL= celiac disease,
asthma, MS =multiple sclerosis, UC =ulcerative colitis, CD = Crohn’s disease, RA =rheumatoid arthritis,
VIT =vitiligo, SLE =systemic lupus erythematosus, PSC=primary sclerosing cholangitis, PBC=primary
biliary cholangitis, LADA=latent autoimmune diabetes in adults, IgA_NEPH= IgA nephropathy. UKBB_
prefixed diseases correspond to self reported disease status in UK Biobank.
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Figure 3: Hierarchical clustering of projected diseases significantly different from control (FDR < 1%)
or of small sample size. Coloured labels are used to distinguish UKBB (grey) and other GWAS (green)
datasets. Heatmaps indicate delta values for each disease on each component PC1-PC13, with grey
indicating 0 (no difference from control), and darker shades of blue or magenta showing departure
from controls in one direction or the other. An overlaid * indicates delta was significantly non zero
(FDR<0.01). Roman numerals indicate clusters described in the text. Abbreviations: ANCA- = anti-
neutrophil cytoplasmic antibody negative, Ank. Spond = ankylosing spondylitis, EGPA = eosinophilic
granulomatosis with polyangiitis, EO = extended oligo, ERA = juvenile enthesitis-related arthritis, IgG-
Pos = IgG positive, JIA = juvenile idiopathic arthritis, MPO+ = myeloperoxidase positive NMO = neu-
romyelitis optica, PO = persistent oligo, PR3+ = proteinase 3 positive, PsA = psoriatic arthritis, RF +/-
= polyoligo rheumatoid factor positive/negative, SLE = systemic lupus erythematosus, UC = ulcerative
colitis.
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Figure 4: Forest plots showing projected values for diseases significant overall and on components
1. Grey squares dots indicate projected data and 95% confidence intervals. Red dots indicate the 13
IMD used for basis construction and for which no confidence interval is available. Points to the right of
each line indicate disease classification according to whether they have specific autoantibodies that are
either directly implicated in disease pathogenesis ("pathogenic") or which are specific to the disease,
but not involved in pathogenesis ("non-pathogenic"). Diseases that are not associated with specific
autoantibodies were classified as "none". Abbreviations: ANCA- = anti-neutrophil cytoplasmic antibody
negative, Ank. Spond = ankylosing spondylitis, EGPA = eosinophilic granulomatosis with polyangiitis,
EO = extended oligo, ERA = juvenile enthesitis-related arthritis, IgGPos = IgG positive, JIA = juvenile
idiopathic arthritis, LADA = latent autoimmune diabetes in adults, NMO = neuromyelitis optica, PO =
persistent oligo, PsA = psoriatic arthritis, RF +/- = polyoligo rheumatoid factor positive/negative, SLE =
systemic lupus erythematosus, UC = ulcerative colitis.
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Figure 5: Forest plot of significant traits on PC13 (left panel) which also shows association with
eosinophil counts in blood21. Mendelian randomisation (MR) analysis (right panel) using PC13 driver
SNPs (purple) or SNPs significantly associated (p < 10−3) with eosinophil counts (green). Abbrevi-
ations: ANCA- = anti-neutrophil cytoplasmic antibody negative, Ank. Spond = ankylosing spondyli-
tis, EGPA = eosinophilic granulomatosis with polyangiitis, JIA = juvenile idiopathic arthritis, MPO+ =
myeloperoxidase-positive, PO = persistent oligo, RF- = polyoligo rheumatoid factor negative.
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Figure 6: Forest plot of significant traits on PC3 (left panel) which also shows association with serum
cytokine levels of IP-10 (CXCL10) and MIG (CXCL9). Mendelian randomisation analysis of IP-10 (mid-
dle panel) or MIG (right panel) using PC3 driver SNPs finds these cytokines to be associated with IMD
risk (purple), but MR analysis using only SNPs significantly associated (p < 10−3) with either cytokine
(green) do not show association. Abbreviations: EO = extended oligo, PO = persistent oligo, RF +/- =
polyoligo rheumatoid factor positive/negative, UC = ulcerative colitis.
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