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Abstract

Background: The development of new drugs is costly, time consuming, and often accompanied with
safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by
finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know
which proteins are targeted by which drugs. Computational models that estimate the interaction strength
of new drug–target pairs have the potential to expedite drug repurposing. Several models have been pro-
posed for this task. However, these models represent the drugs as strings, which are not a natural way to
represent molecules.

Methods: We propose a new model called GraphDTA that represents drugs as graphs and uses graph
neural networks to predict drug–target affinity. We test 4 graph neural network variants, including GCN,
GAT, GIN, and a combined GAT-GCN architecture, for the task of drug–affinity prediction. We bench-
mark the performance of these models on the Davis and Kiba datasets.

Results: We show that graph neural networks not only predict drug–target affinity better than non-
deep learning models, but also outperform competing deep learning methods. Of note, the GIN method
performs consistently well for two separate benchmark datasets and for two key performance metrics. In
a post-hoc analysis of our model, we find that a graph neural network can learn the importance of known
molecular descriptors without any prior knowledge. We also examine the model’s performance and find
that a handful of drugs contribute disproportionately to the total prediction error.

Conclusions: Our results confirm that deep learning models are appropriate for drug–target binding
affinity prediction, and that representing drugs as graphs can lead to further improvements. Although we
focus on drug–target affinity prediction, our GraphDTA model is a generic solution for any collaborating
filtering or recommendation problem where either data input can be represented as a graph.

1 Background
It costs about 2.6 billion US dollars to develop a new drug [1], and can take up to 10–17 years for FDA
approval [2, 3]. Finding new uses for already approved drugs avoids the expensive and lengthy process
of drug development [2, 4]. In order to repurpose drugs effectively, it is useful to know which proteins
are targeted by which drugs. High-throughput screening experiments are used to examine the affinity of a
drug toward its targets; however, these experiments are costly and time-consuming [5, 6], and an exhaustive
search is infeasible because there are millions of drug-like compounds [7] and hundreds of potential targets
[8, 9]. As such, there is a strong motivation to build computational models that can estimate the interaction
strength of new drug–target pairs based on previous drug–target experiments.

Several computational approaches have been proposed for drug–target affinity (DTA) prediction [10, 11,
12]. One approach uses collaborative filtering. For example, the SimBoost model uses the affinity similari-
ties among drugs and among targets to build new features. These features are then used as input in a gradient
boosting machine to predict the binding affinity for unknown drug–target pairs [13]. Alternatively, the sim-
ilarities could come from others sources (rather than the training data affinities). For example, kernel-based
methods use kernels built from molecular descriptors of the drugs and targets within a regularized least
squares regression (RLS) framework [14, 15]. To speed up model training, the KronRLS model computes
a pairwise kernel K from the Kronecker product of the drug-by-drug and protein-by-protein kernels [14, 15]
(for which any similarity measure can be used).
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Another approach uses neural networks trained on 1D representations of the drug and protein sequences.
For example, the DeepDTA model uses 1D representations and layers of 1D convolutions (with pooling) to
capture predictive patterns within the data [16]. The final convolution layers are then concatenated, passed
through a number of hidden layers, and regressed with the drug–target affinity scores. The WideDTA
model is an extension of DeepDTA in which the sequences of the drugs and proteins are first summarized
as higher-order features [17]. For example, the drugs are represented by the most common sub-structures
(the Ligand Maximum Common Substructures (LMCS) [18]), while the proteins are represented by the
most conserved sub-sequences (the Protein Domain profiles or Motifs (PDM) from PROSITE [19]). While
WideDTA [17] and DeepDTA [16] learn a latent feature vector for each protein, the PADME model [20]
uses fixed-rule descriptors to represent proteins, and performs similarly to DeepDTA [16].

The deep learning models are among the best performers in DTA prediction [16]. However, these
models represent the drugs as strings, which are not a natural way to represent molecules. When using
strings, the structural information of the molecule is lost, which could impair the predictive power of a
model as well as the functional relevance of the learned latent space. Already, graph convolutional networks
have been used in computational drug discovery, including interaction prediction, synthesis prediction,
de novo molecular design, and quantitative structure prediction [21, 22, 23, 24]. However, graph neural
networks have not been used for DTA prediction.

In this article, we propose GraphDTA, a new neural network architecture capable of directly modelling
drugs as molecular graphs, and show that this approach outperforms state-of-the-art deep learning models
on two drug–target affinity prediction benchmarks. In order to better understand how the graphical model
works, we perform an analysis of the model’s latent space and find that our graph neural network automat-
ically assigned importance to well-defined chemical features, such as the number of aliphatic OH groups,
without any prior knowledge. We also examine the model’s performance and find that a handful of drugs
contribute disproportionately to the total prediction error, and that these drugs are inliers (i.e., not outliers)
in an ordination of the model’s latent space. Taken together, our results suggest that graph neural networks
are highly accurate, abstract meaningful concepts, and yet fail in predictable ways. We conclude with a
discussion about how these insights can feedback into the research cycle.

2 Methods

2.1 Overview of GraphDTA
We propose a novel deep learning model called GraphDTA for drug–target affinity (DTA) prediction. We
frame the DTA prediction problem as a regression task where the input is a drug–target pair and the output
is a continuous measurement of binding affinity for that pair. Existing methods represent the input drugs
and proteins as 1D sequences. Our approach is different; we represent the drugs as molecular graphs so that
the model can directly capture the bonds among atoms.

2.2 Graph representation of drug compounds

2.3 Drug representation
SMILES (Simplified Molecular Input Line Entry System) was invented to represent molecules to be read-
able by computers [25], enabling several efficient applications, including fast retrieval and substructure
searching. From the SMILES code, drug descriptors like the number of heavy atoms or valence electrons
can be inferred and readily used as features for affinity prediction. One could also view the SMILES code
as a string. Then, one could featurize the strings with natural language processing (NLP) techniques, or use
them directly in a convolutional neural network (CNN).

Instead, we view drug compounds as a graph of the interactions between atoms, and build our model
around this conceptualization. To describe a node in the graph, we use a set of atomic features adapted from
DeepChem [26]. Here, each node is a multi-dimensional binary feature vector expressing five pieces of
information: the atom symbol, the number of adjacent atoms, the number of adjacent hydrogens, the implicit
value of the atom, and whether the atom is in an aromatic structure [26]. We convert the SMILES code to
its corresponding molecular graph and extract atomic features using the open-source chemical informatics
software RDKit [27].
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Figure 1: This figure shows the GraphDTA architecture. It takes a drug–target pair as the input data, and
the pair’s affinity as the output data. It works in 3 stages. First, the SMILES code of a drug is converted
into a molecular graph, and a deep learning algorithm learns a graph representation. Meanwhile, the protein
sequence is encoded and embedded, and several 1D convolutional layers learn a sequence representation.
Finally, the two representation vectors are concatenated and passed through several fully connected layers
to estimate the output drug–target affinity value.
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2.4 Deep learning on molecular graphs
Having the drug compounds represented as graphs, the task now is to design an algorithm that learns
effectively from graphical data. The recent success of CNN in computer vision, speech recognition, and
natural language processing has encouraged research into graph convolution. A number of works have
been proposed to handle two main challenges in generalizing CNN to graphs: (1) the formation of receptive
fields in graphs whose data points are not arranged as Euclidean grids, and (2) the pooling operation to
down-sample a graph. These new models are called graph neural networks.

In this work, we propose a new DTA prediction model based on a combination of graph neural networks
and conventional CNN. Figure 1 shows a schematic of the model. For the proteins, we use a string of
ASCII characters and apply several 1D CNN layers over the text to learn a sequence representation vector.
Specifically, the protein sequence is first categorically encoded, then an embedding layer is added to the
sequence where each (encoded) character is represented by a 128-dimensional vector. Next, three 1D
convolutional layers are used to learn different levels of abstract features from the input. Finally, a max
pooling layer is applied to get a representation vector of the input protein sequence. This approach is
similar to the existing baseline models. For the drugs, we use the molecular graphs and trial 4 graph neural
network variants, including GCN [28], GAT [29], GIN [30], and a combined GAT-GCN architecture, all of
which we describe below.

2.4.1 Variant 1: GCN-based graph representation learning

The graph convolutional network (GCN) model [28] was originally designed for the problem of semi-
supervised node classification. This model is able to learn hidden layer representations that capture both
the local graph structures and the features of nodes. Formally, we denote a graph for a given drug as
G = (V,E), where V is the set of N nodes each is represented by a F -dimensional vector and E is the set
of edges represented as an adjacency matrix A. The GCN layer is defined as

D̃−
1
2 ÃD̃−

1
2XΘ (1)

where Ã is the graph adjacency matrix with added self loop, D̃ is the graph diagonal degree matrix, X is
the node feature matrix, and Θ is the trainable parameter matrix.

To make the GCN applicable to the task of learning a representation vector of the whole graph, we add a
global max pooling layer right after the last GCN layer. In our GCN-based model, we use three consecutive
GCN layers, each activated by a ReLU function. Then a global max pooling layer is added to obtain the
graph representation vector.

2.4.2 Variant 2: GAT-based graph representation learning

Unlike graph convolution, the graph attention network (GAT) [29] proposes an attention-based architecture
to learn hidden representations of nodes in a graph by applying a self-attention mechanism. The building
block of a GAT architecture is a graph attention layer. The GAT layer takes the set of nodes of a graph as
input, and applies a linear transformation to every node by a weigh matrix W. For each input node i in the
graph, the attention coefficients between i and its first-order neighbors are computed as

a(Wxi,Wxj) (2)

This value indicates the importance of node j to node i. These attention coefficients are then normalized by
applying a soft-max function, then used to compute the output features for nodes as

σ(
∑

j∈N (i)

αijWxj) (3)

where σ(.) is a non-linear activation function and αij are the normalized attention coefficients.
In our model, the GAT-based graph learning architecture includes two GAT layers, activated by a ReLU

function, then followed a global max pooling layer to obtain the graph representation vector. For the first
GAT layer, multi-head-attentions are applied with the number of heads set to 10, and the number of output
features set to the number of input features. The number of output features of the second GAT is set to 128.
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Method Protein rep. Compound rep. CI MSE
Baseline models

DeepDTA [16] Smith-Waterman Pubchem-Sim 0.790 0.608
DeepDTA [16] Smith-Waterman 1D 0.886 0.420
DeepDTA [16] 1D Pubchem-Sim 0.835 0.419

KronRLS [14, 15] Smith-Waterman Pubchem-Sim 0.871 0.379
SimBoost [13] Smith-Waterman Pubchem-Sim 0.872 0.282
DeepDTA [16] 1D 1D 0.878 0.261
WideDTA [17] 1D + PDM 1D + LMCS 0.886 0.262

Proposed method - GraphDTA
GCN 1D Graph 0.880 0.254

GAT_GCN 1D Graph 0.881 0.245
GAT 1D Graph 0.892 0.232
GIN 1D Graph 0.893 0.229

Table 1: Prediction performance on the Davis dataset, sorted by MSE. Baseline results are from [16, 17].
We compare 4 graph neural network variants: GIN [30], GAT [29], GCN [28], and combined GAT-GCN
[29, 28]. Italics: best for baseline models, bold: better than baselines.

Method Protein rep. Compound rep. CI MSE
Baseline models

DeepDTA [16] 1D Pubchem-Sim 0.718 0.571
DeepDTA [16] Smith-Waterman Pubchem-Sim 0.710 0.502

KronRLS [14, 15] Smith-Waterman Pubchem-Sim 0.782 0.411
SimBoost [13] Smith-Waterman Pubchem-Sim 0.836 0.222
DeepDTA [16] Smith-Waterman 1D 0.854 0.204
DeepDTA [16] 1D 1D 0.863 0.194
WideDTA [17] 1D + PDM 1D + LMCS 0.875 0.179

Proposed method - GraphDTA
GAT 1D Graph 0.866 0.179
GIN 1D Graph 0.882 0.147
GCN 1D Graph 0.889 0.139

GAT_GCN 1D Graph 0.891 0.139

Table 2: Prediction performance on the Kiba dataset, sorted by MSE. Baseline results are from [16, 17].
We compare 4 graph neural network variants: GIN [30], GAT [29], GCN [28], and combined GAT-GCN
[29, 28]. Italics: best for baseline models, bold: better than baselines.

2.4.3 Variant 3: Graph Isomorphism Network (GIN)

The graph isomorphism network (GIN) [30] is newer method that supposedly achieves maximum discrim-
inative power among graph neural networks. Specifically, GIN uses a multi-layer perceptron (MLP) model
to update the node features as

MLP ((1 + ε)xi +
∑

j∈B(i)

xi) (4)

where ε is either a learnable parameter or a fixed scalar, x is the node feature vector, and B(i) is the set of
nodes neighboring i.

In our model, the GIN-based graph neural net consists of five GIN layers, each followed by a batch
normalization layer. Finally, a global max pooling layer is added to obtain the graph representation vector.

2.4.4 Variant 4: GAT-GCN combined graph neural network

We also investigate a combined GAT-GCN model. Here, the graph neural network begins with a GAT
layer that takes the graph as input, then passes a convolved feature matrix to the subsequent GCN layer.
Each layer is activated by a ReLU function. The final graph representation vector is then computed by
concatenating the global max pooling and global mean pooling layers from the GCN layer output.
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2.5 Benchmark
To compare our model with the state-of-the-art DeepDTA [16] and WideDTA [17] models, we use the
same 2 datasets from the [16, 17] benchmarks:

• Davis contains the binding affinities for all pairs of 72 drugs and 442 targets, measured as Kd con-
stants and ranging from 5.0 to 10.8 [31].

• Kiba contains the binding affinities for 2,116 drugs and 229 targets, measured as KIBA scores and
ranging from 0.0 to 17.2 [32].

To make the comparison as fair as possible, we use the exact same train/test data splits from [16, 17] (i.e.,
80% used for training and 20% for testing), as well as the same performance metrics: Mean Square Error
(MSE, the smaller the better) and Concordance Index (CI, the larger the better). For all baseline methods,
we report the performance metrics as originally published in [16, 17].

2.6 Model interpretation
The activation of nodes within layers of a deep neural network are called latent variables, and can be ana-
lyzed directly to understand how a model’s performance relates to domain knowledge [33]. We obtained the
128 latent variables from the graph neural network layer, and analyzed them directly through a redundancy
analysis. This multivariable statistical method allows us to measure the percent of the total variance within
the latent variables that can be explained by an external data source. In our case, the external data source
is a matrix of 38 molecular JoeLib features/descriptors [34] for each drug (available from ChemMine Tools
[35]).

We also compare the value of the principal components from these latent variables with the per-drug
test set error. Here, the per-drug (or per-protein) error refers to the median of the absolute error between
the predicted DTA and the ground-truth DTA for all test set pairs containing that drug (or that protein). For
these analyses, we focus on the GIN model [30] (because of its superior performance) and the Kiba dataset
[32] (because of its larger drug catalog).

3 Results and Discussion

3.1 Graphical models outperform the state-of-the-art
Table 1 compares the performance of 4 variant GraphDTA models with the existing baseline models for
the Davis dataset. Here, all 4 variants had the lowest MSE. The best variant had an MSE of 0.229 which
is 12.3% lower than the best baseline of 0.261. The improvement is less obvious according to the CI
metric, where only 2 of the 4 variants had the highest CI. The best CI for a baseline model was 0.886. By
comparison, the GAT and GIN models achieved a CI of 0.892 and 0.893, respectively.

Table 2 compares the performance of the GraphDTA models with the existing baseline models for
the Kiba dataset. Here, 3 of the 4 variants had the lowest MSE and the highest CI, including GIN, GCN,
and GAT-GCN. Of note, the best MSE here is 0.139, which is 22.3% lower than the best baseline. Of all
variants tested, GIN is the only one that had the best performance for both datasets and for both performance
measures. For this reason, we focus on the GIN in all post-hoc analyses.

3.2 Graphical models discover known drug properties
A graph neural network works by abstracting the molecular graph of each drug into a new feature vector
of latent variables. In our model, there are 128 latent variables which together characterise the structural
properties of the drug. Since the latent variables are learned during the DTA prediction task, we assume
that they represent graphical features that contribute meaningfully to DTA.

Unfortunately, it is not straightforward to determine the molecular sub-structures to which each latent
variable corresponds. However, we can regress the learned latent space with a matrix of known molecular
descriptors to look for overlap. Figure 2 shows a redundancy analysis of the 128 latent variables regressed
with 38 molecular descriptors [34] (available from ChemMine Tools [35]). From this, we find that 20.19%
of the latent space is explained by the known descriptors, with the “Number of aliphatic OH groups” con-
tributing most to the explained variance. Indeed, two latent variables correlate strongly with this descriptor:
hidden nodes V58 and V14 both tend to have high activation when the number of aliphatic OH groups is
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large. This finding provides some insight into how the graphical model might “see” the drugs as a set of
molecular sub-structures, though most of the latent space is orthogonal to the known molecular descriptors.

Figure 2: The left panel of the figure shows a redundancy analysis triplot for the 128 drug latent variables re-
gressed with 38 JoeLib molecular descriptors [34]. The blue dots represent drugs, the yellow dots represent
latent variables (with the top 6 labelled explicitly), and the arrows represent molecular descriptors (with the
top 5 labelled explicitly). The right panel of the figure shows the activation of two latent variables plotted
against the number of aliphatic OH groups in that drug. These results suggest that the graph convolutional
network can abstract known molecular descriptors without any prior knowledge.

3.3 A few drugs contribute disproportionately to total error
Although the GraphDTA model outperforms its competitors, we wanted to know more about why its
predictions sometimes failed. For this, we averaged the prediction error for each drug (and each protein),
for both the Davis and Kiba test sets. Figures 3 and 4 show the median of the absolute error (MAE) for
affinity prediction, sorted from smallest to largest. Interestingly, we see that a handful of drugs (and a
handful of proteins) contribute disproportionately to the overall error. Of note, CHEMBL1779202 (an ALK
inhibitor), CHEMBL1765740 (a PDK1 inhibitor) and the protein CSNK1E all had an MAE above 2.

We examined the latent space with regard to the prediction error, but could not find any obvious pattern
that separated hard-to-predict drugs from easy-to-predict drugs. The only trend we could find is that the
easy-to-predict drugs are more likely to appear as outliers in a PCA of the latent space. Supplemental
Figure 6 shows the median errors plotted against the first 6 principal components, where we see that the
hard-to-predict drugs usually appear close to the origin. We interpret this to mean that drugs with unique
molecular sub-structures are always easy to predict. On the other hand, the hard-to-predict drugs tend to
lack unique structures, though this is apparently true for many easy-to-predict drugs too.
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Figure 3: This figure shows the median of the absolute error for each drug, sorted in increasing order, for
the Davis and Kiba test sets. Here, we see that the errors are not distributed evenly across the drugs. It is
harder to predict the target affinities for some drugs than others.

Figure 4: This figure shows the median of the absolute error for each protein, sorted in increasing order, for
the Davis and Kiba test sets. Here, we see that the errors are not distributed evenly across the proteins. It is
harder to predict the target affinities for some proteins than others.

3.4 Model interpretation and the research cycle
Knowing how a model works and when a model fails can feedback into the research cycle. In the post-hoc
analysis of our model, we find that a graph neural network can learn the importance of known molecular
descriptors without any prior knowledge. However, most of the learned latent variables remain unexplained
by the available descriptors. Yet, the model’s performance implies that these learned representations are
useful in affinity prediction. This suggests that there are both similarities and differences in how machines
“see” chemicals versus how human experts see them. Understanding this distinction may further improve
model performance or reveal new mechanisms behind drug–target interactions.

Meanwhile, the distribution of the test set errors suggest that there are “problem drugs” (and “problem
proteins”) for which prediction is especially difficult. One could action this insight either by collecting
more training data for these drugs (or proteins), or by using domain-knowledge to engineer features that
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complement the molecular graphs. Indeed, knowing that the PCA outliers are the easiest to predict suggests
that some additional feature input may be needed to differentiate between drugs that lack distinct molecular
sub-graphs. Although 2D graphs contain more information than 1D strings, our model still neglects the
stereochemistry of the molecules. Future experiments could test whether representing drugs in 3D (or
proteins in 2D) further improves model performance.

4 Summary
In this work, we propose a novel method for estimating drug–target binding affinity, called GraphDTA. We
show that graph neural networks not only predict drug–target affinity better than non-deep learning models,
but also outperform competing deep learning methods. In particular, the GIN method performs consistently
well for two separate benchmark datasets and for two key performance metrics. Our results confirm that
deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs
as graphs can lead to further improvements. Although we focus on drug–target affinity prediction, our
GraphDTA model is a generic solution for any collaborating filtering or recommendation problem where
either data input can be represented as a graph.
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[29] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. Proceedings of the International Conference on Learning Repre-
sentations (ICLR), 2018.

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works? Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[31] Mindy I Davis, Jeremy P Hunt, Sanna Herrgard, Pietro Ciceri, Lisa M Wodicka, Gabriel Pallares,
Michael Hocker, Daniel K Treiber, and Patrick P Zarrinkar. Comprehensive analysis of kinase in-
hibitor selectivity. Nature Biotechnology, 29(11):1046, 2011.

[32] Jing Tang, Agnieszka Szwajda, Sushil Shakyawar, Tao Xu, Petteri Hintsanen, Krister Wennerberg,
and Tero Aittokallio. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative
and integrative analysis. Journal of Chemical Information and Modeling, 54(3):735–743, 2014.

[33] Vuong Le, Thomas P. Quinn, Truyen Tran, and Svetha Venkatesh. Deep in the Bowel: Highly Inter-
pretable Neural Encoder-Decoder Networks Predict Gut Metabolites from Gut Microbiome. bioRxiv,
page 686394, June 2019.

[34] Jörg K Wegner, Holger Fröhlich, and Andreas Zell. Feature selection for descriptor based classifica-
tion models. 2. Human intestinal absorption (HIA). Journal of Chemical Information and Computer
Sciences, 44(3):931–939, 2004.

[35] Tyler WH Backman, Yiqun Cao, and Thomas Girke. ChemMine tools: an online service for analyzing
and clustering small molecules. Nucleic Acids Research, 39(suppl_2):W486–W491, 2011.

11

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 22, 2020. ; https://doi.org/10.1101/684662doi: bioRxiv preprint 

https://doi.org/10.1101/684662
http://creativecommons.org/licenses/by/4.0/


Supplemental Figures

Figure 5: This figure shows the per-drug median errors plotted against the first 6 principal components,
where we see that the hard-to-predict drugs usually appear close to the origin. We interpret this to mean
that drugs with unique molecular sub-structures are always easy to predict.
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